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Abstract
The increased demand for distributed computations
on big data has led to solutions such as SCOPE,
DryadLINQ, Pig, and Hive, which allow the user to
specify queries in an SQL-like language, enriched with
sets of user-defined operators. The lack of exact seman-
tics for user-defined operators interferes with the query
optimization process, thus putting the burden of sug-
gesting, at least partial, query plans on the user. In an
attempt to ease this burden, we propose a formal model
that allows for data-parallel program synthesis (DPPS)
in a semantically well-defined manner. We show that
this model generalizes existing frameworks for data-
parallel computation, while providing the flexibility of
query plan generation that is currently absent from these
frameworks. In particular, we show how existing, off-
the-shelf, AI planning tools can be used for solving
DPPS tasks.

Motivation
In the classical approach to data processing, the user of
a database management system (DBMS) specifies her data
processing goal as a declarative query, and the DBMS au-
tomatically generates a query plan, i.e., a data processing
program that computes the desired goal (Ullman 1988). The
final query plan is typically constructed by first generating
some query plan, and then optimizing it locally by applying
a set of predefined query-plan rewriting rules (see e.g., Am-
bite and Knoblock 2001). This high-level workflow is based
on the implicit assumption that query plans consist mostly
of built-in operators (for example, relational algebra opera-
tors). This assumption is needed because the system can-
not proactively select user-defined operators for performing
intermediate computations, and query plans cannot be opti-
mized around these user-defined operators.

With the rapid growth of both public and enterprise data
repositories, the area of data processing faces conceptual
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changes in the way the data is perceived, analyzed, and
stored. Classical DBMSs and their various extensions are
still a cornerstone of data processing, yet large scale and
operator-rich computations involving huge amounts of data
are becoming more and more common. This, along with the
physical limitations on the computing power and storage that
a single machine can provide, has led to an increased interest
in computation on highly distributed computing infrastruc-
ture, often referred to as “data-parallel computing”. While
parallel and distributed database systems (Valduriez 1993;
Ozsu and Valduriez 2007) can address the scalability issues,
they, like traditional DMBSs, lack flexibility in exploiting
general user-defined operators.

To address this need, several systems for data-parallel
computing have been developed; the most well-known of
these are probably Map/Reduce (Dean and Ghemawat 2008)
and its open-source implementation Hadoop, and Dryad (Is-
ard et al. 2007). These systems are based on low-level query
plan programming, which is both error-prone and inhibits
mass adoption. However, they allowed for development of
higher-level systems, such as SCOPE (Chaiken et al. 2008),
DryadLINQ (Isard and Yu 2009), Pig (Olston et al. 2008b),
and Hive (Thusoo et al. 2009; 2010), which support com-
bining programming with queries in SQL-like languages.
The high-level design of these systems is driven by two
primary requirements: operability with arbitrary rich sets
of user-defined operators for performing intermediate steps
of query plans, and optimization of query plans that takes
into account the distributed nature of the underlying com-
puting/storage infrastructure.

Unfortunately, supporting unconstrained usage of user-
defined operators comes at the expense of moving away
from the declarative approach to data processing. First, if
the user formulates a query which departs from the built-
in operators, then she must provide the system with a base
query plan. Second, to allow for further optimizations of
the query plan, the user must explicitly instruct the system
on what kind of optimizations can be performed around the
non-standard operators.



Both these requirements take the user away from the goal-
driven, declarative data processing paradigm, and currently
there is no agreement on what is the right balance between
expressivity of the system and the burden to be put on the
user: Some systems restrict user-defined operators to be of
certain allowed types (Cohen 2006; Chaiken et al. 2008;
Thusoo et al. 2010), and others do not optimize user-
specified query plans (Olston et al. 2008b). The reason that
general user-defined operators pose such a challenge is that
the system is uncertain about “what they need” and/or “what
their effects are”. While the semantics of the built-in opera-
tors is “hard-coded” in the design of the data-parallel com-
puting systems, user-defined operators typically come with
no semantics attached to them. Although some systems at-
tempt to perform automated analysis of the user’s code (Is-
ard and Yu 2009; Cafarella and Ré 2010), these analyses are
(and must be) limited, and can not be used to “reverse engi-
neer” the semantics of a given user-defined function.

