Living on the Edge:
Safe Search with Unsafe Heuristics

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management,
Technion — Israel Institute of Technology

June 6, 2011

<<

Safeness of Heuristics

Outline

e Safeness of Heuristics

<<

Safeness of Heuristics

Safe Heuristics

@ A heuristic his safe if it never declares a false dead end
Vs: h(s) —oc0 —> h*(s) — oo

@ Looks like a good property

=

Safeness of Heuristics

Safeness - Not Such a Good ldea

@ Consider this example:

@ We can prove there is a path from s; to the goal
@ Is it safe to set h(sy) = =?

<<

Safeness of Heuristics

Safeness - Not Such a Good ldea

@ Consider this example:

@ We can prove there is a path from s; to the goal
@ Is it safe to set h(sy) = =?
@ Should it be?

<<

Safeness of Heuristics

Global Safeness

@ To address this, we suggest the following definitions

Globally Safe (G-Safe) Heuristic

Let I'1 be a solvable planning task. A heuristic h is globally-safe, if there
exists a valid plan p for I, such that for any state s along p, h(s) < ee.

@ In other words, when h evaluates any state along p, it is not
declared as a dead-end.

@ If p is optimal, his called Globally Optimally Safe (GO-Safe)

<<

Safeness of Heuristics

G-Safe Heuristic

@ Great — where can | get one of those?

<<

Safeness of Heuristics

G-Safe Heuristic

@ Great — where can | get one of those?

@ | don’t know. But | can tell how how to find path-dependent
GO-Safe heuristic

=

Safeness of Heuristics

G-Safe Heuristic

@ Great — where can | get one of those?

@ | don’t know. But | can tell how how to find path-dependent
GO-Safe heuristic

Globally Safe (G-Safe) Path Dependent Heuristic

Let 1 be a solvable planning task. A path dependent heuristic h is
globally-safe, if there exists a valid plan p for I1, such that for any
prefix p’ of p, h(p') < oo.

@ Path dependent GO-Safeness is defined accordingly

@ Since any state dependent heuristic is path dependent, this is the
more general definition

<<

Path Dependent Heuristics

Outline

@ Path Dependent Heuristics

<<

Path Dependent Heuristics

Heuristic Search — Different Perspectives

@ The Classical Approach

e Search space is given by initial state and black box successor
generator
e Heuristic function is a black box

@ In Planning
o State and Successor generator are structured and known
e Heuristic functions are not black boxes
@ This has been exploited by preferred operators, symmetry
detection, ...

@ But we can do more

<<

Path Dependent Heuristics

Different Perspectives — lllustrated

So Classical Heuristic Search

ORO

<<

Path Dependent Heuristics

Different Perspectives — lllustrated

So Planning (Helpful Actions)

=

Path Dependent Heuristics

Different Perspectives — lllustrated

So But where did s come from?

d, 7

<<

Unjustified Actions

Outline

© Unjustified Actions

=

Unjustified Actions

A Path Dependent Information Source - Unjustified Actions

@ Informally, an action a along a plan p is unjustified if removing a
from p does not invalidate p.
@ For a formal definition, we need to define causal links

The triple (a;, p, a;) forms a causal link in action sequence
(a0, a1,...an) if i <j, p€add(a), p € pre(a;), p & si, and for
i< k<j,p¢del(ax)Uadd(ax).

@ In other words, p is achieved by a; and is not deleted or added by
some other action until a; occurs, and is a precondition of a;.

@ g is called the supporter in this causal link, and g; is the
consumer.

<<

Unjustified Actions

Unjustified Actions

Unjustified Action

An action occurrence a; # END in plan p = (a, a1, ... an) is
unjustified if there is no causal link in p, such that a; is the supporter in
that causal link.

Easy to see:

@ Any unjusitified action occurrence can be removed from a valid
plan, and the plan is still valid

@ Any optimal plan does not contain any unjustified actions

<<

Unjustified Actions

Hopeless Paths

Hopeless Path

Path 7 from sy to s is hopeless if there is no path 7’ from s to the goal,
such that 7 - ' contains no unjustified actions.

@ In other words, any continuation of 7 will always contain
unjustified actions

@ Hopeless paths are the connection between path dependent
GO-Safe heuristics and unjustified actions

<<

The Connection

Outline

e The Connection

<<

The Connection

Path Dependent GO-Safe Heuristic

@ Let hbe any safe, path dependent heuristic for solvable planning
task I

H(x) = 00 if 7T is hopeless
h(w) otherwise

is a GO-safe path-dependent heuristic.
@ This refers to the path 7, not to the last state in that path

<<

The Connection

Caution is Needed — Example

Sg = {p1,p2,Pg}

° a1 = <07{p1}70>
o a>=({p1},{p=},0)

® a;p = (0,{ps,p2},0) Path (ay,ay2) is hopeless
@ END = ({p1,p2},{pg},0) But it's not safe to prune s,

<<

The Connection

Caution is Needed — But Not Always

@ Let h be any safe heuristic for solvable planning task 1

(s) =) if some optimal path to s is hopeless
h(s) otherwise

is a GO-safe heuristic.

<<

The Connection

Searching with Unjustified Actions

@ We know that if the path to s is optimal, /() is GO-Safe.
@ With A*, we don’t know when the path to s is optimal.
@ However, if we find a cheaper path to s, s will be reopened.

