<ロト < 同ト < 回ト < 回ト = 三日 = 三日

To Max or not to Max: Online Learning for Speeding Up Optimal Planning

C. Domshlak E. Karpas S. Markovitch

Faculty of Industrial Engineering and Management

Faculty of Computer Science Technion

July 4, 2010

Outline

- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier

Motivation

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*

Motivation	Theoretical Model	From Model to Practice	Experimental Evaluation
Motivation			

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*

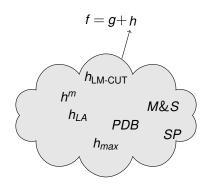
$$f = g + h$$

ñ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation	Theoretical Model	From Model to Practice	Experimental Evaluation
Motivation			

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*



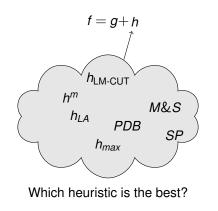
Ñ

æ

ヘロト 人間 とくほとくほとう

Motivation	Theoretical Model	From Model to Practice	Experimental Evaluation
Motivation			

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*



Ñ

æ

ヘロト 人間 とくほとく ほとう

Why Settle for One?

There is no single best heuristic, so why settle only for one?

• We can use the maximum of several heuristics to get a more informative heuristic

Ñ

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
airport	25	38	36
freecell	28	15	22

Number of problems solved in 30 minutes

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
airport	25	38	36
freecell	28	15	22

Number of problems solved in 30 minutes

 A more informed heuristic solves less problems — something is rotten in the kingdom of A*

Theoretical Model

From Model to Practice

Experimental Evaluation

The Accuracy / Computation Time Tradeoff

More Informed Heuristic

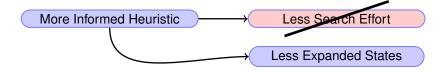
Less Search Effort

Theoretical Model

From Model to Practice

Experimental Evaluation

The Accuracy / Computation Time Tradeoff

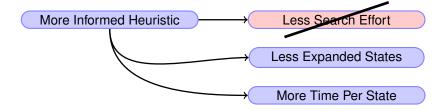


Theoretical Model

From Model to Practice

Experimental Evaluation

The Accuracy / Computation Time Tradeoff

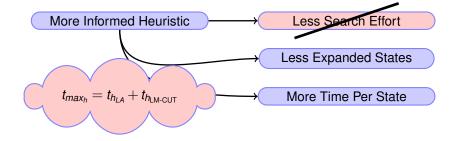


Theoretical Model

From Model to Practice

Experimental Evaluation

The Accuracy / Computation Time Tradeoff



Theoretical Model

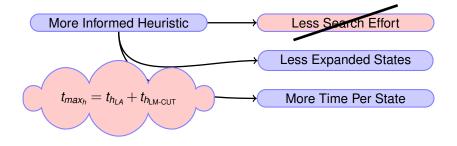
From Model to Practice

Experimental Evaluation

ヘロト ヘロト ヘヨト ヘヨト

э

The Accuracy / Computation Time Tradeoff



Conclusion

A more informed heuristic is not necessarily better

イロン 不得 とくほ とくほ とうほう

A Simple Observation

• So how can we benefit from multiple heuristics?

• Simple observation: the maximum of several heuristics — is simply the value of one of those heuristics

• This leads to the following idea:

- Given state *s*, and heuristics $\{h_1, \ldots, h_n\}$
- Choose h_i = ORACLE(s, {h₁,..., h_n})
- Compute only h_i(s)

イロン 不得 とくほ とくほ とうほう

A Simple Observation

- So how can we benefit from multiple heuristics?
- Simple observation: the maximum of several heuristics is simply the value of one of those heuristics
- This leads to the following idea:
 - Given state *s*, and heuristics $\{h_1, \ldots, h_n\}$
 - Choose $h_i = \text{ORACLE}(s, \{h_1, \ldots, h_n\})$
 - Compute only h_i(s)

A Simple Observation

- So how can we benefit from multiple heuristics?
- Simple observation: the maximum of several heuristics is simply the value of one of those heuristics
- This leads to the following idea:
 - Given state *s*, and heuristics $\{h_1, \ldots, h_n\}$
 - Choose $h_i = \text{ORACLE}(s, \{h_1, \dots, h_n\})$
 - Compute only h_i(s)

The Oracle

How do we define ORACLE?

• Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: *h*_{LM-CUT} is about 9.4 times slower than *h*_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

Ñ

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname*{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

Ñ

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname*{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

Our Contributions

- We develop a theoretical model for determining which heuristic is best to compute at each state, in order to minimize search time
- We derive a decision rule from the model, which is used as a target concept for a classifier
- We describe an online learning scheme which uses this classifier during search

Outline

2 Theoretical Model

From Model to Practice

- Dealing with Model Assumptions
- Learning
- Using the Classifier



Ñ

3

イロト 不得 とうほう イヨン

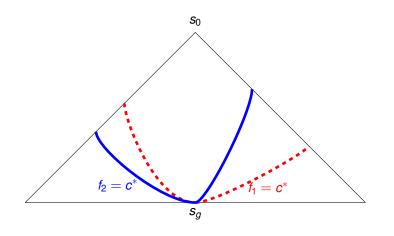
Theoretical Model - Which Heuristic to Compute When?