For example, say an analyst wants two histograms of the
users of a large social network, one by age and one by re-
lationship status. The optimal query plan for that request
will consist of a single table scan and two counts, but al-
lowing the system to come up with such a plan is tricky. In
an SQL-style query language, this request will have to be
formulated as two queries, both expressed as aggregations
over the users table, and planning for these queries in sepa-
ration will result in a sub-optimal plan with two scans of the
same table. However, suppose that somebody already im-
plemented a “double aggregation” operator, which performs
two aggregations over the same table, while only scanning
it once. Although that operator can, in principle, be used for
devising an optimal query plan, the system does not know
what this operator can be used for and how, since this oper-
ator is user-defined. Hence, our analyst either settles for a
sub-optimal query plan, or, if she is somehow aware of this
“double aggregation” operator, then she can provide the sys-
tem with a base query plan that uses this operator. While
this is a simplistic example, it is meant for illustration pur-
poses only; more complex example, e.g. planning for image
analysis (Chien et al. 1999), can also can be formulated in
terms of our proposed model.

The dilemma above is not new, and it shows up each time
a declarative interface to data processing is challenged by the
need to expand the expressivity of the system. In particular,
the interplay between the usage complexity of the operator
description languages, their expressivity, and the computa-
tional complexity of automatically composing the operators
to achieve a declaratively specified goal is precisely the fo-
cus of AI planning research. The question that initiated our
investigation was precisely that: What level of expressiv-
ity is expected these days from the realm of data-parallel
computing, and how/whether AI planning technology can be
leveraged to achieve this expressivity while reviving declar-
ative data processing.

To study this question, we suggest a formal model of
data-parallel program synthesis, DPPS, that generalizes the
specific systems developed in the area. The expressivity of
DPPS goes beyond the expressivity of relational algebra ex-
tended with aggregate functions, allowing for both taking

into account the distributed nature of data-parallel compu-
tation, as well as incorporating arbitrary user-defined opera-
tors of the form supported by the current data-parallel com-
puting systems. While this level of expressivity unavoidably
makes program synthesis and optimization in DPPS com-
putationally hard in the worst case, the syntax and seman-
tics of the DPPS model bear close similarity to the standard
action scheme models adopted in the field of AI planning.
Exploiting that, we show how DPPS tasks can be compiled
into STRIPS planning tasks, and thus solved by off-the-shelf
AI planning tools, even if not all possible artifacts of the
DPPS operators known to the system can be enumerated in
polynomial time.

Model
Our formalism of data-parallel program synthesis is tailored
to tracking computation-specific data chunks. Each such
data chunk represents some information which can be either
generated or required as input by a computation primitive.
For example, a data chunk can represent all records of males
between the ages of 18–49, or the average salary of all males
between the ages of 18–49, etc. Note that the actual value
of the average salary, does not need to be known in advance;
the fact that it is possible to compute this average given the
input records suffices.

Formally, a data-parallel program synthesis (DPPS) task
consists of:

• D — a set of possible data chunks. Each data chunk d
is associated with the amount σd of memory it requires
(given, for example, in MB). D may be given explicitly
or described implicitly, in which case it could even be in-
finite.

• N — a finite set of computing units, or processors. Each
processor n is associated with the maximum total size κn
of the data chunks it can hold and access efficiently.

• A — a set of possible computation primitives. Each such
primitive is a triplet a = 〈Ī , Ō, C〉, where Ī ⊆ D is
the required input, Ō ⊆ D is the produced output, and
C : N → R0+ is a function describing the cost of the
computation on each processor. Similarly to the possible
data chunks, the set of computation primitives can also be
given explicitly or implicitly, and in the latter case, the set
A could be infinite.

• T : N×D×N → R0+ — the data transmission cost func-
tion. T (n1, d, n2) is the cost of transmitting data chunk d
from processor n1 to processor n2.

• s0 — the initial state of the computation.

• G — the goal of the computation.

