Data-Parallel Computing Meets STRIPS

Erez Karpas Tomer Sagi Carmel Domshlak Avigdor Gal Avi Mendelson Moshe Tennenholtz

Technion-Microsoft Electronic-Commerce Research Center

Outline

3 DPPS as Planning

Data Processing — Before "Big Data"

- Database Management Systems (DBMS)
- Declarative query - expressed in SQL
- Query execution plan
- Easy to generate from declarative query
- Hard to optimize
- Very limited support for user-defined functions

Data Processing — After "Big Data"

- MapReduce / Hadoop / Dryad
- Low-level programming
- Only user-defined functions
- No declarative queries
- SCOPE / DryadLINQ / Pig / Hive
- High-level programming
- Support user-defined functions
- Limited declarative queries

Data Processing — After "Big Data"

- MapReduce / Hadoop / Dryad
- Low-level programming
- Only user-defined functions
- No declarative queries
- SCOPE / DryadLINQ / Pig / Hive
- High-level programming
- Support user-defined functions
- Limited declarative queries

User Defined Functions in Declarative Queries

- Including user-defined functions hinders query optimization
- User must specify some base plan
- Query plan optimizer does not "understand" user-defined functions, and does not know which optimizations are safe
- Existing approaches:
- No optimization when user-defined function in query
- User-defined functions must have some pre-specfied signature
- Static code analysis to "understand" user-defined functions

User Defined Functions in Declarative Queries

- Including user-defined functions hinders query optimization
- User must specify some base plan
- Query plan optimizer does not "understand" user-defined functions, and does not know which optimizations are safe
- Existing approaches:
- No optimization when user-defined function in query
- User-defined functions must have some pre-specfied signature
- Static code analysis to "understand" user-defined functions

Running Example: Histogram Computation

- Suppose we have a users table T with 10^{9} users
- We want two histograms of T : by age and by relationship status

Running Example: Histogram Computation

- Suppose we have a users table T with 10^{9} users
- We want two histograms of T : by age and by relationship status

In SQL or similar

SELECT COUNT (T.age) FROM T; SELECT COUNT(T.rls) FROM T;

Running Example: Histogram Computation

- Suppose we have a users table T with 10^{9} users
- We want two histograms of T : by age and by relationship status

In SQL or similar

```
SELECT COUNT(T.age) FROM T;
SELECT COUNT(T.rls) FROM T;
```


Query Execution Plan

```
Agg(age, scan(T))
Agg(rls, scan(T))
```


Running Example: Histogram Computation (2)

- Suppose we have a user-defined function, DAgg, which aggregates by two fields simultaneously
- The question is how to come up with this execution plan automatically

Running Example: Histogram Computation (2)

- Suppose we have a user-defined function, DAgg, which aggregates by two fields simultaneously

Query Execution Plan using DAgg
 DAgg (age, rls, scan(T))

- The question is how to come up with this execution plan automatically

Running Example: Histogram Computation (2)

- Suppose we have a user-defined function, DAgg, which aggregates by two fields simultaneously

```
Query Execution Plan using DAgg
DAgg(age, rls, scan(T))
```

- The question is how to come up with this execution plan automatically

Our Contribution

- Introduce Data-Parallel Program Synthesis (DPPS), a formal framework for studying these problems
- Study expressivity and complexity of DPPS
- Show compilation to AI planning

Outline

(1) Motivation

(2) DPPS

3 DPPS as Planning

Data-Parallel Program Synthesis Framework

- Framework is based on tracking data chunks
- A data chunk represents some piece of data, e.g.:
- all records of males between the ages of 18-49
- the average salary of all males between the ages of 18-49
- We do not need to know the value of the data, only its description
- Each data chunk d is associated with the amount σ_{d} of memory it requires

DPPS Task

- D - a set of possible data chunks, with sizes σ_{d}
- N - a finite set of computing units, with memory capacities κ_{n}
- A - a set of possible computation primitives, $a \in A$ described by:
- $\bar{I} \subseteq D$ is the required input
- $\bar{O} \subseteq D$ is the produced output
- $C: N \rightarrow \mathbb{R}^{0+}$ computation cost on each processor
- $T: N \times D \times N \rightarrow \mathbb{R}^{0+}$ - the data transmission cost function
- s_{0} - the initial state of the computation
- G - the goal of the computation

DPPS Task (2)

- A DPPS state specifies which processor holds which data chunks
- A solution is a sequence of actions (compute / transmit / delete data) which achieves the goal from the initial state
- The possible data chunks D and computations A may be given explicitly or described implicitly
- If they are described implicitly the sets could be infinite

DPPS Expressivity

Theorem

DPPS is at least as expressive as relational algebra with aggregation

Proof sketch.

