Learning to Combine Admissible Heuristics Under Bounded Time

C. Domshlak E. Karpas S. Markovitch

Faculty of Industrial Engineering and Management

Faculty of Computer Science Technion

20.9.2009 - ICAPS - Learning on Planning and Learning

Outline

- Motivation
- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier
- Experimental Evaluation

Motivation

- Domain independent optimal planning
 - A* + admissible heuristic (almost always)
 - Which heuristic to use?
- Sample results:

Domain	h _{LA}	h _{LM-CUT}
airport	25	38
freecell	28	15

Combining Admissible Heuristics

- Why use only one heuristic?
- Simplest combination method: max_h
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
airport	25	38	36
freecell	28	15	22

 Other combination methods exist (additive heuristics, additive/disjunctive, ...)

Combining Admissible Heuristics (2)

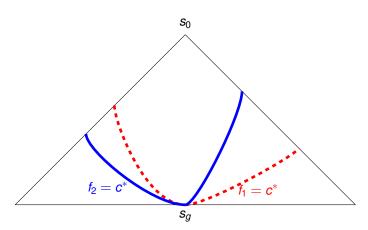
- The problem with max_h
 - We need to compute many heuristic functions
 - The heuristic value is the result of only one computation
 - Some computation is wasted
- Possible solution: learn a classifier which predicts which heuristic will be the "winner"

Informative vs. Fast Heuristics

 Sometimes spending a lot of time to compute the most informed heuristic is not the best thing to do

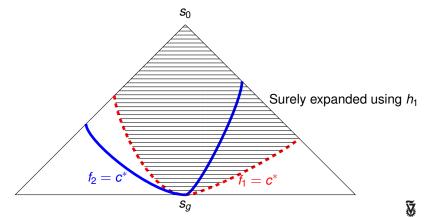
Outline

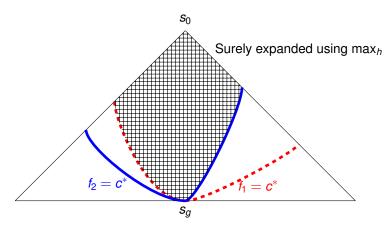
- Motivation
- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier
- Experimental Evaluation

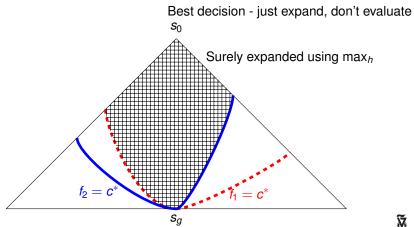

Assumptions

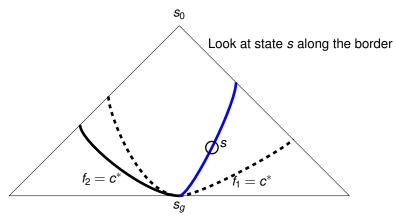
- State space is a tree
- Single goal state
- Uniform cost actions
- Constant branching factor b
- Perfect knowledge

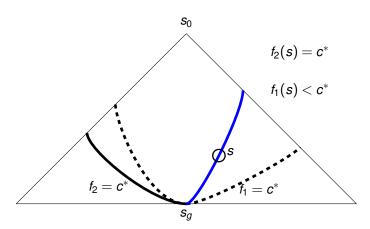
- Consistent
- Evaluating h_i takes time t_i

