
Mixed Discrete-Continuous Heuristic Generative Planning Based on Flow Tubes
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Abstract
Nowadays, robots are programmed with a mix of
discrete and continuous low level behaviors by ex-
perts in a very time consuming and expensive pro-
cess. Existing automated planning approaches are
either based on hybrid model predictive control
techniques, which do not scale well due to time dis-
cretization, or temporal planners, which sacrifice
plan expressivity by only supporting discretized
fixed rates of change in continuous effects. We in-
troduce Scotty, a mixed discrete-continuous gener-
ative planner that finds the middle ground between
these two. Scotty can reason with linear time evolv-
ing effects whose behaviors can be modified by
bounded control variables, with no discretization
involved. Our planner exploits the expressivity of
flow tubes, which compactly encapsulate continu-
ous effects, and the performance of heuristic for-
ward search. The generated solution plans are bet-
ter suited for robust execution, as executives can
use the flexibility in both time and continuous con-
trol variables to react to disturbances.

1 Introduction
Robotic missions are commonly programmed by highly
skilled experts in an expensive and time consuming process.
As robotic systems become increasingly more common, it is
desirable to devise more efficient systems to program the be-
havior of these robots. This often involves reasoning over a
mix of discrete and continuous conditions and effects with
temporal deadlines and constraints.

When no discrete conditions or effects need to be con-
sidered, robotics planning reduces to trajectory optimization,
that is, coming up with a control sequence over time that
satisfies a set of feasibility constraints and maximizes an
objective. Model-predictive control is, perhaps, the most
common approach to trajectory optimization, which frames
it as a discrete time continuous state optimization problem.
Trajectory optimization has been generalized to a hybrid
problem in which control behaviors are engaged and disen-
gaged, and control trajectories are generated for those differ-
ent behaviors. Kongming [Li and Williams, 2008; Li, 2010;
Li and Williams, 2011] provides one such approach that

generalized the discrete time, continuous model-predictive
control framework to a mixed discrete-continuous formula-
tion using an encoding based on flow tubes and hybrid flow
graphs. Although quite expressive, Kongming is limited to
small horizons due to the size of the corresponding optimiza-
tion problem. Other approaches based on model checking
techniques [Della Penna et al., 2009] support non-linear dy-
namics but also suffer from scalability problems due to time
discretization.

On the other hand, the AI planning community has also de-
veloped an extensive set of discrete temporal planners whose
performance has improved substantially over the last decade.
Such planners have been used successfully in real robotic
missions by NASA [Muscettola et al., 1998] and others, but
continuous effects have often been neglected in the planning
stage and only considered during plan execution. The plan-
ning community has also extended traditional planners to deal
with continuous variables. Heuristic forward search variants
of these planners such as COLIN [Coles et al., 2009] have
demonstrated good empirical performance on IPC bench-
marks. Some of these planners have been applied to robotics
problems. For example, POPF [Coles et al., 2010] has been
used to design AUV inspection plans of underwater installa-
tions [Cashmore et al., 2014]. However, the planner did not
explicitly consider the continuous motion of the robot, but
instead chose a mission path by selecting discrete waypoints
that were previously generated using random sampling mo-
tion planning techniques. The benefit of this type of planners
is that time is not discretized, enabling the planner to handle
long time horizons. The challenge, however, is that although
continuous linear time evolving effects are supported, actions
have constant control values. While trajectory optimization
can be mimicked by creating multiple copies of each action
with discretized control values, this approach does not scale.

Kongming generates control trajectories that preserve the
richness of classical model predictive control techniques, but
at the severe cost of computational efficiency. On the other
hand COLIN leverages the efficiency of heuristic forward
search methods at the cost of the richness of the control tra-
jectories generated. Finding the middle ground that preserves
essential elements of the expressivity of Kongming, while
leveraging the efficiency offered by COLIN is desirable for
robotic applications. In this paper, we present Scotty, a mixed
discrete-continuous temporal planner that combines the flow
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Figure 1: Example AUV mission.

tube representation of continuous effects from Kongming
with the efficient solving method based on heuristic forward
search and linear programs for consistency checking that
COLIN uses. Scotty leverages the temporal flexibility of
temporal planners and the control trajectory flexibility from
model predictive control techniques to generate plans that
are suited for robust execution.

