Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclu

When Optimal is Just Not Good Enough: Learning Fast Informative Action Cost Partitionings

Erez Karpas Michael Katz Shaul Markovitch

Faculty of Industrial Engineering and Management

Faculty of Computer Science Technion

May 31, 2011

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

- 2 General Framework
- 3 Algorithmic Details
- 4 Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption

• Empirical Evaluation of Our Approach

5 Conclusion

Motivation

(日)

Cost-Partitioning Based Heuristics

 Many state-of-the-art heuristics are based upon some form of action cost partitioning

Action Cost Partitioning

- Divide the cost of each action between several subproblems (implicit abstractions, landmarks, ...)
- Obtain a heuristic estimate for each subproblem
- The sum of estimates is admissible if each action contributes no more than its total cost

 A cost partitioning is optimal (for some state) if it yields the maximal heuristic estimate possible for that state

Ñ

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Motivation

- We focus on heuristics for which a polytime procedure for finding an optimal cost partitioning is known
- In all known cases so far, the procedure for finding an optimal cost partitioning involves solving a Linear Programming (LP) problem

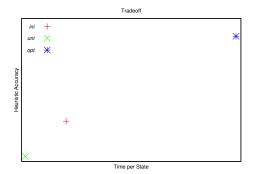
Ñ

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Cost Partitioning Schemes in Practice

- Optimal
 - SL00000000000W
 - Very informative
- Ad-hoc (usually uniform)
 - Very fast
 - Less informative
- A compromise: initial-optimal cost partitioning
 - Fast
 - Less informative

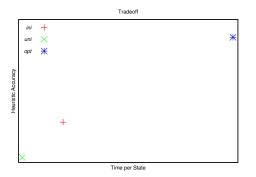
Time/Accuracy Tradeoff



ヘロト 人間 とくほ とくほとう

э

Time/Accuracy Tradeoff



Goal: create a cost-partitioning based heuristic that allows control over its location in this tradeoff

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

Motivation

- 2 General Framework
- 3 Algorithmic Details

4 Empirical Evaluation

• Empirical Evaluation of Our Basic Assumption

• Empirical Evaluation of Our Approach

5 Conclusion

• Our approach is based on the following assumption:

Assumption

An optimal cost partitioning for state *s* will give a "good" heuristic estimate for state s' if *s* and s' are "close"

- We will formulate this assumption mathematically later, and provide an empirical evaluation that supports it
- "Close" is defined in terms of some metric between states d

Basic Framework

- Given a planning task, choose *k* states in a principled way
- Compute an optimal cost partitioning for each of these states
- During search, use the optimal cost partitionings of these *k* states to create a heuristic estimate
- Increasing k increases accuracy (at the cost of computation-time)

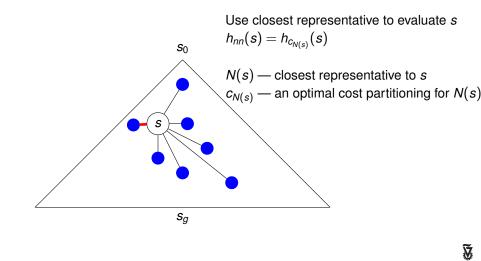
Algorithmic Details

Empirical Evaluation

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

Heuristic Option 1: Nearest Neighbor



Motivation

Algorithmic Details

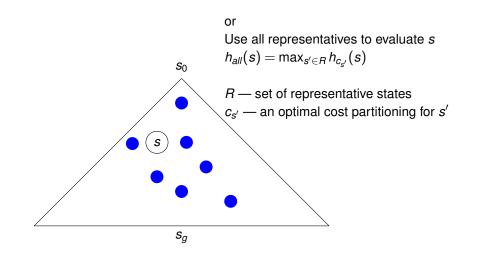
Empirical Evaluation

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

э

Conclusion

Heuristic Option 2: All k Representatives



Choosing Representatives

- How can we choose representatives in a principled way?
- We want to minimize the distance (according to the metric) from each state in the state space to the closest representative
- We can't deal with the entire state space, so we use a sample

