
Learning to Combine Admissible Heuristics
Under Bounded Time
Carmel Domshlak, Erez Karpas, Shaul Markovitch - Technion

Motivation
•Optimal planning≡A∗ + admissible heuristic
(almost always)
• Which heuristic to use?
• Why use only one heuristic?
• Simplest combination method: max

Domain hLA hLM-CUT max
airport 25 38 36
freecell 28 15 22

Theoretical Model Illustrated

sg

s0

f2 = c∗

+ s

f1 = c∗
l

The Problem with max
•We need to compute many heuristic functions
• The heuristic value is the result of only one
computation
• Some computation is wasted
Possible solution: learn a classifier which pre-
dicts which heuristic will be the “winner”.
Caveat: sometimes spending a lot of time to
compute the most informed heuristic is not the
best thing to do (see the results from the se-
quential optimal track in IPC-2008).

Theoretical Model
Assumptions
• State space is a tree
• Single goal state
• Uniform cost actions
• Constant branching factor b
• Perfect knowledge

Two heuristics: h1 and h2

• Consistent
• Evaluating hi takes time ti

Decision Rule
Above both lines is the surely expanded region.
Best decision - just expand, don’t evaluate.

For state s on the border, the options are ei-
ther to use h2 which takes time t2, or use h1,
in which case we need to expanded the high-
lighted region, which take blt1 time.
Therefore the best decision for s is to use h2 iff
t2 < blt1, or if l > logb(t2/t1).
After some more assumptions about the rate of
growth of heuristic error, we can write the rule
as

Use h2 iff h2 − h1 > α logb(t2/t1)

α is a hyper-parameter

Dealing with Assumptions
Assumptions
• State space is a tree - doesn’t change the rule
• Single goal state - doesn’t change the rule
•Uniform cost actions - doesn’t change the rule
• Constant branching factor b - estimate
• Perfect knowledge - use decision rule at every
state

Two heuristics: h1 and h2

• Consistent - doesn’t change the rule
• Evaluating hi takes time ti - estimate

Learning
• Collecting training examples
• Labeling training examples
• Generating features
• Building a classifier

Collecting Examples
State space is sampled using stochastic hill
climbing “probes”
• Depth limit = 2 ∗ h(s0)
• Probabiity of expanding successor s is 1/h(s)
All generated states are added to the training set.
Probing stops when enough training examples
are collected

s0

Depth limit

Labelling Examples
First b, t1, t2 are estimated from the collected ex-
amples. Then h2−h1 is calculated for each state.
Each example is labeled by h2 iff

h2 − h1 > α logb(t2/t1).

WLOG t2 > t1 - the choice is always whether to
evaluate the more expensive heuristic.

Features
We use the simplest features - values of state
variables. Better features will probably lead to
better results.

Classifier
We use the Naive Bayes classifier, because it is:
• Very fast
• Incremental
• Provides probabilistic classification

Using the Learned Model
state

classifier
features

Evaluate h2Evaluate h1

Pr(h1) > ρ Pr(h2) > ρ

Learn
else

ρ is a hyper-parameter

Experiments
We used two state of the art heuristics: hLM-CUT
(Helmert and Domshlak 2009) and hLA (Karpas
and Domshlak 2009).
Parameters were set to α = 1, ρ = 0.6, Training
set size = 100.
We compare to each of the individual heuris-
tics, regular max, and rndh, which selects one
of the heuristics at random.

Experiments - Anytime Behavior

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 0 200 400 600 800 1000 1200 1400 1600 1800

S
o

lv
e

d
 I

n
s
ta

n
c
e

s

Timeout

hLA

hLM-CUT

maxh

rndh

selh

Experiments - Result Summary
hLA hLM-CUT max rndh selh

Solved 419 450 454 421 460
Avg Time 39.7 38.6 41.4 42.6 24.5
Avg Expanded 35.4 8.2 1 4 1.6

1