1.1 Motivating Example
To motivate the need for a mixed discrete-continuous plan-
ner for robotic missions, we introduce an example scenario
involving a scientific autonomous underwater vehicle (AUV)
mission (Figure 1). In this mission the AUV has a deadline to
complete two objectives before ascending to the rendezvous
point. The AUV needs to take a sample in an specified region
of interest and collect data of an ongoing underwater eruption
site before the eruption ends, in five hours. The collected data
needs to be uplinked to an optical underwater beacon, so that
nearby scientists can analyze it as soon as possible.

This mission requires activities with discrete effects, such
as collect-data, but also activities with continuous effects,
such as navigate. In effect, in this mission we define the con-
tinuous state variables x and y that specify the position of the
AUV at all times. Activities such as collect-data require the
AUV to be in a specified region (constraints on x and y). The
AUV can change its position using the continuous navigate
activity. This activity varies the x and y state variables with
time according to the control variable velX and velY, which
are bounded and can be modified continuously. The hybrid
planner needs to be able to reason with these continuous ef-
fects in order to take the AUV to the regions in which samples
or data can be collected, and do it within their respective time
windows. Table 1 shows an example fixed solution plan for
this mission. In a later section, we discuss how to generate
a flexible plan suitable for robust execution from the fixed
solution plan for this problem.

In the next sections we describe Scotty’s problem state-
ment, its solution and how that solution is found.

2 Problem Statement
The input to the problem consists of the domain, initial con-
ditions and goal. These extend PDDL 2.1 [Fox and Long,
2011] with some modifications that allow us to define activ-
ities with continuous effects that depend on bounded control
variables. Similarly to PDDL 2.1, durative activities have a

t Event State Control Variables

0.0000 START-VOLCANO-ERUPTION x=0.0, y=0.0
0.0001 START-DO-MISSION x=0.0, y=0.0
0.0002 START-NAVIGATE-AUV x=0.0, y=0.0 velX=4, velY=0.75

100.0002 END-NAVIGATE-AUV x=400.0, y=75.0
100.0003 START-TAKE-SAMPLE x=400.0, y=75.0
105.0003 END-TAKE-SAMPLE x=400.0, y=75.0
105.0004 START-NAVIGATE-AUV x=400.0, y=75.0 velX=-2.35, velY=4
211.2504 END-NAVIGATE-AUV x=150.0, y=500.0
289.9999 START-COLLECT-VOLCANO-DATA x=150.0, y=500.0
299.9999 END-COLLECT-VOLCANO-DATA x=150.0, y=500.0
300.0000 END-VOLCANO-ERUPTION x=150.0, y=500.0
300.0001 START-NAVIGATE-AUV x=150.0, y=500.0 velX=4, velY=1.2
337.5001 END-NAVIGATE-AUV x=300.0, y=545.0
337.5002 START-UPLINK-VOLCANO-DATA x=300.0, y=545.0
342.5002 END-UPLINK-VOLCANO-DATA x=300.0, y=545.0
342.5003 START-NAVIGATE-AUV x=300.0, y=545.0 velX=4, velY=-1.43
430.0003 END-NAVIGATE-AUV x=650.0, y=420.0
430.0004 START-ASCEND x=650.0, y=420.0
440.0004 END-ASCEND x=650.0, y=420.0
440.0005 END-DO-MISSION x=650.0, y=420.0

Table 1: Example solution for the motivating scenario.

bounded controllable duration, discrete effects and continu-
ous and discrete conditions defined at start, over all and at
end. Continuous conditions are defined by linear inequalities
over the state variables according to:

cTx′ ≤ 0 (1)

, where x′ = (x1, . . . , xnx , 1)T and c ∈ Rnx+1 is a vector
of coefficients, with nx being the number of state variables of
the system.

Our problem statement differs from PDDL 2.1 in the ef-
fects on continuous variables. Each activity has a set of con-
trol variables, which can be seen as continuous parameters
— each of those constrained by lower and upper bounds. The
continuous effects of the activity are similar to those of PDDL
2.1, except they are affected by the value chosen for the con-
trol variables. We restrict each continuous effect to involve
only a single control variable, cvar, and thus each continu-
ous effect can be defined by 〈x, cvar, k〉, where x is a state
variable, cvar is a control variable, and k is a constant.

In the simple case, where a single continuous effect
〈x, cvar, k〉 is active from time tstart to time tend with cvar
fixed to a constant value of c throughout the duration, then
x(t), the value of state variable x at time t is defined by
x(t) = x(tstart) + k · c · (t− tstart) with tstart ≤ t ≤ tend.