Algorithmic Details

Empirical Evaluation

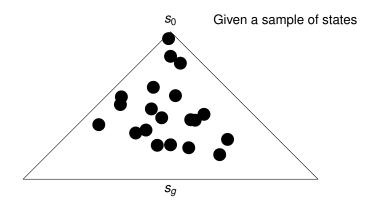
ヘロト 人間 とくほ とくほとう

Conclusion

Ñ

э

Choosing Representatives — Illustrated



Motivation

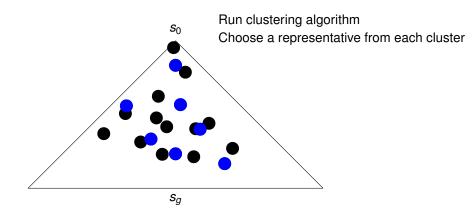
Algorithmic Details

Empirical Evaluation

э

Conclusion

Choosing Representatives — Illustrated



Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

2 General Framework

3 Algorithmic Details

- 4 Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆

• Empirical Evaluation of Our Approach

5 Conclusion

ヘロト 人間 とく ヨン く ヨン

Ñ

э.

Filling in the Details

The framework above needs some details

- How to sample the state space?
- Which clustering algorithm to use?
- Which metric to use?

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

State Space Sample

• We use the sampling procedure of Haslum et. al. (2007)

Repeat 1000k times:

- Choose depth \mathscr{L} distributed binomially around the estimated goal depth
- Perform a random walk up to depth \mathcal{L} from initial state
- Add last state in walk to sample

・ロト ・個ト ・モト ・モト ・モー

Clustering Algorithm

Requirements:

- We need to control the number of clusters k
- We need to get a representative for each cluster

Options:

- k-means seems like a good option, but what is the centroid of on(A, B) and on(A, C)?
- We use *k*-medoids (Hartigan and Wong, 1979), which returns a median representative for each cluster

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Metric (In Theory)

- Theoretically, we want to use the distance from *s*₁ to *s*₂ in the state space
- This is somewhat justified by abstraction based heuristics being consistent
- However:
 - The true distance is not symmetric, and might be infinite
 - The true distance is P-SPACE Complete to compute

Algorithmic Details

Empirical Evaluation

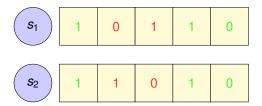
Ñ

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Metric (In Practice) — d_s

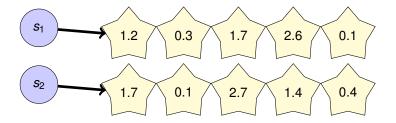
Number of Mismatching Variables:

 $d_s(s_1, s_2) := |\{v \in V | s_1[v] \neq s_2[v]\}|$



 $d_s(s_1,s_2)=2$

The Euclidean distance between the vectors of estimate values of each subproblem under uniform cost partitioning: $d_e(s_1, s_2)$



 $d_e(s_1, s_2) = |\langle 1.2, 0.3, 1.7, 2.6, 0.1 \rangle - \langle 1.7, 0.1, 2.7, 1.4, 0.4 \rangle|_2$

イロト 不得 とうほう イヨン

э.

Outline

- 2 General Framework
- 3 Algorithmic Details
- Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach

5 Conclusion

Ñ

Empirical Evaluation

- We implemented our approach on top of Fast Downward, and evaluate it on implicit abstractions heuristics
- Initial results with h_{nn} were not promising, so we only evaluate h_{all}
- We evaluate clustering with d_s (clstr-s), clustering with d_e (clstr-e) as well as random choice of representatives (rand)
- We compare to optimal cost partitioning (opt), uniform cost partitioning (uni), and initial optimal cost partitioning (ini)
- With fork implicit abstractions, the resulting LP for optimal cost partitioning is too large to solve for many problems. Here, we present results only for inverted forks

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

- 2 General Framework
- 3 Algorithmic Details
- 4 Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach

5 Conclusion

Evaluating the Basic Assumption

To evaluate our basic assumption empirically, we must first formulate it in statistical terms:

Basic Assumption - Statistically Speaking

Let *s*, *s'* be two states, such that the minimal distance from *s* to *s'* is *d*. Denote the relative loss of accuracy from using an optimal cost partitioning of *s'* to evaluate *s* by

$$\Delta_{s,s'} := rac{h_{\mathcal{C}_s}(s) - h_{\mathcal{C}_{s'}}(s)}{h_{\mathcal{C}_s}(s)}$$

Then $\Delta_{s,s'}$ and $\Delta_{s',s}$ are positively correlated with *d*.