A state of the computation describes which chunks of
data each processor currently holds. Formally, a state s :
N → 2D maps each processor to the set of data chunks
it holds. For the sake of convenience, we define the free
memory capacity of processor n at state s by f(n, s) :=
κn −

∑
d∈s(n) σd. The goal is also a function G : N → 2D

that maps processors to data chunk sets, describing which
chunks of data should be stored at each processor at the end



of the computation. A state s satisfies the goal G iff each
processor holds all the data chunks specified by the goal,
that is, G(n) ⊆ s(n) for all n ∈ N .

The semantics of a DPPS task is as follows. A computa-
tion primitive a = 〈Ī , Ō, C〉 can run on processor n ∈ N at
state s iff n holds all the input data chunks and has enough
free memory to hold the output, that is, if Ī ⊆ s(n) and∑
d∈Ō σd ≤ f(n, s). Performing a then generates the out-

put data chunks at n, while incurring a cost ofC(n). That is,
if sJanK is the state resulting from applying a at processor n
in state s, then sJanK(n) = s(n) ∪ Ō, ceteris paribus. Con-
sidering the connectivity, a processor n1 holding data chunk
d can transmit it to processor n2 iff the receiving processor
n2 has enough free capacity, that is, if σd ≤ f(n2, s). The
transmission then incurs a cost of T (n1, d, n2). That is, if
sJt(n1, d, n2)K is the state resulting from this transmission,
then sJt(n1, d, n2)K(n2) = s(n2)∪{d}, ceteris paribus. Fi-
nally, it is always possible for processor n to delete some
data chunk d. The respective action del(n, d) incurs no cost,
and sJdel(n, d)K(n) = s(n) \ {d}, ceteris paribus.

Given a DPPS task 〈D,N,A, T, s0, G〉, its set of operators
isO := A∪{t(n1, d, n2) | T (n1, d, n2) <∞}∪{del(n, d) |
n ∈ N, d ∈ D}, and |O| is polynomial in |D|, |A|, and
|N |. A sequence of operator instances π = 〈o1 . . . om〉 is
applicable if oi is applicable in si−1, where s0 is the initial
state, and si := si−1JoiK. The cost of π is the sum of its
operator costs, and it is a solution to the task if sm satisfies
the goal, that is, if G(n) ⊆ sm(n) for all n ∈ N . Finally,
π is optimal if its cost is minimal among all the solutions to
the task.

Expressivity and Complexity
We now turn to consider the expressivity and computa-
tional complexity of DPPS. Despite the fact that the syn-
tax of DPPS seems very different from SQL-style database
query languages, we begin by showing that DPPS is strictly
more expressive than relational algebra (Codd 1970) ex-
tended with aggregate functions (Klug 1982). Although
there is a shift in data-parallel computing systems towards
the NoSQL paradigm (Padhy, Patra, and Satapathy 2011),
relational algebra is still a popular formalism for describing
queries. Furthermore, modern data-parallel processing sys-
tems can impose an “ad-hoc” schema on non-relational data,
thus making relational algebra still relevant to these systems.
It is also worth noting at this point that DPPS is not limited to
relational algebra, and can be used with other data models,
that may be more suited to the NoSQL paradigm.

Presenting a complete description of relational algebra
here is infeasible, but we will briefly mention that a rela-
tional algebra query can be represented as a tree, whose
leaves are either constants or relations (i.e., database tables),
and whose inner nodes are projection (π), selection (σ), or
aggregation (A) of a single child node, or cross product (×),
set union (∪) or set difference (\) of two child nodes. Sim-
ilarly to the alias mechanism of SQL, we assume wlog that
each occurrence of a relation name in that tree is assigned a
distinct name.

Theorem 1 Given an extended relational algebra query Φ,
we can efficiently construct a solvable DPPS task Π such that
any solution π for Π induces a valid query plan ϕ for Φ.

The detailed proofs of the formal claims are relegated
to a technical report. However, we attempt to provide the
main ideas behind the proofs, especially if these carry some
helpful insights. For the proof of Theorem 1, we construct
a DPPS task Π with a single processor n. The possible
data chunks D of Π are all subexpressions of Φ, and they
are constructed from the tree representation of Φ by tak-
ing, for each node e in Φ, the subtree rooted at e, that is
D := {subtree(e) | e ∈ Φ}. As the data chunks are rep-
resented in Φ explicitly, their number is linear in the size of
Φ.