Multiple continuous effects on the same state variable are
additive, and thus x(t) is defined by:

x(t) = x(0) +

∫ t

0

Cx(τ)dτ (2)

where Cx(t) is the sum of the values of control variables in
active continuous effects modifying x at time t (represented
by the set E).

Cx(t) =
∑

〈x,cvar,k〉∈E

k · cvar(t) (3)

where cvar(t) denotes the value chosen for the control vari-
able cvar at time t. The navigate activity of the example AUV
mission is shown in Figure 2. Note the bounded control vari-
ables velX and velY.

The problem initial conditions are given by the set of true
propositions (P0) and an assignment to the state variables at
the start (xi(0)). Finally, the goal consists of the discrete and
continuous conditions that need to hold at the end.



(:durative-action navigate
:control-variables ((velX) (velY))
:duration (and (<= ?duration 5000))
:condition (and 

(over all (>= (velX) -4)) (over all (<= (velX) 4))
(over all (>= (velY) -4)) (over all (<= (velY) 4))
(over all (<= (x) 700)) (over all (>= (x) 0))
(over all (<= (y) 700)) (over all (>= (y) 0))
(at start (AUV-ready)))     

:effect (and
(at start (not (AUV-ready)))
(at end (AUV-ready))
(increase (x) (* 1.0 (velX) #t))
(increase (y) (* 1.0 (velY) #t))))

Figure 2: Navigate activity modified by continuous control
variables velX and velY.

A fixed solution plan to the planning problem consists of
a list of scheduled activities defined by the following prop-
erties: activity a, execution start time ta, duration da, and a
trajectory of the value of each control variable of a from ta
to ta + da, that is a function giving the value of each control
variable at any given moment, caj(t) with ta ≤ t ≤ ta + da.
Note that a fixed plan gives us the values of all the state vari-
ables (discrete and continuous) at every time t between 0 and
the end of the plan — the state trajectory. We further require
that all activity conditions are satisfied by the state trajectory
at the appropriate times, as in PDDL 2.1.

A fixed plan is not robust: any small deviation during exe-
cution will cause the plan to fail. However, it is possible to use
flexible plans that allow an executive to respond to small dis-
turbances during execution. One such representation is Quali-
tative State Plans (QSP) [Léauté and Williams, 2005]. A QSP
is defined by a set of events (starts and ends of activities),
along with simple temporal constraints and state constraints.
Simple temporal constraints [Dechter et al., 1991] are of the
form lb ≤ tj−ti ≤ ub, where ti and tj are execution times of
events and lb, ub are a fixed lower and upper bound on the du-
ration between ti and tj . State constraints specify legal values
for continuous state variables at the start and end events of the
state constraint, as well as the legal trajectories of continuous
state variables and control variables. These trajectories spec-
ify the legal values of these at any moment in time between
the events. Typically in robotic applications, these are given
by the dynamics of the robot. For Scotty, these are limited to
the linear form ∆x = cvar ·∆t with cl ≤ cvar ≤ cu.

Executives exist that can control a robot given a QSP as an
input [Léauté and Williams, 2005; Ono and Williams, 2008;
Hofmann and Williams, 2006; 2015]. These executives
choose the control variables and the execution times of events
online, while ensuring that all constraints are met. Therefore,
we focus on generating a flexible plan and leave its dynamic
execution to the executive. In the next section, we review key
ideas from existing planners that Scotty borrows.

3 Previous Work
In this section we briefly describe the approaches that Kong-
ming and COLIN use to solve their planning problems.
Scotty combines the best of these approaches to solve the hy-
brid planning problem with continuous control variables.

3.1 Kongming
Kongming solves the same planning problem as Scotty: ac-
tions are hybrid and their continous effects are modified by

bounded continuous control variables. One of the main in-
novations introduced by Kongming consists in representing
continuous effects with flow tubes, that are abstractions of
the infinite number of trajectories that a continuous action can
produce.

Another key innovation introduced by Kongming consists
in the introduction of the Hybrid Flow Graph, the continu-
ous analog to Graphplan’s Planning Graph [Blum and Furst,
1997]. Hybrid actions connect initial state regions to goal
regions after some fixed duration using the flow tubes gen-
erated from the system dynamics. Kongming expands the
Hybrid Planning Graph with alternating action and fact lay-
ers until the goal conditions are non-mutex in the last fact
layer. Kongming then encodes the problem as a mixed logic
linear (non-linear) program that contains the system dynam-
ics constraints on the state variables and logic constraints on
binary variables for the discrete conditions and effects (simi-
lar to Blackbox’s SAT encoding [Kautz and Selman, 1999]).
Kongming alternates between trying to solve the ML(N)LP
and adding additional layers to the graph until the ML(N)LP
solver returns a solution.