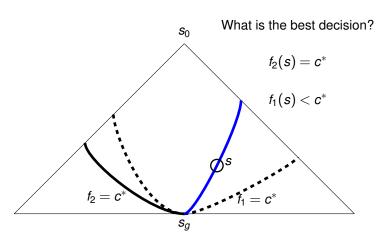


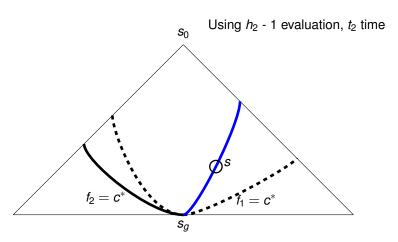


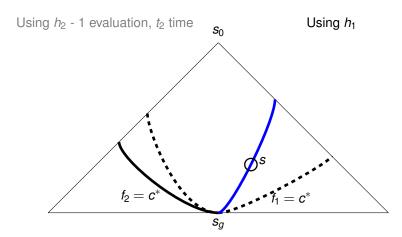


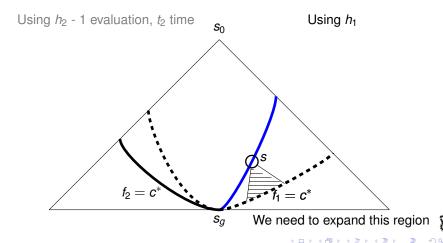


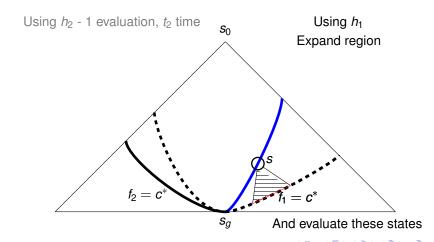


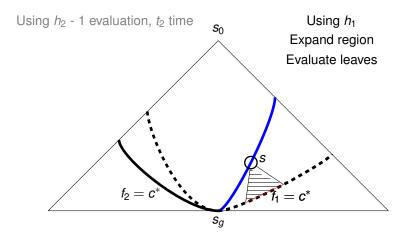


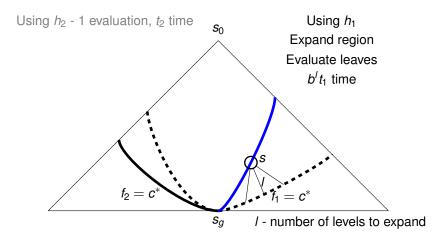


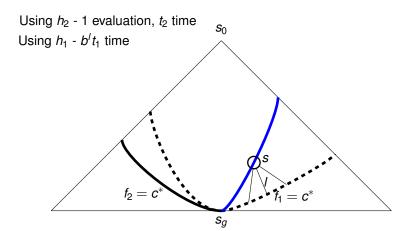


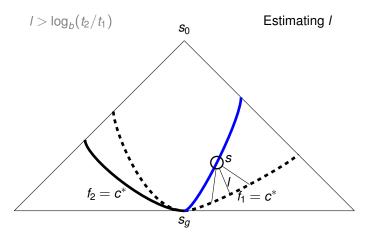




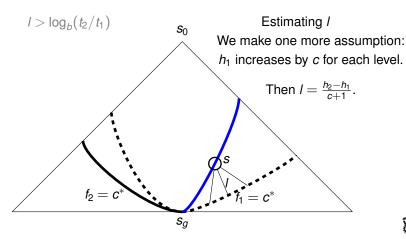


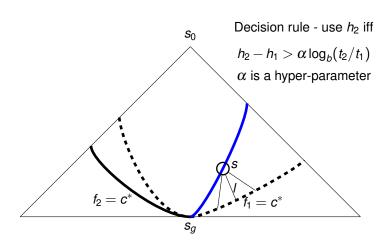


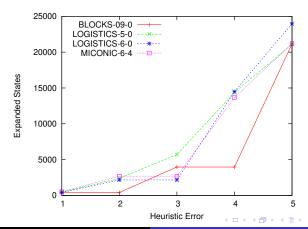



Using h_2 - 1 evaluation, t_2 time Best decision - use h_2 iff $t_2 < b^l t_1$ s_0 Using $h_1 - b^l t_1$ time s_g

Using h_2 - 1 evaluation, t_2 time Best decision - use h_2 iff $t_2 < b^l t_1$ s_0 Using $h_1 - b^l t_1$ time i.e. $I > \log_b(t_2/t_1)$ s_g







Justifying the Rule

 The decision rule derived from the model can be justified by some empirical results (Helmert and Röger, 2008)

Outline

- Motivation
- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier
- Experimental Evaluation

Assumptions

- State space is a tree
- Single goal state
- Uniform cost actions
- Constant branching factor b
- Perfect knowledge

- Consistent
- Evaluating h_i takes time t_i

Assumptions

- State space is a tree doesn't change the rule
- Single goal state doesn't change the rule
- Uniform cost actions doesn't change the rule
- Constant branching factor b
- Perfect knowledge

- Consistent doesn't change the rule
- Evaluating h_i takes time t_i

Assumptions

- State space is a tree doesn't change the rule
- Single goal state doesn't change the rule
- Uniform cost actions doesn't change the rule
- Constant branching factor b estimate
- Perfect knowledge

