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Motivation

We want to do domain independent optimal planning, in a
time-bounded setting

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?
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Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes

A more informed heuristic solves less problems — something is
rotten in the kingdom of A∗
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The Accuracy / Computation Time Tradeoff

More Informed Heuristic Less Search Effort

Less Search Effort

Less Expanded States

More Time Per Statetmaxh = thLA + thLM-CUT

Conclusion
A more informed heuristic is not necessarily better
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A Simple Observation

So how can we benefit from multiple heuristics?

Simple observation: the maximum of several heuristics — is
simply the value of one of those heuristics

This leads to the following idea:
Given state s, and heuristics {h1, . . . ,hn}
Choose hi = ORACLE(s,{h1, . . . ,hn})
Compute only hi(s)
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The Oracle

How do we define ORACLE?
Naive answer: use the heuristic which gives the maximum value

ORACLE(s,{h1, . . . ,hn}) = argmax
i

hi(s)

Why is this naive?

Because sometimes the extra time to compute the most informed
heuristic is not worth it
Example: hLM-CUT is about 9.4 times slower than hLA
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Our Contributions

We develop a theoretical model for determining which heuristic is
best to compute at each state, in order to minimize search time

We derive a decision rule from the model, which is used as a
target concept for a classifier

We describe an online learning scheme which uses this classifier
during search
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Theoretical Model - Which Heuristic to Compute When?

Assumptions

State space is a tree

Single goal state

Uniform cost actions

Constant branching factor b

Perfect knowledge

Two heuristics: h1 and h2

Consistent

Evaluating hi takes time ti
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Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the border

f2(s) = c∗

f1(s)< c∗

What is the best decision?

Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?

Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 time

Using h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time

Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

sg

s0

f1 = c∗f2 = c∗

Surely expanded using h1

Surely expanded using maxh

Best decision — expand, don’t evaluate

f1 = c∗f2 = c∗

s

Look at state s along the borderf2(s) = c∗

f1(s)< c∗

What is the best decision?Using h2 — 1 evaluation, t2 timeUsing h1Using h2 — 1 evaluation, t2 time

f1 = c∗

We need to expand this region

Expand region

And evaluate these states

Evaluate leaves

` — number of levels to expand

b`t1 time

`

Using h2 — 1 evaluation, t2 time

Using h1 — b`t1 time
Best decision — use h2 iff t2 < b`t1

i.e. ` > logb(t2/t1)

` > logb(t2/t1) Estimating `

We make one more assumption:
h1 increases by c for each level.

Then `= h2−h1
c+1 .

Decision rule - use h2 iff

h2−h1 > α logb(t2/t1)

α is a hyper-parameter



Motivation Theoretical Model From Model to Practice Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?
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Dealing with Model Assumptions

Assumptions

State space is a tree

- rule is still applicable (possibly suboptimal)

Single goal state

- rule is still applicable (possibly suboptimal)

Uniform cost actions

- rule is still applicable (possibly suboptimal)

Constant branching factor b

- estimate

Perfect knowledge

- use decision rule at every state

Two heuristics: h1 and h2

Consistent

- rule is still applicable (possibly suboptimal)

Evaluating hi takes time ti

- estimate
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Learning

Pre-search:
Collecting training examples
Labeling training examples
Generating features
Building a classifier

During search:
Classification
Active learning
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Collecting Training Examples

State space is sampled using stochastic hill climbing “probes”
Depth limit = 2∗h(s0)
Probability of expanding successor s ∼ 1/h(s)

All generated states are added to the training set

Probing stops when enough training examples are collected

s0

Depth limit
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Labeling Training Examples

b, t1, t2 are estimated from the collected examples

h2−h1 is calculated for each state

Each example is labeled by h2 iff h2−h1 > α logb(t2/t1)

WLOG t2 > t1 - the choice is always whether to evaluate the more
expensive heuristic
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Generating Features

We perform online learning, for a specific problem, so we do not
need to generalize across problems

This allows us to use features which fully describe each state

We use the simplest features - just values of state variables

Better features will probably lead to better results
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Building a Classifier

We use the Naive Bayes classifier

Very fast

Incremental — can be updated quickly on the fly

Provides probability distribution for classification
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Using the classifier

State Evaluation

state

classifier

features

Evaluate h2Evaluate h1

h1 h2

Pr(h1)> ρ Pr(h2)> ρ

Learn

Pr(h1),Pr(h2)≤ ρ
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Final Remarks

This is an active online learning scheme

Using multi-valued variable representation (and not STRIPS)
helps, because it reduces dependence between state variables

This approach can be easily extended to multiple heuristics
Learn a classifier for each pair
Decide which heuristic to use by voting
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Evaluation

We evaluted on problems from 22 domains from IPC 1 – 5
We used two state of the art heuristics

hLM-CUT - Helmert and Domshlak 2009
hLA - Karpas and Domshlak 2009

Parameters
α = 1 - decision rule bias
ρ = 0.6 - confidence threshold
Training set size = 100
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Anytime Behavior
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Results - Time
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Conclusions

It is possible to efficiently combine several admissible heuristics

This leads to state-of-the-art performance

Online learning can help in optimal planning

I should probably read Hamlet
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Thank You

Thank You
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