Assumptions

- State space is a tree
- Single goal state
- Uniform cost actions
- Constant branching factor b
- Perfect knowledge
- Two heuristics: h_1 and h_2
 - Consistent
 - Evaluating *h_i* takes time *t_i*

Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

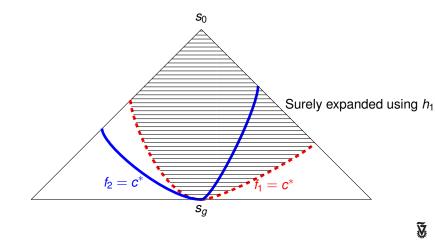
Ñ

Experimental Evaluation

ヘロト 人間 とくほとくほとう

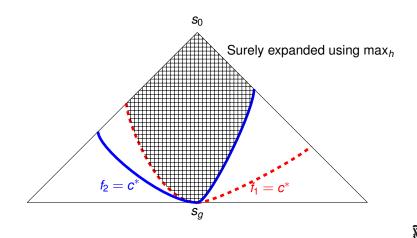
æ

Theoretical Model - Which Heuristic to Compute When?



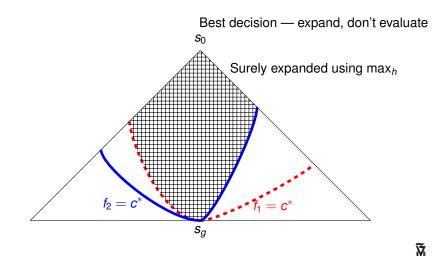
Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?



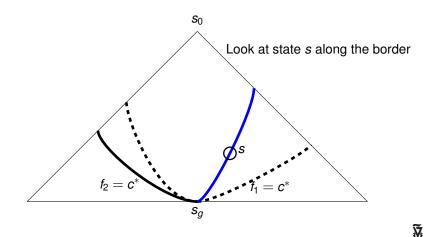
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Theoretical Model - Which Heuristic to Compute When?



Experimental Evaluation

Theoretical Model - Which Heuristic to Compute When?

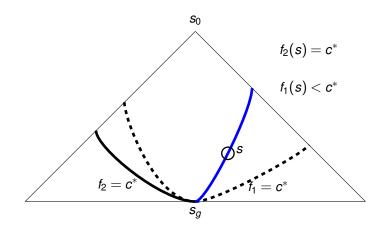


・ロト ・聞ト ・ヨト ・ヨト

ж

Experimental Evaluation

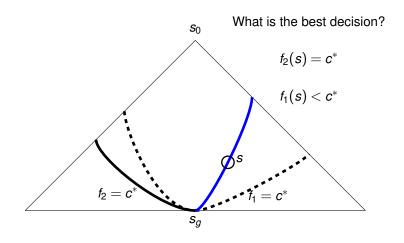
Theoretical Model - Which Heuristic to Compute When?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

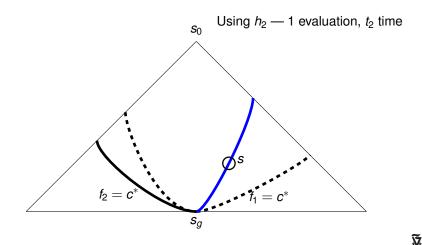
Ñ

Theoretical Model - Which Heuristic to Compute When?



Ñ

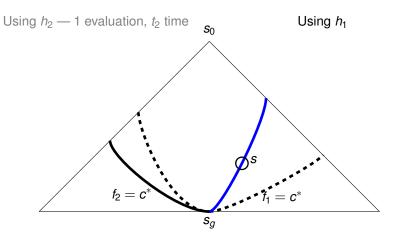
Theoretical Model - Which Heuristic to Compute When?



