
Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

When Optimal is Just Not Good Enough:
Learning Fast Informative Action Cost Partitionings

Erez Karpas Michael Katz Shaul Markovitch

Faculty of Industrial Engineering and Management

Faculty of Computer Science
Technion

May 31, 2011

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Cost-Partitioning Based Heuristics

Many state-of-the-art heuristics are based upon some form of
action cost partitioning

Action Cost Partitioning

1 Divide the cost of each action between several subproblems (implicit
abstractions, landmarks, . . .)

2 Obtain a heuristic estimate for each subproblem

3 The sum of estimates is admissible if each action contributes no more
than its total cost

A cost partitioning is optimal (for some state) if it yields the
maximal heuristic estimate possible for that state

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Motivation

We focus on heuristics for which a polytime procedure for finding
an optimal cost partitioning is known

In all known cases so far, the procedure for finding an optimal cost
partitioning involves solving a Linear Programming (LP) problem

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Cost Partitioning Schemes in Practice

Optimal
SLOOOOOOOOOOOOOOW
Very informative

Ad-hoc (usually uniform)
Very fast
Less informative

A compromise: initial-optimal cost partitioning
Fast
Less informative

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Time/Accuracy Tradeoff
H

e
u
ri
s
ti
c
 A

c
c
u
ra

c
y

Time per State

Tradeoff

ini

uni

opt

Goal: create a cost-partitioning based heuristic that allows control over
its location in this tradeoff

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Time/Accuracy Tradeoff
H

e
u
ri
s
ti
c
 A

c
c
u
ra

c
y

Time per State

Tradeoff

ini

uni

opt

Goal: create a cost-partitioning based heuristic that allows control over
its location in this tradeoff

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Basic Assumption

Our approach is based on the following assumption:

Assumption

An optimal cost partitioning for state s will give a “good” heuristic
estimate for state s′ if s and s′ are “close”

We will formulate this assumption mathematically later, and
provide an empirical evaluation that supports it

“Close" is defined in terms of some metric between states d

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Basic Framework

Given a planning task, choose k states in a principled way

Compute an optimal cost partitioning for each of these states

During search, use the optimal cost partitionings of these k states
to create a heuristic estimate

Increasing k increases accuracy (at the cost of computation-time)

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Heuristic Option 1: Nearest Neighbor

sg

s0

s

Use closest representative to evaluate s
hnn(s) = hcN(s)

(s)

N(s) — closest representative to s
cN(s) — an optimal cost partitioning for N(s)

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Heuristic Option 2: All k Representatives

sg

s0

s

or
Use all representatives to evaluate s
hall(s) = maxs′∈R hcs′ (s)

R — set of representative states
cs′ — an optimal cost partitioning for s′

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Choosing Representatives

How can we choose representatives in a principled way?

We want to minimize the distance (according to the metric) from
each state in the state space to the closest representative

We can’t deal with the entire state space, so we use a sample

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Choosing Representatives — Illustrated

sg

s0 Given a sample of states

Run clustering algorithm
Choose a representative from each cluster

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Choosing Representatives — Illustrated

sg

s0

Given a sample of states

Run clustering algorithm
Choose a representative from each cluster

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Filling in the Details

The framework above needs some details

How to sample the state space?

Which clustering algorithm to use?

Which metric to use?

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

State Space Sample

We use the sampling procedure of Haslum et. al. (2007)

Repeat 1000k times:
1 Choose depth L distributed binomially around the estimated

goal depth
2 Perform a random walk up to depth L from initial state
3 Add last state in walk to sample

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Clustering Algorithm

Requirements:

We need to control the number of clusters k

We need to get a representative for each cluster

Options:

k -means seems like a good option, but what is the centroid of
on(A,B) and on(A,C)?

We use k -medoids (Hartigan and Wong, 1979), which returns a
median representative for each cluster

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Metric (In Theory)

Theoretically, we want to use the distance from s1 to s2 in the
state space

This is somewhat justified by abstraction based heuristics being
consistent
However:

The true distance is not symmetric, and might be infinite
The true distance is P-SPACE Complete to compute

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Metric (In Practice) — ds

Number of Mismatching Variables:
ds(s1,s2) := |{v ∈ V |s1[v] 6= s2[v]}|

1 0 1 1 0s1

1 1 0 1 0s2

ds(s1,s2) = 2

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Metric (In Practice) — de

The Euclidean distance between the vectors of estimate values of
each subproblem under uniform cost partitioning: de(s1,s2)

s1 1.2 0.3 1.7 2.6 0.1

s2 1.7 0.1 2.7 1.4 0.4

de(s1,s2) = |〈1.2,0.3,1.7,2.6,0.1〉−〈1.7,0.1,2.7,1.4,0.4〉|2

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Empirical Evaluation

We implemented our approach on top of Fast Downward, and
evaluate it on implicit abstractions heuristics