The computation primitives A of Π correspond to the in-
ternal nodes of Φ; for each internal node e we construct a
primitive ae, whose inputs are the children of e and whose
output is e, with a cost that reflects the (typically estimated)
execution cost of the computation. In the initial state of Π,
the single processor n contains the data chunks correspond-
ing to all leaf nodes, and the goal is for n to hold the data
chunk corresponding to Φ. Since there is only one proces-
sor in Π, the transmission cost function T is irrelevant. It is
easy to see that all solutions to Π contain the same compu-
tations, one for each internal node in Φ (the only choice the
solver makes is the order in which these computations are
performed), and all these solutions of Π correspond to query
plans for Φ.

This proof of Theorem 1 is simple, but its construction
restricts the scope of feasible query plans. However, there
is a simple fix for that, which we describe here in informal
terms. First, we add computation primitives corresponding
to relational algebra equivalence rules, with a cost of 0. For
example, the equivalence rule σp(σq(X)) = σq(σp(X)) in-
duces the computation which takes as input a data chunk of
the form σp(σq(X)), and produces as output the data chunk
σq(σp(X)). Of course, this means we must extend the set of
possible data chunks D to include all possible expressions
derived in this manner. However, as noted earlier, we do
not have to explicitly enumerate all possible data chunks,
but can define them implicitly, by the base relations and the
relational algebra operators. Additionally, we can add oper-
ators corresponding to “macros”, when these computations
can be more efficiently executed. For example, joins can be
expressed as selection over a cross-product of two relations,
but are usually much more efficient to execute than first per-
forming a cross-product, and then a selection over its output.
These allow the solver to find a more efficient plan, while us-
ing the equivalence computations to prove that the result is
equivalent to the original query.

In essence, this finalizes an encoding of (non-distributed)
query optimization as a DPPS task. However, our main mo-
tivation comes from the need to perform distributed compu-
tations. While the basic ideas described above still work,
there are several more issues that need to be dealt with.
First, a typical distributed database will fragment tables,
and thus processors will no longer contain only base re-
lations (and constants) in the initial state, but will usually



contain some table fragments, which can be expressed as
selection and/or projection of the base relations. For ex-
ample, assuming we have two processors which store some
table T by hash-partitioning on field f , in the initial state
processor n0 will hold σhash(f)=0(T ) and processor n1

will hold σhash(f)=1(T ). We must also make sure to in-
clude equivalence rules which allow us to merge such data
chunks, i.e., the equivalence rule σtrue(X) = X , along with
σφ(X) ∪ σψ(X) = σφ∨ψ(X), and the fact that (hash(f) =
1) ∨ (hash(f) = 0) ≡ true, which is easily extended for
any partition.

Finally, we remark that a computing cluster, as well as the
data stored and accessible on that cluster, are resources that
are usually shared between multiple users, and thus must be
used to satisfy all users’ needs. It has already been noted that
the overall system performance could benefit from sharing
computations between different queries. For example, the
Comet system (He et al. 2010) constructs an execution plan
for a series of DryadLINQ queries, and cross program op-
timization between Pig Latin programs is described by Ol-
ston et al. (2008a). With the DPPS formalism, multi-goal
optimization is trivial, as the formalism already supports the
specification of multiple goals.

Given the expressivity of DPPS, it is not surprising that
optimal data-parallel program synthesis is computationally
hard. More importantly, it turns out that this problem
remains NP-hard even under severe restrictions, because
the computational hardness of DPPS stems from numerous
sources. In fact, it turns out that even the satisficing variant
of this problem is NP-hard.

Theorem 2 Satisficing data-parallel program synthesis is
NP-hard, even when the possible data chunks are given ex-
plicitly.

The proof of Theorem 2 is by reduction from 3SAT; the
induced DPPS tasks have processors with only a fixed mem-
ory capacity, and the solution must carefully manage the
memory resource. The following two theorems show that
optimal data-parallel program synthesis is NP-hard even un-
der severe restrictions.

Theorem 3 Optimal data-parallel program synthesis with a
single processor is NP-hard, even if the possible data chunks
are given explicitly, and there are no memory constraints.

Theorem 4 Optimal data-parallel program synthesis with a
single data chunk is NP-hard.