Although Kongming’s approach is innovative, it suffers
from performance degradation issues in medium to large
problems due to time discretization, as graph layers are dis-
cretized using a fixed time step. In problems in which the
time horizon is moderately large, this involves creating many
layers. As the number of layers increases, identifying mutex
relations becomes exponentially more complicated. This also
slows down significantly the ML(N)LP solver, as each ad-
ditional layer adds many more additional variables and con-
straints. Later in this paper, we illustrate how this can become
a problem very fast.

3.2 COLIN
COLIN solves temporal planning problems with continuous
effects as defined in PDDL 2.1. Hybrid actions can have con-
tinuous time-varying effects, whose rate of change is speci-
fied by a fixed gradient.

In order to solve the planning problem, COLIN uses
heuristic forward search. Every search state is tested for con-
sistency with a Linear Program in which the real valued vari-
ables are the continuous state variables and the times at which
actions are executed. The continuous linear time-varying ef-
fects and the temporal relations between actions are encoded
as constraints. The linear program is also used at each step of
the search to determine the minimum and maximum possible
bounds for each state variable in order to prune actions that
cannot possibly be feasible at that point of the search.

COLIN’s heuristic is based on the Temporal Relaxed Plan-
ning Graph and delete relaxations. COLIN defines FF’s anal-
ogous delete relaxation for continuous time-varying effects
by only allowing state variable bounds to grow as a result
of those continuous effects (bounds never get smaller). The
heuristic value is the number of actions in the relaxed plan.

COLIN only supports continuous effects with fixed rates
of change, according to the following equation:

x(tend) = x(tstart) + rate-of-change · (tend − tstart) (4)



COLIN’s formulation cannot handle bounded continuous
rates of change (control variables). We can simulate this be-
havior by creating many equivalent continuous actions with
discretized fixed rates of change. However, this solution is
problematic as we will show later.

From COLIN we borrow the efficient solving approach
based on linear programs for testing plan consistency and
heuristic forward search. We also use a modified version of
COLIN’s heuristic. The key innovation of our approach con-
sists in combining Kongming’s more flexible representation
of continuous actions based on flow tubes, with COLIN’s
more efficient solving approach based on heuristic forward
search and no time discretization.

4 Approach
In order to find flexible solution plans, Scotty first finds a
fixed plan. In this section we describe how Scotty uses flow
tubes to represent continuous effects modified by continuous
control variables, how fixed plans are found and, finally, how
flexible plans are extracted.

4.1 Flow tube representation of continuous effects
As Kongming, our planner uses flow tubes to represent con-
tinuous effects modified by continuous control variables.
Each activity can have multiple continuous effects, and each
is represented by a flow tube. For Scotty, we limit flow tubes
to operate on only one state variable. Flow tubes represent
the reachable state space region, that is, the values that the
state variable can take after the activity is started. We restrict
continuous effects to linear time varying effects.

A flow tube f(dl, du, cvar, x, k) is defined by the following
properties:

• minimum and maximum duration (dl, du), which are
the minimum and maximum durations of the activity the
flow tube belongs to.

• state variable x that the flow tube modifies.

• control variable cvar, is the activity control variable the
flow tube is associated with. Recall that control variables
are bounded (cl ≤ cvar ≤ cu).

• the scalar constant factor k that regulates the impact of
the control variable on the state variable

If no other flow tubes affect state variable x between tstart
and tend, then the reachable region of x represented by the
flow tube f(dl, du, cvar, x, k) of an activity executed between
tstart and tend is defined by the following equations:

x(tend) = x(tstart) + k ·
∫ tend

tstart

cvar(t) · dt (5)

with cl ≤ cvar(t) ≤ cu (6)
dl ≤ tend − tstart ≤ du (7)

where x(tstart) is the value of the state variable before the
activity is executed. Note that, if the value of the control
variable is constant during the execution of the activity, equa-
tion 5 reduces to x(tend) = x(tstart)+k·cvar ·(tend−tstart).

t

x(t)

tstart tend
tstart + dl tstart + du

x(tstart)

xe

t1

min(k cl, k cu)

max(k cl, k cu)

Figure 3: Flow tube with its reachable region (shaded area).
The solid blue line represents an example valid state trajec-
tory. The flow tube contains all valid state trajectories.