Initial results with hnn were not promising, so we only evaluate hall

We evaluate clustering with ds (clstr-s), clustering with de (clstr-e)
as well as random choice of representatives (rand)

We compare to optimal cost partitioning (opt), uniform cost
partitioning (uni), and initial optimal cost partitioning (ini)

With fork implicit abstractions, the resulting LP for optimal cost
partitioning is too large to solve for many problems. Here, we
present results only for inverted forks

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Evaluating the Basic Assumption

To evaluate our basic assumption empirically, we must first formulate it
in statistical terms:

Basic Assumption - Statistically Speaking

Let s, s′ be two states, such that the minimal distance from s to s′ is d .
Denote the relative loss of accuracy from using an optimal cost
partitioning of s′ to evaluate s by

∆s,s′ :=
hcs (s)−hcs′ (s)

hcs (s)
.

Then ∆s,s′ and ∆s′,s are positively correlated with d .

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Statistical Test

We perform a statistical test of our hypothesis for each planning
task
We first obtain a sample of pairs of states, with known minimal
distance by repeating the following 10 times:

1 Sample a random state s using random walk
2 Perform BFS from s, up to depth hFF (s0)
3 From each layer l in the BFS, choose state sl randomly
4 Add ∆s,sl and ∆sl ,s to sample, with minimal distance l

Perform Kendall τ-b rank-correlation test on sample (ignoring
tasks with less than 30 pairs in the sample)

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Statistical Test - Results

Domain
Inverted Forks

Total Significant (p < 0.05)
airport-ipc4 9 5
blocks-ipc2 19 16
depots-ipc3 0 0
driverlog-ipc3 6 6
freecell-ipc3 5 5
grid-ipc1 1 0
gripper-ipc1 7 7
logistics-ipc1 2 2
logistics-ipc2 10 10
miconic-strips-ipc2 43 43
mprime-ipc1 16 13
mystery-ipc1 18 12
openstacks-ipc5 0 0
pathways-ipc5 2 1
pw-notank-ipc4 15 13
pw-tank-ipc4 0 0
psr-small-ipc4 33 30
rovers-ipc5 7 7
satellite-ipc4 4 4
schedule-ipc2 41 25
tpp-ipc5 4 3
zenotravel-ipc3 7 7

TOTAL 249 209

Overall: accept with p < 0.05 in 83.9% of planning tasks

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Accuracy/Computation-Time Tradeoff

We illustrate the tradeoff between heuristic accuracy and
heuristic computation time, by plotting them together

We show average heuristic computation-time per state on the
x-axis (in logscale)

We show informativeness on the y -axis, as measured by ei/e∗

where ei is the number of states expanded by method i and e∗ is
the minimum over all ei ’s

Averages are over tasks solved by all methods

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Accuracy/Computation-Time Tradeoff

 100

 120

 140

 160

 180

 200

 220

 240

 0.1 1 10 100

M
e
tr

ic
 S

c
o
re

 (
E

x
p
a
n
d
e
d
)

Avg. Time per State (ms)

Tradeoff - Inverted Forks

ini

uni

opt

rand

clstr-s

clstr-e

k=1

k=2

k=3

k=4

k=5k=6
k=7

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Solved Tasks

What really matters is the number of solved tasks

We plot the number of solved tasks against k

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Solved Tasks - Inverted Forks

 325

 330

 335

 340

 345

 350

 355

 360

 1 2 3 4 5 6 7

N
u
m

b
e
r

o
f
S

o
lv

e
d
 T

a
s
k
s

k

Solved Tasks - Inverted Forks

rand

clstr-s

clstr-e

ini

uni

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Choosing the Best k

No one is forcing us to use the same k everywhere

If we choose the best k for each domain, we get much better
results

Method ini uni opt rand clstr-s clstr-e
Inverted Forks 358 329 238 365 369 369

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Outline

1 Motivation

2 General Framework

3 Algorithmic Details

4 Empirical Evaluation
Empirical Evaluation of Our Basic Assumption
Empirical Evaluation of Our Approach

5 Conclusion

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Conclusion

We presented a method for fast, informative action cost
partitioning

This method allows us control over the computation-time/heuristic
accuracy tradeoff

The new cost partitioning can lead to solving more planning tasks

Motivation General Framework Algorithmic Details Empirical Evaluation Conclusion

Thank You

Thank You

	Motivation
	General Framework
	Algorithmic Details
	Empirical Evaluation
	Empirical Evaluation of Our Basic Assumption
	Empirical Evaluation of Our Approach

	Conclusion