The proof of Theorem 3 is by polynomial reduction from
optimal delete-free STRIPS planning (Bylander 1994), while
the proof of Theorem 4 is by polynomial reduction from
the minimum Steiner tree in a graph problem (Karp 1972;
Garey and Johnson 1979). These proofs capture two sources
of complexity of DPPS: The complexity in Theorem 3
stems from the number of possible data chunks, while The-
orem 4 captures the complexity which stems from the net-
work structure.

Although both optimal and satisficing DPPS are worst-
case intractable in many cases, that does not mean that none
of their practically relevant fragments is polynomial time.
While much further investigation is needed here, Theorem 5
already captures one such fragment of tractability, which in
particular contains our multiple histogram running example.

Theorem 5 Satisficing data-parallel program synthesis
with no memory constraints can be solved in polynomial
time, when the possible data chunks are given explicitly.

The proof is by polynomial reduction to satisficing delete-
free STRIPS planning, which is known to be polynomial-
time solvable (Bylander 1994).

DPPS meets STRIPS
The worst case hardness of data-parallel program synthesis
is clearly not something to be ignored, but obviously it does
not imply that solving practical problems of interest is out
of reach. The two options here would be either to develop
a special-purpose solver for DPPS, or to compile DPPS tasks
into a canonical combinatorial search problem, and use an
off-the-shelf solver for the latter. The key advantage of the
second option, which we consider here, is that using off-
the-shelf solvers only requires modeling the problem of in-
terest in the right formalism, without programming. Further-
more, these solvers tend to be better engineered and more ro-
bust than special-purpose solvers for niche problems. Since
DPPS is all about synthesizing (possibly partially ordered)
goal-achieving sequences of actions, a natural such target
of compilation for DPPS would be this or another standard
formalism for deterministic planning, with STRIPS probably
being the most canonical such formalism (Fikes and Nilsson
1971).

A STRIPS planning task with action costs is a 5-tuple
Π = 〈P,O,C, s0, G〉, where P is a set of propositions,
O is a set of actions, each of which is a triple o =
〈pre(o), add(o), del(o)〉, C : O → R0+ is the action cost
function, s0 ⊆ P is the initial state, and G ⊆ P is the goal.
An action o is applicable in state s if pre(o) ⊆ s, and if ap-
plied in s, results in the state s′ = (s \ del(o)) ∪ add(o). A
sequence of actions 〈o0, o1, . . . , on〉 is applicable in state s0

if o0 is applicable in s0 and results in state s1, o1 is applica-
ble in s1 and results in s2, and so on. The cost of an action
sequence is the sum of the action costs,

∑n
i=0 C(oi). The

state resulting from applying action sequence π in state s is
denoted by sJπK. An action sequence 〈o0, o1, . . . , on〉 is a
plan for Π if G ⊆ s0J〈o0, o1, . . . , on〉K, and it is an optimal
plan if no cheaper plan exists.

We begin by describing a straightforward compila-
tion of DPPS tasks with explicitly specified possible data
chunks and no memory constraints. Given a DPPS task
with processors N , data chunks D, computations A, and
without memory constraints, we show how to construct
a STRIPS task Π = 〈P,O,C, s0, G〉, such that there is
a cost-preserving one-to-one correspondence between
solutions for Π and solutions to the DPPS task. The
propositions are P = {holds(n, d) | n ∈ N, d ∈ D},
and they describe which processor currently holds which



data chunk. The operators of Π are given by O =
{transmit(n1, d, n2), delete(n1, d), compute(n1, a) |
n1, n2 ∈ N, d ∈ D, a ∈ A}. The transmit op-
erators are described by transmit(n1, d, n2) =
〈{holds(n1, d)}, {holds(n2, d)}, ∅〉, with a cost of
T (n1, d, n2). The delete operators are described by
delete(n1, d) = 〈{holds(n1, d)}, ∅, {holds(n1, d)}〉, with
a cost of 0. Finally, for a = 〈Ī , Ō, C〉, the compute opera-
tors are described by compute(n1, a) = 〈{holds(n1, d) |
d ∈ Ī}, {holds(n1, d) | d ∈ Ō}, ∅〉, with a cost of C(n1).