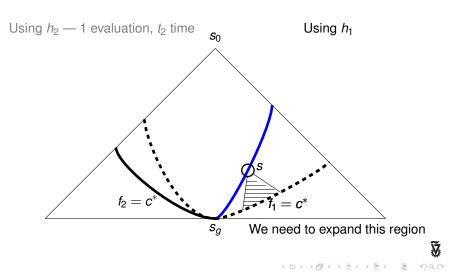
・ロト ・聞ト ・ヨト ・ヨト

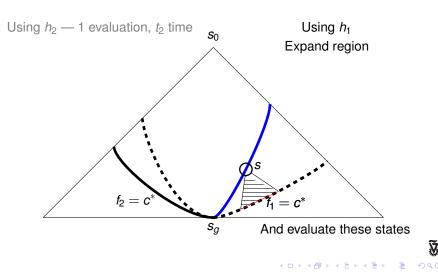
э

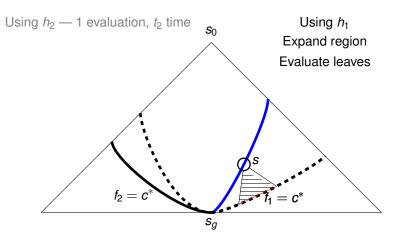
Theoretical Model - Which Heuristic to Compute When?

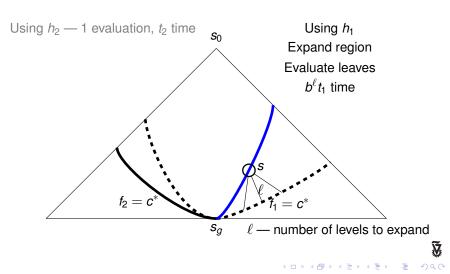


Theoretical Model - Which Heuristic to Compute When?

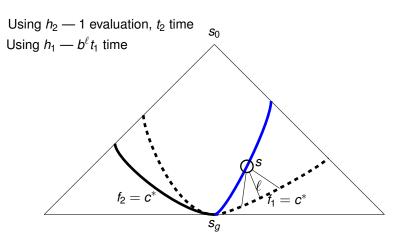






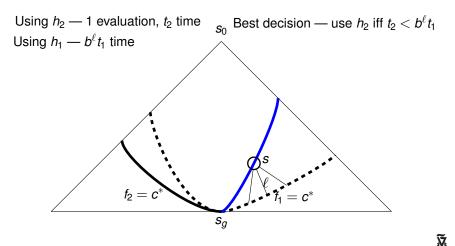


Theoretical Model - Which Heuristic to Compute When?



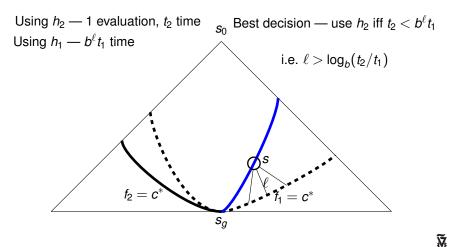
・ロト・日本・ キャー キャー ショー うへの

э

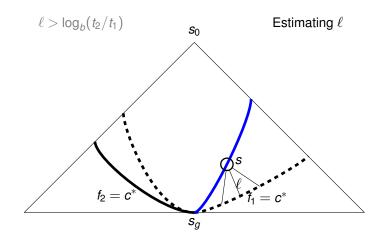


イロト 不得 とうほう イヨン

э.



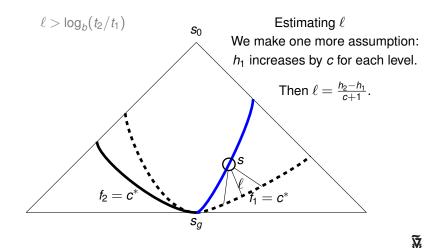
Theoretical Model - Which Heuristic to Compute When?



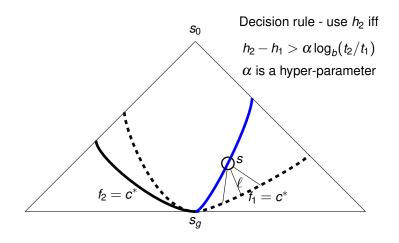
Ñ

イロト 不得 とうほう 不良 とう

3



Theoretical Model - Which Heuristic to Compute When?



Outline

2 Theoretical Model

From Model to Practice

- Dealing with Model Assumptions
- Learning
- Using the Classifier

3

イロト 不得 とうほう イヨン

Dealing with Model Assumptions

Assumptions

- State space is a tree
- Single goal state
- Uniform cost actions
- Constant branching factor b
- Perfect knowledge
- Two heuristics: h_1 and h_2
 - Consistent
 - Evaluating *h_i* takes time *t_i*

イロン 不得 とくほ とくほ とうほう

Dealing with Model Assumptions

Assumptions

- State space is a tree rule is still applicable (possibly suboptimal)
- Single goal state rule is still applicable (possibly suboptimal)
- Uniform cost actions rule is still applicable (possibly suboptimal)
- Constant branching factor b
- Perfect knowledge
- Two heuristics: h_1 and h_2
 - Consistent rule is still applicable (possibly suboptimal)
 - Evaluating h_i takes time t_i

(日)