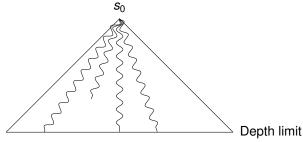
- Consistent doesn't change the rule
- Evaluating h_i takes time t_i estimate

Assumptions

- State space is a tree doesn't change the rule
- Single goal state doesn't change the rule
- Uniform cost actions doesn't change the rule
- Constant branching factor b estimate
- Perfect knowledge use decision rule at every state

- Consistent doesn't change the rule
- Evaluating h_i takes time t_i estimate

Learning


- Collecting training examples
- Labeling training examples
- Generating features
- Building a classifier

Collecting Training Examples

- State space is sampled using stochastic hill climbing "probes"
 - Depth limit = $2 * h(s_0)$
 - Probability of expanding successor s = 1/h(s)
- All generated states are added to the training set
- Probing stops when enough training examples are collected

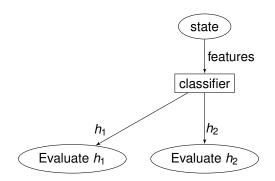
Labeling Training Examples

- b, t_1, t_2 are estimated from the collected examples
- $h_2 h_1$ is calculated for each state
- Each example is labeled by h_2 iff $h_2 h_1 > \alpha \log_b(t_2/t_1)$
- WLOG $t_2 > t_1$ the choice is always whether to evaluate the more expensive heuristic

Generating Features

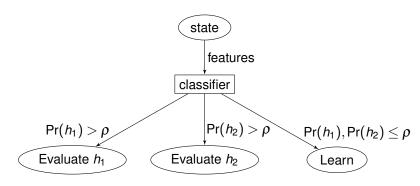
- We use the simplest features values of state variables
- Better features will probably lead to better results

Building a Classifier


- We use the Naive Bayes classifier
 - Very fast
 - Incremental
 - Provides probability distribution for classification

Using the classifier

State Evaluation



Using the classifier

State Evaluation

Final Remarks

- This is an active online learning scheme
- Using SAS⁺ helps, because it reduces dependence between state variables
- This approach can be easily extended to multiple heuristics
 - Learn a classifier for each pair
 - · Decide which heuristic to use by voting

Outline

- Motivation
- 2 Theoretical Model
- From Model to Practice
 - Dealing with Model Assumptions
 - Learning
 - Using the Classifier
- Experimental Evaluation

Evaluation

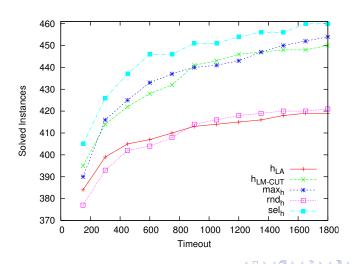
- We used two state of the art heuristics
 - h_{LM-CUT} Helmert and Domshlak 2009
 - h_{LA} Karpas and Domshlak 2009
- Parameters
 - $\alpha = 1$ decision rule bias
 - ho = 0.6 confidence threshold
 - Training set size = 100

Results - Solved Problems

Domain	h	h	may.	rnd _h	sel _h
	h _{LA}	h _{LM-CUT}	max _h		
airport	25	38	36	29	36
blocks	20	28	28	28	28
depots	7	7	7	7	7
driverlog	14	14	14	14	14
freecell	28	15	22	15	28
grid	2	2	2	2	2
gripper	6	6	6	6	6
logistics-2000	19	20	20	20	20
logistics-98	5	6	6	5	6
miconic	140	140	140	140	140
mprime	21	25	25	19	25
mystery	13	17	17	14	17
openstacks	7	7	7	7	7
pathways	4	5	5	4	5
psr-small	48	49	48	48	48
pw-notankage	16	17	17	17	17
pw-tankange	9	11	11	10	11
rovers	6	7	7	6	7
satellite	7	8	9	7	9
tpp	6	6	6	6	6
trucks	7	10	9	7	9
zenotravel	9	12	12	10	12
Total	419	450	454	421	460