@ So using A*, but re-evaluating h'(s) whenever s is reopened, will
ensure optimality.

<<

More than a Pruning Mechanism

Outline

e More than a Pruning Mechanism

<<

More than a Pruning Mechanism

Identifying Hopeless Paths

@ Everything discussed before is purely theoretical, unless we can
identify if a path 7 is hopeless
@ We propose two approaches:
e Compilation
e Existential Landmarks

@ Both approaches are based on causal link analysis

<<

More than a Pruning Mechanism

Causal Link Analysis

@ Suppose we reached state s via path &

@ We can easily identify which action achieved which proposition,
and which propositions were used by actions

@ So we can identify which actions have already been justified, and
which were not

@ We make one enhancement to standard causal link analysis, by
not allowing an action to justify its inverse action

<<

More than a Pruning Mechanism

Causal Link Analysis — Unjustified Actions

@ Denote by U the set of actions which were not justified yet

@ For each action a € U, denote by pp(a) the set of propositions
which ais a supporter of

@ ais justified when some action & has one of pp(a) as a
precondition

@ Therefore, for 7 to be non-hopeless, there must be an action & in
the continuation of 7, which uses one of pp(a) for every a € U

@ Note: if pp(a) = 0@ then = must be hopeless, since a can not be
justified

<<

More than a Pruning Mechanism

Compilation Based Approach

@ One way of checking if 7 is non-hopeless is by compilation

@ For each action a we add a proposition justified(a), which holds
when action a has been justified (or does not need to be justified).

@ Applying action a deletes justified(a)

@ Applying action &, which has one of a's effects as a precondition,
adds justified(a)

@ This compilation is sound (although a bit weak)

@ ltis also not practical — it adds too many propositions, and must
be updated at each state

<<

More than a Pruning Mechanism

Existential Landmarks

@ Remember that for every a € U we want to have some action
which uses one of pp(a)

@ Then pp(a) can be seen as a landmark, which is achieved by any
action & which has one of pp(a) as a precondition

@ Note that this is not a standard landmark — it is only a landmark
for the continutation of 7

@ Therefore we call this an existential landmark

<<

Experimental Evalua

Outline

e Experimental Evaluation

=

Experimental Evalua

Experiments

@ We implemented the existential landmarks approach
@ We applied it to 3 heuristics:

@ hgc — an admissible goal count heuristic
e hy 4 — the admissible landmarks heuristic

® huvcur
@ We added the information from the existential landmarks to the
first two, using optimal cost partitioning
@ We did not add the existential landmark information to A y.cur,
we only used pruning of hopeless paths (if pp(a) = 0)

<<

Experimental Evalua

Coverage

Domain [hac | hac +uj [[hia [ha+ui J| himcur | Aovecur +uj
BLOCKS 17 17 21 21 28 28
DEPOT 3 4 7 7 7 7
DRIVERLOG 7 9 12 | 13 13 13
LOGISTICSO00 10 10 20 20 20 20
TRUCKS-STRIPS || 3 3 6 5 10 9
ZENOTRAVEL 8 8 9 9 13 13
TOTAL [48 51 [75 [75 I ot 90

=

Experimental Evalua

Expansions

Domain | hac ratio | hia ratio | Auv.cur ratio
BLOCKS 0.93 0.99 1.00

DEPOT 0.56 0.84 0.98
DRIVERLOG 0.58 0.68 0.82
LOGISTICS00 0.57 0.97 0.43
TRUCKS-STRIPS 0.5 0.57 0.9
ZENOTRAVEL 0.53 0.83 0.92

AVG. 0.69 0.87 0.82
NORMALIZED AVG. || 0.61 0.81 0.84

=

Experimental Evalua

Evaluations

Domain | hac ratio | hia ratio | Auv.cur ratio
BLOCKS 0.93 1.00 1.00
DEPOT 0.64 0.92 0.99
DRIVERLOG 0.64 0.76 0.86
LOGISTICS00 0.61 0.99 0.52
TRUCKS-STRIPS 0.64 0.73 0.90
ZENOTRAVEL 0.58 0.89 0.91
AVG. 0.73 0.92 0.85
NORMALIZED AVG. || 0.67 0.88 0.86

=

Experimental Evalua

Total Time

Domain | hac ratio | hia ratio | Auv.cur ratio
BLOCKS 1.12 1.11 1.06
DEPOT 1.03 1.22 1.02
DRIVERLOG 0.84 0.96 0.98
LOGISTICS00 0.86 1.30 0.64
TRUCKS-STRIPS 1.03 1.29 1.01
ZENOTRAVEL 0.81 1.16 0.93
AVG. 0.96 1.17 0.93
NORMALIZED AVG. || 0.95 1.17 0.94

=

Experimental Evalua

Conclusion

@ We have shown how to create a path dependent globally
optimally safe heuristic

@ In the process, we have also shown a type of existential landmark
@ Applying this seems to lead to improvements in practice

=

Experimental Evalua

Thank You

@ Thank You

=

	Safeness of Heuristics
	Path Dependent Heuristics
	Unjustified Actions
	The Connection
	More than a Pruning Mechanism
	Experimental Evaluation