Ĩ

(日)

- We perform a statistical test of our hypothesis for each planning task
- We first obtain a sample of pairs of states, with known minimal distance by repeating the following 10 times:
 - Sample a random state *s* using random walk
 - 2 Perform BFS from s, up to depth $h_{FF}(s_0)$
 - From each layer I in the BFS, choose state s_l randomly
 - Add Δ_{s,s_l} and $\Delta_{s_l,s}$ to sample, with minimal distance l
- Perform Kendall *τ*-b rank-correlation test on sample (ignoring tasks with less than 30 pairs in the sample)

Ñ

Statistical Test - Results

Domain	Inverted Forks		
Domain	Total	Significant (p < 0.05)	
airport-ipc4	9	5	
blocks-ipc2	19	16	
depots-ipc3	0	0	
driverlog-ipc3	6	6	
freecell-ipc3	5	5	
grid-ipc1	1	0	
gripper-ipc1	7	7	
logistics-ipc1	2	2	
logistics-ipc2	10	10	
miconic-strips-ipc2	43	43	
mprime-ipc1	16	13	
mystery-ipc1	18	12	
openstacks-ipc5	0	0	
pathways-ipc5	2	1	
pw-notank-ipc4	15	13	
pw-tank-ipc4	0	0	
psr-small-ipc4	33	30	
rovers-ipc5	7	7	
satellite-ipc4	4	4	
schedule-ipc2	41	25	
tpp-ipc5	4	3	
zenotravel-ipc3	7	7	
TOTAL	249	209	

Overall: accept with p < 0.05 in 83.9% of planning tasks

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- 2 General Framework
- 3 Algorithmic Details
- Empirical Evaluation
 Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach

5 Conclusion

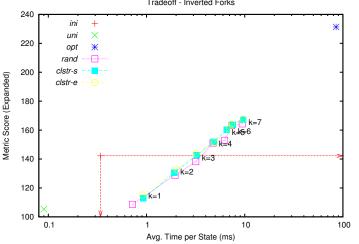
Accuracy/Computation-Time Tradeoff

- We illustrate the tradeoff between heuristic accuracy and heuristic computation time, by plotting them together
- We show average heuristic computation-time per state on the *x*-axis (in logscale)
- We show informativeness on the *y*-axis, as measured by *e_i/e^{*}* where *e_i* is the number of states expanded by method *i* and *e^{*}* is the minimum over all *e_i*'s
- Averages are over tasks solved by all methods

ヘロト ヘ回ト ヘヨト ヘヨト

Ñ

Accuracy/Computation-Time Tradeoff



Tradeoff - Inverted Forks

Solved Tasks

- What really matters is the number of solved tasks
- We plot the number of solved tasks against k

Algorithmic Details

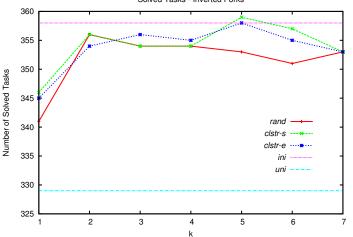
Empirical Evaluation

イロト イポト イヨト イヨト

Ñ

æ

Solved Tasks - Inverted Forks



Solved Tasks - Inverted Forks

ヘロト 人間 とくほとく ほとう

Choosing the Best k

- No one is forcing us to use the same k everywhere
- If we choose the best k for each domain, we get much better results

Method	ini	uni	opt	rand	clstr-s	clstr-e
Inverted Forks	358	329	238	365	369	369

3

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Outline				

Motivation

- 2 General Framework
- 3 Algorithmic Details
- 4 Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption

• Empirical Evaluation of Our Approach

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

Conclusion

- We presented a method for fast, informative action cost partitioning
- This method allows us control over the computation-time/heuristic accuracy tradeoff
- The new cost partitioning can lead to solving more planning tasks

Motivation	General Framework	Algorithmic Details	Empirical Evaluation	Conclusion
Thank Y	ou			

Thank You