Figure 3 shows a flow tube. Note that any point in the
shaded region (reachable region) can be reached at the end
of the activity by carefully choosing the appropriate activity
duration and control variable value. In the figure, we can see
how the state value xe can be reached as fast as in tend = t1
if the control variable cvar is constant and takes its maximum
possible value (cu), or as late as tend = tstart + du if cvar(t)
takes smaller values.

Note that two or more flow tubes operating on the same
state variable and belonging to the same or different ongoing
activities can be active at the same time, having their effects
combined. In general, if F represents the set of flow tubes
belonging to ongoing activities in t ∈ [ta, tb], the following
state evolution constraint between ta and tb holds:

x(tb) = x(ta) +

∫ tb

ta

Cx(τ)dτ (8)

Cx(t) =
∑
f∈F

kf · cvarf (t) (9)

where F is the set of flow tubes belonging to ongoing ac-
tivities in t ∈ [ta, tb].

An important characteristic of flow tubes, is that they pro-
vide a compact encoding of all feasible trajectories. This
property is exploited to find a fixed plan, as explained in the
next section.

4.2 Finding a fixed solution plan
Now that we have defined how flow tubes represent continu-
ous effects, we proceed to describe how fixed plans are found.
In order to do that, Scotty uses a method based on heuristic
forward search and linear programs for consistency checking,
that is borrowed from COLIN. The main difference is that
Scotty’s continuous effects support control variables and are
represented by flow tubes and, therefore, the state evolution
constraints are different, as will be explained later.

Activities are represented by their start and end events,
analogous to the start and end snap actions used by many tem-
poral planners [Long and Fox, 2003; Coles et al., 2008]. In
order to find a fixed plan, Scotty needs to find the ordered se-
quence of start and end events that takes the system from the
initial conditions to the goal and the execution time of each
event. Scotty also needs to find a trajectory for the values of



each activity control variable between the start and end events
of the activity (cvar(t) with tstart ≤ t ≤ tend).

Scotty finds trajectories for the control variables of an ac-
tivity that are piecewise constant. The number of segments of
these trajectories are given by 1 +nev , where nev is the num-
ber of events that occur between the start and end events of
the activity. Recall that, in general, the value of a control vari-
able can vary within its bounds throughout the execution of
the activity. However, Scotty only needs to find one solution
at this step because, if the planning problem has a solution,
there exists a solution with a piecewise constant control tra-
jectory. The reason is that the state variables of the system
only change due to the continuous effects of executing ac-
tivities and are only constrained by the start, end and overall
conditions of activities. Therefore, the constraints that state
variables are subject to only change at events (starts or ends
of activities). Moreover, these constraints are linear (inequal-
ities as in (1)) and, therefore, the set of valid state variable
assignments is convex. Because of that, if the problem can
be solved, a fixed plan containing piecewise constant trajec-
tories for the control variables is always a solution. We will
show that a linear program formulation exists that can find
such solutions.

As COLIN, Scotty uses heuristic forward search to find
the sequence of start and end events that form a fixed plan,
and linear programs to check the consistency of partial plans.
The search uses Enforced Hill Climbing, which has proven to
be effective in this type of problems [Hoffmann and Nebel,
2001]. However, because EHC is not complete, if no solu-
tion is found, Scotty can optionally try again with a complete
algorithm such as best-first search.

Search states contain the set of propositions that are known
to be true due to discrete effects, and are augmented with the
ongoing activities list and the bounds for all state variables.
The ongoing activities list keeps track of the activities that
have started but not finished at that state and is needed to keep
track of the active overall discrete and continuous constraints.
The lower and upper bounds for the state variables are used
to prune sections of the search tree that are necessarily not
feasible. For example, if the start event of a certain activity
a requires state variable x to be greater than 7 but the lower
and upper bounds of x are 3 and 5 respectively, the search
algorithm will not try to apply this event. However, an event
having a x ≥ 4 condition will be tried in the search. Note that
these state variable bounds are calculated for each state vari-
able independently of the others. As a consequence, the fact
that a constraint is satisfied by these bounds does not mean
that the partial plan is necessarily feasible. Whether the par-
tial plan is really feasible is only discovered when the linear
program, used to test consistency, is solved.

