Learning to Combine Admissible Heuristics Under Bounded Time

Carmel Domshlak, Erez Karpas, Shaul Markovitch - Technion

Motivation

- Optimal planning $\equiv A^*$ + admissible heuristic (almost always)
- Which heuristic to use?
- Why use only one heuristic?
- Simplest combination method: max

Domain	h_{LA}	$h_{\text{LM-CUT}}$	max
airport	25	38	36
freecell	28	15	22

The Problem with \max

- We need to compute many heuristic functions
 The heuristic value is the result of only one computation
- Some computation is wasted
- Possible solution: learn a classifier which predicts which heuristic will be the "winner".

Caveat: sometimes spending a lot of time to compute the most informed heuristic is not the best thing to do (see the results from the sequential optimal track in IPC-2008).

Theoretical Model

Assumptions

- State space is a tree
- Single goal state
- Uniform cost actions
- Constant branching factor *b*
- Perfect knowledge
- Two heuristics: h_1 and h_2
- Consistent
- Evaluating h_i takes time t_i

Decision Rule

Above both lines is the surely expanded region. Best decision - just expand, don't evaluate.

For state *s* on the border, the options are either to use h_2 which takes time t_2 , or use h_1 , in which case we need to expanded the high-lighted region, which take $b^l t_1$ time.

Therefore the best decision for *s* is to use h_2 iff $t_2 < b^l t_1$, or if $l > \log_b(t_2/t_1)$.

After some more assumptions about the rate of growth of heuristic error, we can write the rule as

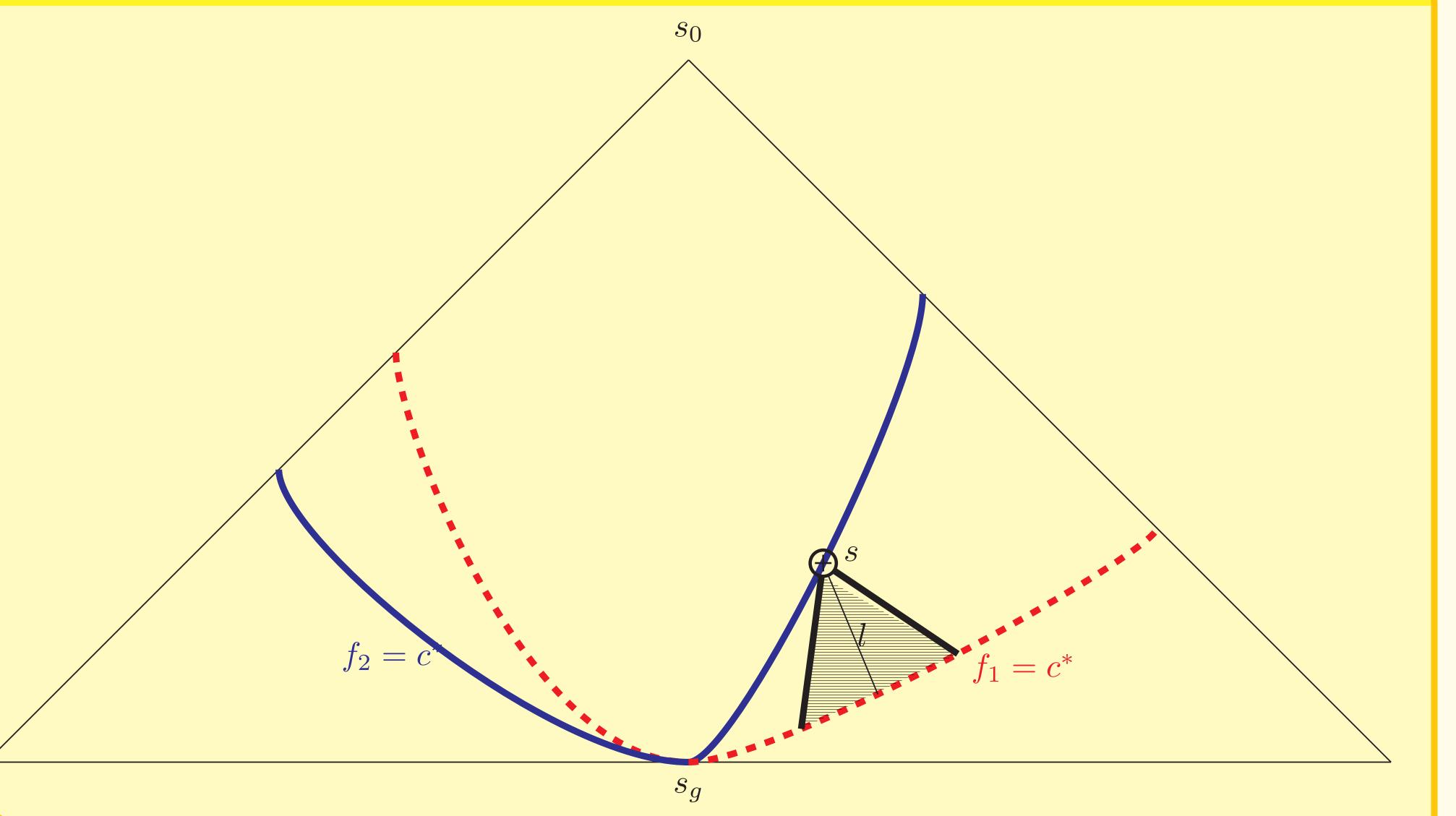
Use h_2 iff $h_2 - h_1 > \alpha \log_b(t_2/t_1)$

