Data-Parallel Computing Meets STRIPS

Erez Karpas, Tomer Sagi, Carmel Domshlak, Avigdor Gal, Avi Mendelson, and Moshe Tennenholtz

 Technion-Microsoft Electronic Commerce Research Center
Motivation

- Declarative query processing and user defined functions do not play well together
- User must specify some base execution plan
- Which optimizations are safe?

DPPS

- Framework is based on tracking data chunks
- Each data chunk d is associated with the amount σ_{d} of memory it requires

A DPPS Task is described by:

- D - possible data chunks, with sizes σ_{d}
- N - computing units, with memory κ_{n}
- A - computation primitives, each described by:
$\bullet I \subseteq D$ - required input
- $\bar{O} \subseteq D$ - produced output
- $C: N \rightarrow \mathbb{R}^{0+}$ - computation cost
- $T: N \times D \times N \rightarrow \mathbb{R}^{0+}$ - data transmission cost - s_{0} — the initial state of the computation
- G - the goal of the computation
- A DPPS state specifies which processor holds which data chunks
- A solution is a sequence of compute / transmit / delete data actions which achieves the goal from the initial state
- The possible data chunks D and computations A may be given explicitly or described implicitly - If they are described implicitly the sets could be infinite

Theoretical Properties

Expressivity:

\odot DPPS is at least as expressive as relational algebra with aggregation

Complexity:

© Optimal data-parallel program synthesis is NP-hard, even under severe restrictions
© Satisficing data-parallel program synthesis is NP-hard
© Satisficing data-parallel program synthesis with no memory constraints can be solved in polynomial time, when the possible data chunks are given explicitly.

Example: Multi Histogram

- Suppose we have a users table T with 10^{9} users - We want two histograms of T : by age and by relationship status

In SQL or similar:
SELECT COUNT(T.age) FROM T;
SELECT COUNT(T.rls) FROM T;
Query Execution Plan:
Agg(age, scan(T))
Agg(rls, scan(T))

- Suppose we have a user-defined function, DAgg which aggregates by two fields simultaneously

Query Execution Plan using DAgg
DAgg(age, rls, scan(T))

- How do we come up with this execution plan?

Compilation to STRIPS

- When computations/data chunks explicit
- Predicate holds (?node, ?data)
- Actions
- compute(?node, ?computation)
-transmit(?node, ?data, ?node2)
- del(?node, ?data)
- Capacity constraints = numerical fluents
- When the computations/data chunks implicit, compilation is still possible sometimes
- When data chunks have a structure (e.g., expression trees), it is possible to represent such trees using predicates

Expression Tree	Encoding
select $\left(n_{1}, \quad p, n_{2}\right)$	
join $\left(n_{2}, e_{1}, e_{2}\right)$	

- Equivalence rules typically have limited depth and can be encoded as operators
- More details in the paper

Empirical Proof of Concept

- Histogram of F fields of a table divided across N processors

Query Execution Plan without Dagg
$\operatorname{Agg}\left(n_{1}, f_{1}, \quad \sigma_{\text {hash }(P K)=1}(T)\right)$
$\operatorname{Agg}\left(n_{1}, f_{2}, \quad \sigma_{\text {hash }(P K)=1}(T)\right)$
$\operatorname{Agg}\left(n_{2}, f_{1}, \sigma_{\text {hash }(P K)=2}(T)\right)$ $\begin{array}{lll}\operatorname{Agg}\left(n_{2},\right. & f_{2}, & \sigma_{\text {hash }(P K)=2}(T) \\ \operatorname{Agg}\left(n_{3},\right. & f_{1}, & \left.\sigma_{\text {hash }(P K)=3}(T)\right)\end{array}$ Agg $\left(n_{3}, f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right)$
$\operatorname{Agg}\left(n_{4}, f_{1}, \quad \sigma_{\text {hash }}(P K)=4(T)\right)$
$\operatorname{Agg}\left(n_{4}, f_{2}, \sigma_{\text {hash }}(P K)=4(T)\right)$
transmit ($\left.n_{2}, \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right), n_{1}\right)$ transmit $\left(n_{3}, \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right), n_{1}\right)$ transmit $\left(n_{4}, \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right), n_{1}\right)$ merge (n_{1}, f_{1})
transmit $\left(n_{1}, \operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }(P K)=1}(T)\right), n_{2}\right)$ ransmit ($\left.n_{3}, \operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right), n_{2}\right)$ $\operatorname{NT}\left(f_{2}, \sigma_{\text {hash }}(P K)=4(T)\right), n_{2}$ merge (n_{2}, f_{2})

Query Execution Plan using Dagg $\begin{array}{lll}\operatorname{DAgg}\left(n_{1},\right. & f_{1}, & f_{2}, \\ \sigma_{\text {hash }}(P K)=1 \\ \text { DAgg }\left(n_{2},\right. & f_{1}, & f_{2}, \\ \sigma_{\text {hash }}(P K)=2(T)\end{array}$ DAgg $\left(n_{3}, f_{1}, f_{2}, \quad \sigma_{\text {hash }}(P K)=3(T)\right.$ transmit $\left(n_{2}, \quad \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right), n_{1}\right)$ transmit $\left(n_{3}, \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right), n_{1}\right)$ transmit $\left(n_{4}, \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }(P K)=4}(T)\right), n_{1}\right)$ merge (n_{1}, f_{1})
transmit $\left(n_{1}, \operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=1(T)\right), n_{2}\right)$ transmit $\left(n_{3}, \operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right), n_{2}\right)$ transmit ($\left.n_{4}, \operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=4(T)\right), n_{2}\right)$ merge (n_{2}, f_{2})

- Solved by GBFS using relaxed plan heuristic in Fast Downward
- Table below shows planning time for different values of F and N

- Solutions were optimal (although this is not guaranteed)

Acknowledgements

This work was supported by the Technion-Microsoft Electronic-Commerce Research Center.