Each search state defines a partial plan as the current se-
quence of start and end events, and is tested for consistency
with a linear program. The partial plan is feasible if the linear
program has a solution. In this linear program the decision
variables are the event execution times and the values of the
state variables at each event. The constraints include activity
duration, start, end and overall conditions and state evolution
constraints that are built from the current sequence of events.
Table 2 shows the temporal and state constraints between

Temporal Constraints State Constraints

Total order of events:
For any pair of consecutive
events i and j

tj − ti ≥ ε (10)

Activity duration:
For every activity whose start
and end events are i and j

dl ≤ tj − ti ≤ du (11)

where dl and du are the lower
and upper bounds of the activ-
ity duration.

Activity conditions:
For every start or end event i

cTk x
′
i ≤ 0 ∀ck ∈ Ci (12)

where ck ∈ Rnx+1, x′
i =

(x1i , . . . , xnxi , 1)
T and Ci is

the set of active continuous
conditions at event i: the start
(or end) conditions of the ac-
tivity, and the overall condi-
tions of activities that started
before i but whose end event
occurs after i.

Table 2: Temporal and state constraints used in the consis-
tency linear program. tk is the execution time of event k and
xlk , the value of state variable xl at event k.

events. These constraints are the same ones that COLIN uses
[Coles et al., 2012]. Scotty needs a different state evolution
constraint, however, due to the presence of control variables.
This constraint is given by the flow tube reachability equation
(5). Because the values of the control variables can change
during the activity execution, and the start and end times of
the activity are variables of the linear program, this equation
is not linear if control variables are decision variables of the
linear program. However, we can redefine the reachability
region of the flow tube with the following linear inequalities:

xend ≥ xstart + min(k · cl, k · cu) · (tend − tstart) (13)
xend ≤ xstart + max(k · cl, k · cu) · (tend − tstart) (14)

, where cl and cu are the bounds of the control variable. Note
that min(k · cl, k · cu) represents the minimum rate of change
of k ·cvar and reduces to k ·cl when k > 0. The more compli-
cated expression is needed to preserve generality when k < 0.
The same applies to the maximum rate of change. These lin-
ear inequalities represent the same flow tube reachability re-
gion described by equation (5) if each of the activity’s control
variables appear in only one continuous effect.

However, note that this is not always the case. Imagine an
activity drive with its control variable speed. Assume drive
has two continuous effects that are modified by the control
variable speed. On one hand the state variable x is modified
by the flow tube ∆x = speed ·∆t. On the other, the car’s bat-
tery is drained according to ∆battery = −3 · speed ·∆t. Be-
cause the control variable speed that affects the battery drain
is the same as the one that controls the rate of change in x, in-
equalities (13) and (14) can no longer represent the real state
evolution of the system. These inequalities would artificially
allow us to select at the same time a small value for the speed
that drains the battery and a large one for the speed that makes
the vehicle move fast. In these cases the reachability region
needs to be represented with the original flow tube equations
and the value of the control variable made a decision vari-
able. Then the constraints become quadratic and the program
is no longer linear. In its current implementation, Scotty only
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Figure 4: Flow tubes and state variable bounds for subsequent
search states along the search tree. Flow tubes for the navi-
gate activities define the reachable regions of x at the end of
the activity (x1, x5). The rectangular regions show the re-
quired conditions that x needs to satisfy for the take-sample
and collect activities.x1 = x2 = x3 = x4 and x5 = x6
because take-sample and collect do not modify x.

accepts activities in which this does not happen to keep the
program linear but in the future, an appropriate solver will be
used to handle quadratic constraints.

According to the previous discussion, Scotty uses the fol-
lowing state evolution constraints for state variable x between
consecutive events i and j that consider that more than one
continuous effect can be operating on x simultaneously:

xj ≥ xi + Cx
l · (tj − ti) (15)

xj ≤ xi + Cx
u · (tj − ti) (16)

Cx
l =

∑
〈x,cvar,k〉∈Ax

i→j

min(k · cl, k · cu) (17)

Cx
u =

∑
〈x,cvar,k〉∈Ax

i→j

max(k · cl, k · cu) (18)

where xk denotes the value of the state variable x at event
k, tk is the execution time of event k and Ax

i→j is the set of
continuous effects affecting x between events i and j. Recall
that cl and cu denote the lower and upper bounds of each state
variable.