It is not hard to verify that any solution for the planning
task Π is also a solution to the given DPPS task, and that the
cost of the solutions is the same. Note that the only reason
we require that the DPPS task does not have any memory
constraints is that STRIPS does not support numerical vari-
ables, and so we cannot formulate the requirement that a
processor has enough free memory to store any data chunks
it computes or receives by transmission. However, numeri-
cal extensions to STRIPS do exist (Fox and Long 2003), and
we can use such a numerical planning framework to also
pose memory capacity constraints.

The more substantial issue remains the restriction to ex-
plicitly specified possible data chunks, because typically we
should expect the data chunks to be specified only implicitly.
This issue has been addressed already in the planning liter-
ature, and in particular, in the context of the DPADL action
language (Golden 2002). Here, however, we are interested
in using off-the-shelf STRIPS planners, and fortunately, this
issue can be overcome in STRIPS as well. Below we demon-
strate this by describing the DPPS task that encodes relational
algebra query optimization, which was described informally
in the previous section. The propositions we use here encode
a relational algebra expression tree. The objects, i.e., the pa-
rameters to predicates and operators, correspond to nodes
in a relational algebra expression tree, as well as selection
predicates, field lists, and aggregation functions. We do not
give a full description here for the sake of brevity, but illus-
trate the main points.

First, we have propositions that describe the structure of
the relational algebra expression tree. Each node in the tree
has an expression type, and each type of node has either
one subexpression (select, project, and aggregation) or two
subexpression (cross-product, union, and difference). Addi-
tionally, select nodes also have a selection predicate, project
nodes have a list of fields, and aggregation nodes have a
list of fields and an aggregation function. For example, the
proposition select(e, p, e1), indicates that node e is the re-
sult of applying selection predicate p on node e1, or in re-
lational algebra notation e = σp(e1). Another example is
crossproduct(e, e1, e2) which indicates that e is the result
of the cross-product of e1 and e2, or e = e1×e2. The full list
of predicates, with their interpretation in relational algebra,
is given in Table 1.

A second type of proposition we use is clear(e), which
indicates that e has not already been set, that is, that e is
currently not part of any relational algebra expression. Ad-
ditionally, the proposition eqv(e1, e2) indicates that the ex-
pressions represented by e1 and e2 are equivalent. Finally,
as in the previous construction, we have the proposition

Proposition RA Interpretation
select(e, p, e1) e = σp(e1)
project(e, f, e1) e = πf (e1)
aggregate(e, f, a, e1) e = Af,a(e1)
crossproduct(e, e1, e2) e = e1 × e2

union(e, e1, e2) e = e1 ∪ e2

diff(e, e1, e2) e = e1 \ e2

Table 1: STRIPS propositions and their interpretation in re-
lational algebra

holds(n, d) for every n ∈ N and every relational algebra
expression node d, which indicates that processor n hold the
data chunk d.

We also construct three types of operators. First, we have
the transmission and deletion operators, which are part of
any DPPS task, as described previously. As before, the cost
of the transmission operators stems from the DPPS task’s
transmission cost function, and the cost of the delete opera-
tors is 0.

Second, we have operators corresponding to actual re-
lational algebra operations: selection, projection, aggre-
gation, cross-product, union, and difference. The cost
of these operators reflects the estimated execution cost.
Each such operator is also parametrized by which proces-
sor performs the computation. For example, the operator
doselect(n, e1, p, e2) requires clear(e1) and holds(n, e2),
adds the propositions select(e1, p, e2) and holds(n, e1), and
deletes clear(e1). As before, operators representing rela-
tional algebra “macros”, such as join, can also be encoded.
For example, an operator joining relations e1 and e2 over
predicate p creates two nodes: one representing e1× e2, and
another representing σp(e1 × e2). However, the cost of this
operator is the cost of performing the join, rather than the
cost of doing the full cross-product and selection.