Results - Expanded States

Domain	h _{LA}	h _{LM-CUT}	max _h	rnd _h	sel _h
airport (25)	20.41 (1.48)	1 (1)	1 (1)	1.09 (1.03)	1.16 (1)
blocks (20)	10.87 (4.1)	1 (1)	1 (1)	1.25 (1.24)	1.15 (1.01)
depots (7)	17.08 (16.7)	1 (1)	1 (1)	2.59 (2.35)	1.9 (1.02)
driverlog (14)	14.95 (9.46)	1.08 (1)	1 (1)	2.2 (2.2)	2.27 (1.44)
freecell (15)	1.24 (1.11)	188.57 (22.5)	1 (1)	17.47 (2.29)	1.88 (1.37)
grid (2)	3.38 (3.38)	1.02 (1.02)	1 (1)	1.47 (1.47)	3.32 (3.32)
gripper (6)	1 (1)	1.05 (1.01)	1 (1)	1.01 (1)	1 (1)
logistics-2000 (19)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)
logistics-98 (5)	8.43 (4.78)	1 (1)	1 (1)	1.66 (1.68)	4.67 (1.8)
miconic (140)	1 (1)	1 (1)	1 (1)	1 (1)	1 (1)
mprime (19)	415.47 (6.4)	3.44 (1)	1 (1)	27.06 (2.31)	6.34 (1.13)
mystery (12)	144.33 (1.06)	1.3 (1)	1 (1)	12.08 (1.29)	3.85 (1)
openstacks (7)	1.07 (1.1)	2.32 (2.29)	1 (1)	1.18 (1.16)	1.1 (1.12)
pathways (4)	251.87 (187.08)	1 (1)	1 (1)	15.19 (10.16)	1 (1)
psr-small (48)	1.36 (1.16)	1 (1)	1 (1)	1.07 (1.03)	1.22 (1.01)
pw-notankage (16)	5.95 (3.25)	1.49 (1)	1 (1)	1.71 (1.53)	1.48 (1.11)
pw-tankange (9)	2.16 (2.03)	1.47 (1.19)	1 (1)	1.31 (1.38)	1.11 (1.02)
rovers (6)	86.2 (5.53)	1 (1)	1 (1)	5.37 (1.06)	1.42 (1.04)
satellite (7)	78.71 (30.88)	1.01 (1)	1 (1)	15.16 (2.68)	2.11 (1.05)
tpp (6)	55.39 (1)	1 (1)	1 (1)	3.42 (1)	1.35 (1)
trucks (7)	77.4 (53.6)	1.01 (1)	1 (1)	7.31 (5.11)	1.03 (1)
zenotravel (9)	24.04 (4.82)	1 (1)	1 (1)	3.61 (2.16)	2.06 (1.17)
Overall	35.41 (1.02)	8.16 (1)	1 (1)	3.97 (1)	1.61 (1)
Average (Domain)	55.61 (15.54)	9.76 (2.05)	1 (1)	5.69 (2.1)	1.97 (1.21)


Results - Time

Domain	h _{LA}	h _{LM-CUT}	max _h	rnd _h	sel _h
airport (25)	125.96	35.36	73.80	54.78	68.44
blocks (20)	66.01	3.71	6.39	6.44	5.59
depots (7)	196.91	65.99	103.26	155.14	94.36
driverlog (14)	66.67	110.87	86.04	120.84	81.31
freecell (15)	6.04	249.28	23.93	44.22	9.25
grid (2)	12.05	33.78	44.27	38.3	40.26
gripper (6)	71.6	106.48	264.79	161.98	77.07
logistics-2000 (19)	73.32	152.27	255.36	153.89	79.17
logistics-98 (5)	18.84	24.11	29.55	28.69	24.43
miconic (140)	2.03	8.04	10.08	5.67	7.65
mprime (19)	17.52	17.9	15.68	111.48	8
mystery (12)	7.55	1.61	2.03	57.93	2.49
openstacks (7)	15.93	72.3	75.83	52.69	17.11
pathways (4)	5.38	0.08	0.14	1.15	0.18
psr-small (48)	3.55	4.05	7.92	5.73	4.87
pw-notankage (16)	48.8	71.34	71.49	73.92	59
pw-tankange (9)	211.43	173.61	189.89	172.99	130.98
rovers (6)	122.7	5.23	8.79	45.72	7.97
satellite (7)	46.22	3.47	4.51	21.95	3.58
tpp (6)	108.54	14.36	5.9	56.32	5.69
trucks (7)	238.85	11.69	16.48	39.64	15.56
zenotravel (9)	9.84	0.91	1.33	8.27	1.28
Average (Problem)	39.65	38.59	41.39	42.6	24.53
Average (Domain)	67.08	53.02	58.97	64.44	33.83

Anytime Behavior

Thank You

Thank You