Note that the values of the control variables are not deci-
sion variables of the linear program. However, for each pair
of consecutive events 〈i, j〉, we can compute

Cx
i→j =

xj − xi
tj − ti

(19)

, where Cx
i→j =

∑
〈x,cvar,k〉∈Ax

i→j
k · cvar. We can use this

value to find piecewise constant assignments for each con-
trol variable between events i and j. Note that there could
be infinitely many valid piecewise assignments if more than
one continuous effect is affecting x. This is not a problem as
Scotty only needs to find one at this step.

Figure 4 shows how flow tubes are handled in the linear
program. The figure shows the values of state variable x as
solved by the linear program at different search states. Activ-
ities’ flow tubes and continuous conditions are shown. The

…
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take-sample
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end
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start

coll-volcano
end

coll-volcano

x ∈ VolcanoRegion

Figure 5: Partial QSP for the example problem. Events are
represented with labeled oval shapes. Temporal constraints
are displayed in black above the events, state constraints in
green and state evolution constraints in blue.

consistency program is solved for each state in the search tree
to determine the feasibility of the partial plan, and to extract
the event times (t1 . . . t6), state variable values (x1 . . .x6),
and control variables. These values keep changing as more
steps are added to the plan during search. In order to find the
state variable lower and upper bounds, the LP is solved twice
per state variable (to minimize and maximize its value).

If the current search state is determined to be consistent,
its heuristic value is computed and the state is added to the
queue. If the state satisfies the goal conditions, a valid fixed
plan has been found and Scotty proceeds to extract the flexi-
ble plan next. The last linear program used to extract the fixed
plan tries to minimize the makespan of the plan, although a
different optimization objective could be chosen.

The heuristic function used by Scotty is essentially the
same used by COLIN, with minor modifications due to the
use of control variables. The heuristic value for a state is the
number of start or end events to reach the goal in the relaxed
plan. The planning graph that COLIN expands keeps track of
the state variables lower and upper bounds for each fact layer,
with the caveat that activities can only grow these bounds, in a
similar fashion to Metric-FF [Hoffmann, 2003]. COLIN cal-
culates the positive gradient affecting each state variable by
adding the positive rates of change of each ongoing activity
(similarly with the negative gradient). In Scotty’s case, these
positive and negative gradients are found by adding the max-
imum (and minimum) rates of change given by the bounds of
the control variables affecting each activity.

4.3 Extracting a QSP
The fixed solution plan obtained in the previous section is
not robust: any deviation during execution may result in an
infeasible plan. In this section we discuss how we extract a
more flexible plan from the fully specified solution which can
take advantage of the temporal and control flexibility of the
problem.

As described in the Problem Statement, we use Qualitative
State Plans (QSPs) to describe such flexible plans. A partial
QSP extracted from the solution plan of the example prob-
lem is shown in Figure 5. This QSP is a temporal network of
events (starts and ends of activities). These events no longer
have associated precise execution times as in the fixed plan,
but are connected by temporal constraints that come from the
duration constraints of the activities and the problem tempo-
ral constraints (such as collecting the volcano data before the
eruption finishes in 300 minutes). Start and end events of



activities with continuous effects (such as navigate) are con-
nected by state evolution constraints that express restrictions
on how variables can vary while the activity is being exe-
cuted and what the bounds of the control variables are. Fi-
nally, events can have state constraints (conditions at start or
end of activities), such as being in the rendezvous region at
the end of the mission, and events can be connected by state
constraints, that specify the feasible trajectories for the state
variables between events (for example, being in the volcano
region while the data is collected).

The QSP can be extracted by traversing the fixed plan
schedule and annotating the temporal constraints (activity du-
rations), state constraints (activity conditions) and state evo-
lution constraints (continuous effects). This requires main-
taining the total order of the events so that the discrete con-
ditions of activities hold. Lifting a partial order plan from
the grounded solution or, even better, using POPF’s [Coles
et al., 2010] approach of planning with partial order states is
possible, and is considered for future work. In that case we
would also have to annotate the discrete conditions as addi-
tional constraints in the resulting QSP.

