
Data-Parallel Computing Meets STRIPS
Erez Karpas, Tomer Sagi, Carmel Domshlak, Avigdor Gal, Avi Mendelson, and Moshe Tennenholtz
Technion-Microsoft Electronic Commerce Research Center

Motivation
• Declarative query processing and user defined
functions do not play well together
• User must specify some base execution plan
•Which optimizations are safe?

DPPS
• Framework is based on tracking data chunks
• Each data chunk d is associated with the amount
σd of memory it requires

A DPPS Task is described by:
• D — possible data chunks, with sizes σd

• N — computing units, with memory κn

• A — computation primitives, each described by:
• Ī ⊆ D — required input
• Ō ⊆ D — produced output
• C : N → R0+ — computation cost
• T : N ×D ×N → R0+ — data transmission cost
• s0 — the initial state of the computation
• G — the goal of the computation

• A DPPS state specifies which processor holds
which data chunks
• A solution is a sequence of compute / transmit /
delete data actions which achieves the goal from
the initial state

• The possible data chunks D and computations A
may be given explicitly or described implicitly
• If they are described implicitly the sets could be
infinite

Theoretical Properties
Expressivity:
, DPPS is at least as expressive as relational
algebra with aggregation

Complexity:
/ Optimal data-parallel program synthesis is
NP-hard, even under severe restrictions
/ Satisficing data-parallel program synthesis is
NP-hard

, Satisficing data-parallel program synthesis
with no memory constraints can be solved in
polynomial time, when the possible data chunks
are given explicitly.

Example: Multi Histogram
• Suppose we have a users table T with 109 users
• We want two histograms of T: by age and by
relationship status

In SQL or similar:
SELECT COUNT(T.age) FROM T;
SELECT COUNT(T.rls) FROM T;

Query Execution Plan:
Agg(age, scan(T))
Agg(rls, scan(T))

• Suppose we have a user-defined function, DAgg,
which aggregates by two fields simultaneously

Query Execution Plan using DAgg:
DAgg(age, rls, scan(T))

• How do we come up with this execution plan?

Compilation to STRIPS
•When computations/data chunks explicit:
• Predicate holds(?node, ?data)
• Actions
• compute(?node, ?computation)
• transmit(?node, ?data, ?node2)
• del(?node, ?data)

• Capacity constraints = numerical fluents

• When the computations/data chunks implicit,
compilation is still possible sometimes
•When data chunks have a structure (e.g., expres-
sion trees), it is possible to represent such trees
using predicates

Expression Tree Encoding
σp

×

e1 e2

select(n1, p, n2)
join(n2, e1, e2)

• Equivalence rules typically have limited depth,
and can be encoded as operators
•More details in the paper

Empirical Proof of Concept
• Histogram of F fields of a table divided across N processors

Example for N = 4, F = 2

n1 n2

n3n4

σhash(PK)=1(T) σhash(PK)=2(T)

σhash(PK)=3(T)σhash(PK)=4(T)

CNT(f1, σhash(PK)=1(T))

CNT(f2, σhash(PK)=1(T))

CNT(f1, σhash(PK)=2(T))

CNT(f2, σhash(PK)=2(T))

CNT(f1, σhash(PK)=3(T))

CNT(f2, σhash(PK)=3(T))

CNT(f1, σhash(PK)=4(T))

CNT(f2, σhash(PK)=4(T))

CNT(f1, σhash(PK)=2(T))

CNT(f1, σhash(PK)=3(T))

CNT(f1, σhash(PK)=4(T))

CNT(f1, T)

CNT(f2, σhash(PK)=1(T))

CNT(f2, σhash(PK)=3(T))

CNT(f2, σhash(PK)=4(T))

CNT(f2, T)

Query Execution Plan without Dagg
Agg(n1, f1, σhash(PK)=1(T))
Agg(n1, f2, σhash(PK)=1(T))
Agg(n2, f1, σhash(PK)=2(T))
Agg(n2, f2, σhash(PK)=2(T))
Agg(n3, f1, σhash(PK)=3(T))
Agg(n3, f2, σhash(PK)=3(T))
Agg(n4, f1, σhash(PK)=4(T))
Agg(n4, f2, σhash(PK)=4(T))
transmit(n2, CNT(f1, σhash(PK)=2(T)), n1)
transmit(n3, CNT(f1, σhash(PK)=3(T)), n1)
transmit(n4, CNT(f1, σhash(PK)=4(T)), n1)
merge(n1, f1)
transmit(n1, CNT(f2, σhash(PK)=1(T)), n2)
transmit(n3, CNT(f2, σhash(PK)=3(T)), n2)
transmit(n4, CNT(f2, σhash(PK)=4(T)), n2)
merge(n2, f2)

Query Execution Plan using Dagg
DAgg(n1, f1, f2, σhash(PK)=1(T))
DAgg(n2, f1, f2, σhash(PK)=2(T))
DAgg(n3, f1, f2, σhash(PK)=3(T))
DAgg(n4, f1, f2, σhash(PK)=4(T))
transmit(n2, CNT(f1, σhash(PK)=2(T)), n1)
transmit(n3, CNT(f1, σhash(PK)=3(T)), n1)
transmit(n4, CNT(f1, σhash(PK)=4(T)), n1)
merge(n1, f1)
transmit(n1, CNT(f2, σhash(PK)=1(T)), n2)
transmit(n3, CNT(f2, σhash(PK)=3(T)), n2)
transmit(n4, CNT(f2, σhash(PK)=4(T)), n2)
merge(n2, f2)

• Solved by GBFS using relaxed plan heuristic in Fast Downward

• Table below shows planning time for different values of F and N

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70

P
la

n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Processors

Fields
2
3
4
5
6

• Solutions were optimal (although this is not guaranteed)

Acknowledgements
This work was supported by the Technion-Microsoft Electronic-Commerce Research Center.

1