Given a relational algebra expression, we can construct a DPPS task whose operators are the RA operators, and data chunks are possible RA expressions.

DPPS Complexity ©

Theorem

Satisficing data-parallel program synthesis is NP-hard, even when the possible data chunks are given explicitly.

Proof sketch.

By reduction from SAT, exploiting memory capacity constraints

DPPS Complexity © © (:)

Theorem

Optimal data-parallel program synthesis with a single processor is NP-hard, even if the possible data chunks are given explicitly, and there are no memory constraints.

Proof sketch.
By reduction from delete-free planning

DPPS Complexity $(\cdot)() \cdot$

Theorem

Optimal data-parallel program synthesis with a single data chunk is NP-hard.

Proof sketch.
By reduction from the Steiner tree problem

DPPS Complexity ©

Theorem

Satisficing data-parallel program synthesis with no memory constraints can be solved in polynomial time, when the possible data chunks are given explicitly.

Proof sketch.

By reduction from delete-free planning

Outline

(1) Motivation

(3) DPPS as Planning

DPPS Compilation

- When the computations and data chunks are given explicitly, compilation to planning is straightforward
- Predicate holds (?node, ?data)
- Actions
- For each computation compute (?node, ?computation)
- Transmission transmit(?node, ?data, ?node2)
- Data deletion del (?node, ?data)
- Capacity constraints can be enforced with numerical fluents

DPPS Compilation without Explicit Data

- When the computations and data chunks are given implicitly, compilation is still possible sometimes
- When data chunks have a structure (e.g., expression trees), it is possible to represent such trees using predicates

Expression Tree

Encoding

$$
\begin{aligned}
& \operatorname{select}\left(n_{1}, p, n_{2}\right) \\
& \text { join }\left(n_{2}, e_{1}, e_{2}\right)
\end{aligned}
$$

DPPS Compilation: Proof of Concept

DPPS Compilation: Proof of Concept

$\operatorname{DAgg}\left(n_{1}, \quad f_{1}, \quad f_{2}\right.$,
$\left.\sigma_{\text {hash }}(P K)=1(T)\right)$

DPPS Compilation: Proof of Concept

$$
\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2},\right.
$$ $\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }(P K)=2}(T)$)

DPPS Compilation: Proof of Concept

$\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$,
$\sigma_{\text {hash }}(P K)=2(T)$)
$\operatorname{DAgg}\left(n_{3}, f_{1}, f_{2}\right.$,
$\sigma_{\text {hash }}(P K)=3(T)$)

DPPS Compilation: Proof of Concept

$$
\left(\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=1(T)\right)\right.
$$

$$
\mathrm{CNT}\left(f_{2}, \sigma_{\text {hash }(P K)=1}(T)\right)
$$

$\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }}(P K)=2(T)$) $\operatorname{DAgg}\left(n_{3}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }(P K)=3}(T)$) $\operatorname{DAgg}\left(n_{4}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }(P K)=4}(T)$)

DPPS Compilation: Proof of Concept

$$
\begin{aligned}
& \operatorname{DAgg}\left(n_{1}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=1(T)\right) \\
& \operatorname{DAgg}\left(n_{2}, f_{1}, \quad f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=2(T)\right) \\
& \operatorname{DAgg}\left(n_{3}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=3(T)\right) \\
& \operatorname{DAgg}\left(n_{4}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=4(T)\right) \\
& \operatorname{transmit}\left(n_{2},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right), \\
& \left.n_{1}\right)
\end{aligned}
$$

DPPS Compilation: Proof of Concept

DPPS Compilation: Proof of Concept

$$
\begin{aligned}
& \operatorname{DAgg}\left(n_{1}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=1(T)\right) \\
& \operatorname{DAgg}\left(n_{2}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=2(T)\right) \\
& \operatorname{DAg}\left(n_{3}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=3(T)\right) \\
& \operatorname{DAgg}\left(n_{4}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=4(T)\right) \\
& \operatorname{transmit}\left(n_{2},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right), \\
& \left.n_{1}\right) \\
& \operatorname{transmit}\left(n_{3},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right), \\
& \left.n_{1}\right) \\
& \operatorname{transmit}\left(n_{4},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right), \\
& \left.n_{1}\right)
\end{aligned}
$$