Although we could extract a flexible plan like the one
defined above from the solution of any temporal planner,
the fact that Scotty operates with continuous control vari-
ables makes this plan much more useful. The advantage of
Scotty compared to other temporal generative planners is that
Scotty can reason with continuous control variables, making
this flexible plans much more useful. In effect, this gives
the executive the flexibility to choose not only the execu-
tion times of the events, but also the values of the control
variables that modify the continuous effects. For example,
if during execution it takes the AUV longer to take the sam-
ple than initially expected, the executive will be able to in-
crease the navigation speed of the vehicle in order to ensure
that the eruption data is collected before the event ends. In
short, this provides the executive with two degrees of free-
dom to react to disturbances: the execution times and the
control variables, as long as all state transition, activity con-
ditions and time constraints are satisfied. Algorithms ex-
ist that can execute QSPs [Hofmann and Williams, 2015;
2006]. These algorithms execute the plan activities online
by choosing the execution times of the events and the control
variables, while making sure that all constraints are propa-
gated forward and satisfied at all times.

5 Empirical Evaluation
Scotty and Kongming can both reason with continuous ef-
fects modified by bounded control variables. In a previous
section, we argued that Kongming’s time discretization can
hurt performance as the complexity of the problem increases.
In Figure 6 we present a simple AUV sampling mission sce-
nario that highlights this issue. The AUV needs to reach a
certain depth range in order to take a sample. We parametrize
this scenario in terms of the sampling depth. The AUV can
use the action descend to modify its depth according to the
bounded control variable descent-rate. Because Kongming
discretizes time in constant time steps, increasing the tar-
get sampling depth forces Kongming to create additional fact
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Figure 6: Sampling scenario that shows the problems of dis-
cretizing time.

2D AUV 1 2D AUV 2 3D AUV Firefighting 1 Firefighting 2

Kongming 3.633 9.736 13.063 1.505 20.202
Scotty 0.054 0.025 0.192 0.03 0.372

Table 3: Comparison between Kongming and Scotty in sev-
eral domains. Results show planning time in seconds.

and action layers and, additionally, more variables that the
ML(N)LP solver needs to consider. As a result, the perfor-
mance of Kongming degrades very fast with the target sam-
pling depth as shown in Figure 6. While Kongming’s perfor-
mance degrades very fast with depth, Scotty’s performance is
constant (and orders of magnitude better than Kongming’s).
This is expected, as Scotty does not discretize time and, there-
fore, is solving the same problem regardless of the depth. Ta-
ble 3 shows Scotty’s large performance advantage in other
domains. These domains typically showcase one or more mo-
bile robots moving in a 2D or 3D environment and complet-
ing objectives that involve visiting different locations.

On the other hand COLIN/POPF are efficient heuristic for-
ward search planners that do not present the time discretiza-
tion problem. However, they do not support continuous con-
trol variables, but fixed rates of change for continuous linear
time evolving effects. Let us consider an example that shows
why this is not desirable for robotic applications. Imagine
that the AUV in the example mission needs to reach the vol-
cano region (xmin ≤ x ≤ xmax) some prudent time after the
eruption has ended so that it is safe to be nearby but before
too long has passed, so that the collected data is still relevant
(tmin ≤ t ≤ tmax). Let us consider that the robot can move
with some speed (control variable) cl ≤ c ≤ cu. Note that
in order to satisfy the constraints, the robot needs to move
with some speed satisfying c∗l = xmin/tmax ≤ c ≤ c∗u =
xmax/tmin. Because COLIN does not support continuous
control variables, it would have to discretize the interval [cl,
cu] into a set of discrete fixed rates of change. The problem
would only be feasible if one of the discretized values fell in-
side the valid bounds [c∗min, c∗max]. Each discretized rate
of change requires a new action, making the problem harder
to solve. The required number of discretized rates of change
can become arbitrarily large as different time and state con-
straints can modify the valid speed interval arbitrarily. Be-
cause Scotty supports continuous control variables, no dis-
cretization is needed and only one activity is sufficient as long
as the interval given by the control variable bounds and the



interval that contains the problem valid speeds have a non-
empty intersection.

6 Conclusion
We have presented Scotty, a mixed discrete-continuous gen-
erative planner that fills the gap between high fidelity model
predictive control approaches, that suffer from scalability
problems, and temporal planners, that present an impressive
performance on large problems at the cost of limited expres-
sivity. Scotty uses flow tubes to compactly encapsulate con-
tinuous effects with continuous control variables, as Kong-
ming, and heuristic forward search and a continuous time
formulation, as COLIN. By avoiding discretization of either
time or control variables, Scotty can reason with more expres-
sive problems than COLIN and perform at least two orders of
magnitude better than Kongming. Finally, Scotty produces
flexible plans that are suitable for robust execution, as execu-
tives can exploit both temporal and control flexibility due to
the presence of continuous control variables.
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