Dealing with Model Assumptions

Assumptions

- State space is a tree rule is still applicable (possibly suboptimal)
- Single goal state rule is still applicable (possibly suboptimal)
- Uniform cost actions rule is still applicable (possibly suboptimal)
- Constant branching factor b estimate
- Perfect knowledge
- Two heuristics: h_1 and h_2
 - Consistent rule is still applicable (possibly suboptimal)
 - Evaluating *h_i* takes time *t_i* estimate

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへの

Dealing with Model Assumptions

Assumptions

- State space is a tree rule is still applicable (possibly suboptimal)
- Single goal state rule is still applicable (possibly suboptimal)
- Uniform cost actions rule is still applicable (possibly suboptimal)
- Constant branching factor b estimate
- Perfect knowledge use decision rule at every state

Two heuristics: h_1 and h_2

- Consistent rule is still applicable (possibly suboptimal)
- Evaluating *h_i* takes time *t_i* estimate

ñ

э.

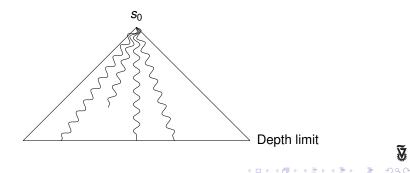
ヘロト 人間 とく ヨン く ヨン

Learning

- Pre-search:
 - Collecting training examples
 - Labeling training examples
 - Generating features
 - Building a classifier
- During search:
 - Classification
 - Active learning

Collecting Training Examples

- State space is sampled using stochastic hill climbing "probes"
 - Depth limit = $2 * h(s_0)$
 - Probability of expanding successor $s \sim 1/h(s)$
- All generated states are added to the training set
- Probing stops when enough training examples are collected



Labeling Training Examples

- *b*, *t*₁, *t*₂ are estimated from the collected examples
- $h_2 h_1$ is calculated for each state
- Each example is labeled by h_2 iff $h_2 h_1 > \alpha \log_b(t_2/t_1)$
- WLOG t₂ > t₁ the choice is always whether to evaluate the more expensive heuristic

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

Generating Features

- We perform online learning, for a specific problem, so we do not need to generalize across problems
- This allows us to use features which fully describe each state
- We use the simplest features just values of state variables
- Better features will probably lead to better results

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

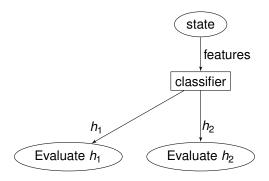
Building a Classifier

- We use the Naive Bayes classifier
 - Very fast
 - Incremental can be updated quickly on the fly
 - Provides probability distribution for classification

Experimental Evaluation

Using the classifier

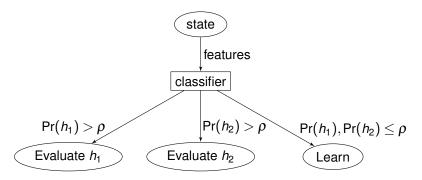
State Evaluation



Experimental Evaluation

Using the classifier

State Evaluation



ã

Final Remarks

- This is an active online learning scheme
- Using multi-valued variable representation (and not STRIPS) helps, because it reduces dependence between state variables
- This approach can be easily extended to multiple heuristics
 - Learn a classifier for each pair
 - Decide which heuristic to use by voting

Outline

- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier

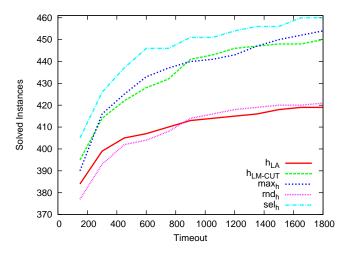
▲□▶▲□▶▲□▶▲□▶ □ のQで

Evaluation

- We evaluted on problems from 22 domains from IPC 1 5
- We used two state of the art heuristics
 - h_{LM-CUT} Helmert and Domshlak 2009
 - h_{LA} Karpas and Domshlak 2009
- Parameters
 - $\alpha = 1$ decision rule bias
 - ho= 0.6 confidence threshold
 - Training set size = 100

Experimental Evaluation

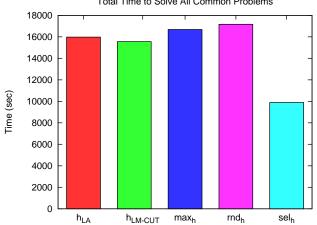
Anytime Behavior



æ

イロト イ理ト イヨト イヨト

Results - Time



Total Time to Solve All Common Problems

ヘロト 人間 とく ヨン く ヨン æ

Ñ

ヘロト 人間 とくほ とくほとう

3

Conclusions

- It is possible to efficiently combine several admissible heuristics
- This leads to state-of-the-art performance

• Online learning can help in optimal planning

• I should probably read Hamlet

イロト 不得 とうほう 不良 とう

3

Conclusions

- It is possible to efficiently combine several admissible heuristics
- This leads to state-of-the-art performance

• Online learning can help in optimal planning

• I should probably read Hamlet

Thank You

Thank You