Finally, we have operators corresponding to equivalence
rules. The cost of these operators is zero, because, as noted
earlier, they are not actual computations, but are rather used
by the solver to “prove” that its solution is correct. These op-
erators are all encoded so that they construct a new relational
algebra expression node — the “input” is never modified —
and add the proposition that indicates that these expression
are equivalent. For example, the commutativity of selection,
that is equivalence rule σp(σq(X)) = σq(σp(X)) is encoded
by the operator described here:

commute-select(SpSqX, SqX, X, SqSpX, SpX)

pre
select(SqX, q, X) ∧ select(SpSqX, p, SqX)∧
clear(SqSpX) ∧ clear(SpX)

add
select(SpX, p, X) ∧ select(SqSpX, q, SpX)∧
eqv(SpSqX, SqSpX)

del clear(SpX) ∧ clear(SqSpX)

We can always encode these equivalence rules as opera-
tors with a fixed number of parameters, because the equiva-
lence rules are local in nature, in the sense that they do not
look deeper than one or two levels into the input relational
algebra expression tree. One important point to note is that
STRIPS does not support the creation of new objects. There-
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Figure 1: Runtime for obtaining f histograms over different fields from the same table, fragmented across n processors

fore, the number of relational algebra expression nodes that
are used in the solution must be set before planning begins.
However, an algorithm which iteratively increases the num-
ber of nodes can be used to overcome this limitation.

Theorem 6 Let Π be a DPPS task, and k ∈ N. There exists a
STRIPS task Π′ that can be constructed from Π in time poly-
nomial in |Π| and k, such that, if Π has a solution consisting
of at most k operators, then

(i) Π′ is solvable, and

(ii) every plan π′ for Π′ induces a solution π for Π of the
same cost.

In order to provide some empirical evidence that our ap-
proach is practical, we have encoded a DPPS task which de-
scribes our running example of multiple histogram compu-
tations over a single table, as a planning task. We assume the
table is partitioned by its primary key across a cluster with n
processors, and that the user wants a histogram of the table
by f different fields. The computational operators here are
count(di) which generates f partial histograms, one by each
field, from table fragment di, andmerge(hi) which requires
all n partial histograms according to field i, and merges them
into a histogram of the full table by field i. We did not model
memory constraints, and so this domain is delete-free.

We varied n from 2 to 64 and f from 2 to 6, and
solved these planning tasks with the Fast Downward plan-
ner (Helmert 2006) using greedy best first search with the
FF heuristic (Hoffmann and Nebel 2001). Figure 1 shows
the total planning time for these different values, with a sep-
arate line for each value of f . The hardest planning problem,
of computing a histogram by 6 different fields across a clus-
ter with 64 processors, was still solved in under a minute.
Note that we did not implement the operators execution, and
so we can not compare to actual distributed DBMS solu-
tions, for which we can only measure query execution time.
Finally, we remark that although the planner we used does
not guarantee optimal solutions, in this case all the solutions
that were obtained were optimal, and scanned the table only
once.

Summary
We have described a formal model of data-parallel program
synthesis, DPPS, which generalizes the specific data pro-
cessing systems developed in the area of data-parallel com-
puting. The key advantage of working at the level of the
DPPS model is that it is easy to separate the modeling of
the domain (i.e., the data chunks and computations) from
the specific task (i.e., the network topology, current state of
the system, and current queries of the users). The domain
modeling could be done by the software development team,
by symbolically annotating user-defined operators. The spe-
cific task is generated when a query is given to the system
by a user, who need not be aware of implementation tech-
niques or network topology. This allows the software de-
velopment team to focus on optimizing individual low-level
functions, while the system automatically generates an opti-
mized query plan.

DPPS is more expressive than relational algebra with ag-
gregate functions, allowing for both taking into account the
distributed nature of data-parallel computing, as well as in-
corporating arbitrary user-defined operators of the form sup-
ported by the current data-parallel computing systems. The
expressivity of DPPS makes reasoning in it computationally
hard in the worst case, and we discuss various sources of
this time complexity. Beyond the worst-case complexity
analysis, we showed how DPPS tasks can be compiled into
STRIPS, a standard formalism for deterministic action plan-
ning. Using a canonical histogram computation example,
we demonstrated how one can use off-the-shelf STRIPS plan-
ning tools to solve such DPPS tasks.

In terms of future work, examining the relationship be-
tween tradional measures for query complexity from the DB
community, and the complexity of the corresponding plan-
ning task could lead to cross-fertilization between the fields.
Additionally, studying the relationship between tractable
fragments of DPPS and tractable fragments of planning could
also lead to some interesting results.
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