 α is a hyper-parameter

Dealing with Assumptions

Assumptions

Theoretical Model Illustrated



- State space is a tree doesn't change the rule
- Single goal state doesn't change the rule
- Uniform cost actions doesn't change the rule
- Constant branching factor *b* estimate
- Perfect knowledge use decision rule at every state

Two heuristics: h_1 and h_2

- Consistent doesn't change the rule
- Evaluating h_i takes time t_i estimate

Learning

- Collecting training examples
- Labeling training examples
- Generating features
- Building a classifier

Collecting Examples

State space is sampled using stochastic hill climbing "probes"

Labelling Examples

First b, t_1, t_2 are estimated from the collected examples. Then h_2-h_1 is calculated for each state. Each example is labeled by h_2 iff

 $h_2 - h_1 > \alpha \log_b(t_2/t_1).$

WLOG $t_2 > t_1$ - the choice is always whether to evaluate the more expensive heuristic.

Features

We use the simplest features - values of state variables. Better features will probably lead to better results.

Classifier

We use the Naive Bayes classifier, because it is:Very fast

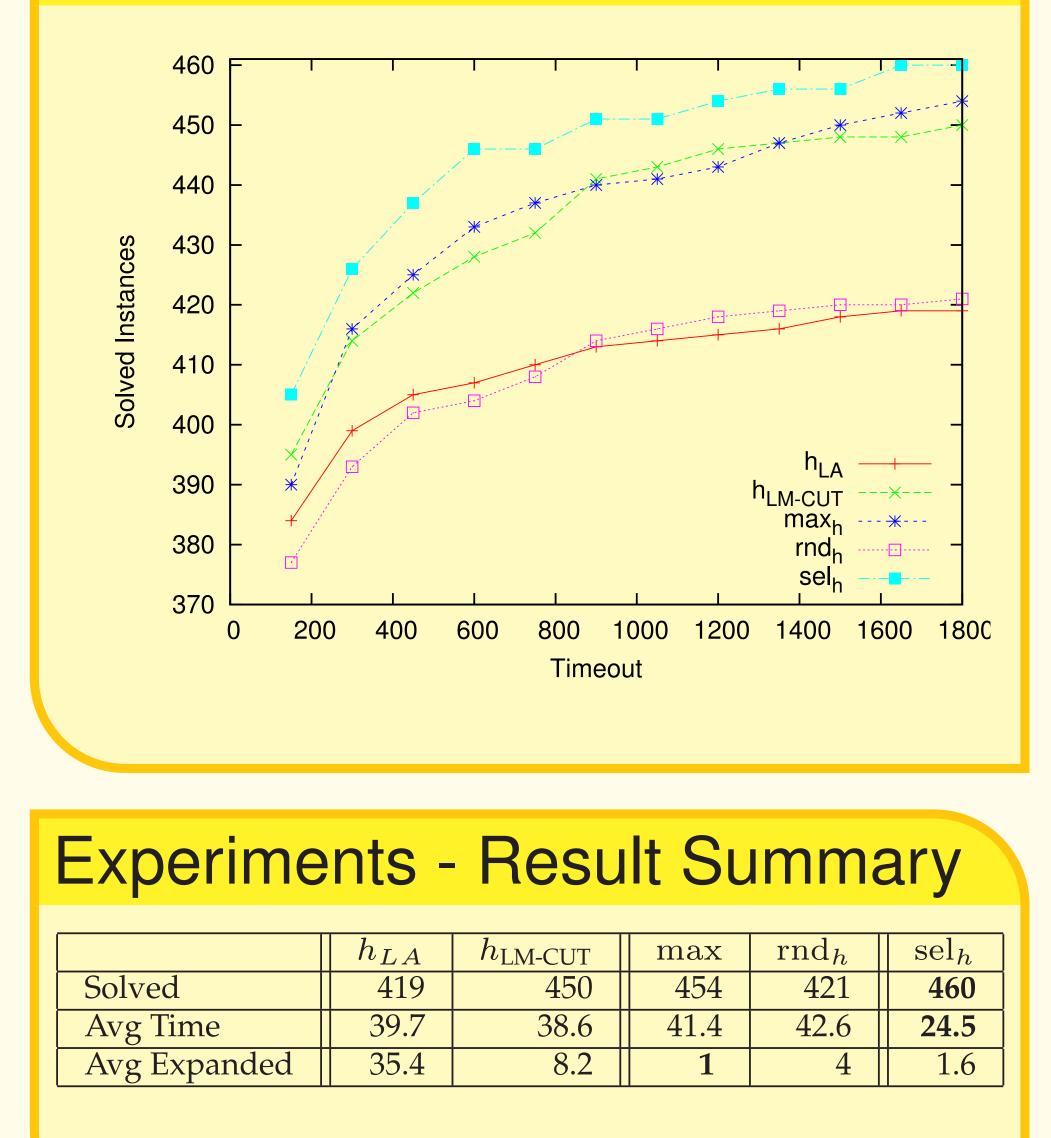
Experiments

We used two state of the art heuristics: $h_{\text{LM-CUT}}$ (Helmert and Domshlak 2009) and h_{LA} (Karpas and Domshlak 2009).

Parameters were set to $\alpha = 1, \rho = 0.6$, Training set size = 100.

We compare to each of the individual heuristics, regular max, and rnd_h , which selects one of the heuristics at random.

Experiments - Anytime Behavior



• Depth limit = $2 * h(s_0)$

• Probability of expanding successor s is 1/h(s)

All *generated* states are added to the training set. Probing stops when enough training examples are collected

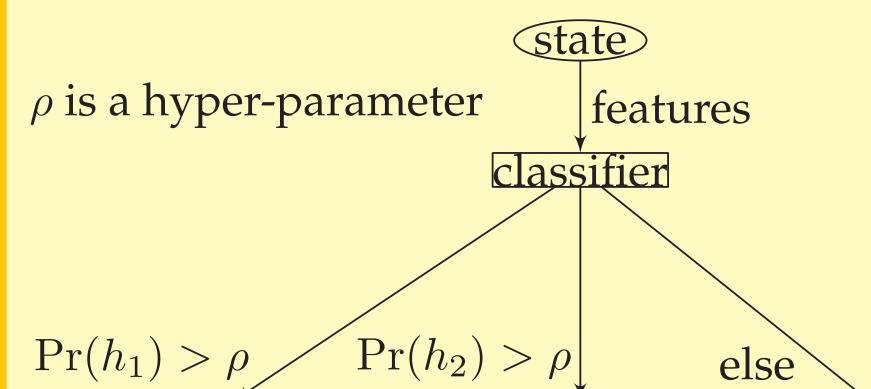


Incremental

Evaluate h

Provides probabilistic classification

Using the Learned Model



Evaluate h_2

Learn