DPPS Compilation: Proof of Concept

$$
\begin{aligned}
& \operatorname{DAgg}\left(n_{1}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=1(T)\right) \\
& \operatorname{DAgg}\left(n_{2}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=2(T)\right) \\
& \operatorname{DAg}\left(n_{3}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=3(T)\right) \\
& \operatorname{DAgg}\left(n_{4}, f_{1}, f_{2},\right. \\
& \left.\sigma_{\text {hash }}(P K)=4(T)\right) \\
& \operatorname{transmit}\left(n_{2},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right), \\
& \left.n_{1}\right) \\
& \operatorname{transmit}\left(n_{3},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right), \\
& \left.n_{1}\right) \\
& \operatorname{transmit}\left(n_{4},\right. \\
& \operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right), \\
& \left.n_{1}\right) \\
& \operatorname{merge}\left(n_{1}, f_{1}\right)
\end{aligned}
$$

DPPS Compilation: Proof of Concept

DPPS Compilation: Proof of Concept

$\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2}\right.$,
$\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }}(P K)=2(T)$) $\operatorname{DAgg}\left(n_{3}, f_{1}, f_{2}\right.$, $\sigma_{\text {hash }}(P K)=3(T)$) $\operatorname{DAgg}\left(n_{4}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=4}(T)\right)$ transmit (n_{2}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right)$, n_{1})
transmit (n_{3}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right)$, n_{1})
transmit (n_{4}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right)$, n_{1})
merge $\left(n_{1}, f_{1}\right)$
transmit (n_{1},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=1(T)\right)$,
n_{2})
transmit (n_{3},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right)$, n_{2})

DPPS Compilation: Proof of Concept

$\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2}\right.$,
$\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=2}(T)\right)$ $\operatorname{DAgg}\left(n_{3}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }}(P K)=3(T)\right)$ $\operatorname{DAgg}\left(n_{4}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=4}(T)\right)$ transmit (n_{2}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right)$, n_{1})
transmit (n_{3}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right)$, n_{1})
transmit (n_{4}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right)$, n_{1})
merge $\left(n_{1}, f_{1}\right)$
transmit (n_{1},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=1(T)\right)$,
n_{2})
transmit (n_{3},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right)$,
n_{2})
transmit (n_{4},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=4(T)\right)$, n_{2})

DPPS Compilation: Proof of Concept

$\operatorname{DAgg}\left(n_{1}, f_{1}, f_{2}\right.$,
$\left.\sigma_{\text {hash }(P K)=1}(T)\right)$ $\operatorname{DAgg}\left(n_{2}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=2}(T)\right)$ $\operatorname{DAgg}\left(n_{3}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }}(P K)=3(T)\right)$ $\operatorname{DAgg}\left(n_{4}, f_{1}, f_{2}\right.$, $\left.\sigma_{\text {hash }(P K)=4}(T)\right)$ transmit (n_{2}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=2(T)\right)$, n_{1})
transmit (n_{3}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=3(T)\right)$, n_{1})
transmit (n_{4}, $\operatorname{CNT}\left(f_{1}, \sigma_{\text {hash }}(P K)=4(T)\right)$, n_{1})
merge $\left(n_{1}, f_{1}\right)$
transmit (n_{1},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=1(T)\right)$,
n_{2})
transmit (n_{3},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=3(T)\right)$,
n_{2})
transmit (n_{4},
$\operatorname{CNT}\left(f_{2}, \sigma_{\text {hash }}(P K)=4(T)\right)$, n_{2})
merge $\left(n_{2}, f_{2}\right)$

DPPS Compilation: Proof of Concept

- Histogram of F fields of a table divided across N processors
- Solved by GBFS using relaxed plan heuristic in Fast Downward
- Solutions were optimal (although this is not guaranteed)

Summary

- DPPS is a flexible framework for describing data-parallel computations
- Solving DPPS is possible through compilation to AI planning
- We expect DPPS to lead to interesting questions in AI planning

Thank You

