Living on the Edge: Safe Search with Unsafe Heuristics

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management, Technion — Israel Institute of Technology

June 6, 2011

イロト 不得 とうほう イヨン

ヘロト 人間 とくほ とくほとう

э

Outline

Safeness of Heuristics

- Path Dependent Heuristics
- 3 Unjustified Actions
- 4 The Connection
- More than a Pruning Mechanism
- 6 Experimental Evaluation

Safe Heuristics

• A heuristic h is safe if it never declares a false dead end

$$\forall s: h(s) = \infty \implies h^*(s) = \infty$$

Ñ

æ

ヘロト 人間 とくほとく ほとう

Looks like a good property

ヘロト 人間 とくほとく ほとう

э.

Safeness - Not Such a Good Idea

• Consider this example:

- We can prove there is a path from *s*₁ to the goal
- Is it safe to set $h(s_2) = \infty$?
- Should it be?

イロト 不得 とうほう イヨン

э.

Safeness - Not Such a Good Idea

• Consider this example:

- We can prove there is a path from s₁ to the goal
- Is it safe to set $h(s_2) = \infty$?
- Should it be?

Global Safeness

• To address this, we suggest the following definitions

Globally Safe (G-Safe) Heuristic

Let Π be a solvable planning task. A heuristic *h* is globally-safe, if there exists a valid plan ρ for Π , such that for any state *s* along ρ , $h(s) < \infty$.

- In other words, when *h* evaluates any state along *ρ*, it is not declared as a dead-end.
- If *ρ* is optimal, *h* is called Globally Optimally Safe (GO-Safe)

G-Safe Heuristic

• Great — where can I get one of those?

 I don't know. But I can tell how how to find path-dependent GO-Safe heuristic

G-Safe Heuristic

- Great where can I get one of those?
- I don't know. But I can tell how how to find path-dependent GO-Safe heuristic

Ñ

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

G-Safe Heuristic

- Great where can I get one of those?
- I don't know. But I can tell how how to find path-dependent GO-Safe heuristic

Globally Safe (G-Safe) Path Dependent Heuristic

Let Π be a solvable planning task. A path dependent heuristic *h* is globally-safe, if there exists a valid plan ρ for Π , such that for any prefix ρ' of ρ , $h(\rho') < \infty$.

- Path dependent GO-Safeness is defined accordingly
- Since any state dependent heuristic is path dependent, this is the more general definition

(ロ)、(型)、(E)、(E)、(E)、(O)(O)

ヘロト 人間 とくほ とくほとう

э

Outline

- 2 Path Dependent Heuristics
- 3 Unjustified Actions
- 4 The Connection
- More than a Pruning Mechanism
- 6 Experimental Evaluation

Heuristic Search — Different Perspectives

The Classical Approach

- Search space is given by initial state and black box successor generator
- Heuristic function is a black box
- In Planning
 - State and Successor generator are structured and known

- Heuristic functions are not black boxes
- This has been exploited by preferred operators, symmetry detection, ...
- But we can do more

Different Perspectives — Illustrated

Ñ

æ

ヘロト 人間 とくほとく ほとう

Different Perspectives — Illustrated

Ñ

æ

ヘロト 人間 とくほとく ほとう

Different Perspectives — Illustrated

ヘロト 人間 とくほとく ほとう

æ

Outline

- Safeness of Heuristics
- Path Dependent Heuristics
- O Unjustified Actions
- 4 The Connection
- More than a Pruning Mechanism
- 6 Experimental Evaluation

A Path Dependent Information Source - Unjustified Actions

- Informally, an action *a* along a plan *ρ* is unjustified if removing *a* from *ρ* does not invalidate *ρ*.
- For a formal definition, we need to define causal links

Causl Link

The triple $\langle a_i, p, a_j \rangle$ forms a causal link in action sequence $\langle a_0, a_1, \dots, a_n \rangle$ if $i < j, p \in \text{add}(a_i), p \in \text{pre}(a_j), p \notin s_i$, and for $i < k < j, p \notin \text{del}(a_k) \cup \text{add}(a_k)$.

 In other words, p is achieved by a_i and is not deleted or added by some other action until a_j occurs, and is a precondition of a_j.

• *a_i* is called the supporter in this causal link, and *a_j* is the consumer.

Unjustified Actions

Unjustified Action

An action occurrence $a_i \neq END$ in plan $\rho = \langle a_0, a_1, \dots a_n \rangle$ is unjustified if there is no causal link in ρ , such that a_i is the supporter in that causal link.

Easy to see:

Any unjusitified action occurrence can be removed from a valid plan, and the plan is still valid

Any optimal plan does not contain any unjustified actions

Hopeless Paths

Hopeless Path

Path π from s_0 to s is hopeless if there is no path π' from s to the goal, such that $\pi \cdot \pi'$ contains no unjustified actions.

- In other words, any continuation of π will always contain unjustified actions
- Hopeless paths are the connection between path dependent GO-Safe heuristics and unjustified actions

(日)

ヘロト 人間 とくほ とくほとう

э

Outline

- Safeness of Heuristics
- Path Dependent Heuristics
- 3 Unjustified Actions
- 4 The Connection
- More than a Pruning Mechanism
- 6 Experimental Evaluation

Path Dependent GO-Safe Heuristic

 Let *h* be any safe, path dependent heuristic for solvable planning task Π

$$h'(\pi):=egin{cases} \infty & ext{if }\pi ext{ is hopeless}\ h(\pi) & ext{otherwise} \end{cases}$$

is a GO-safe path-dependent heuristic.

• This refers to the path π , not to the last state in that path

Caution is Needed — Example

Caution is Needed — But Not Always

Let h be any safe heuristic for solvable planning task Π

$$h'(s) := egin{cases} \infty & ext{if some optimal path to } s ext{ is hopeless} \ h(s) & ext{otherwise} \end{cases}$$

is a GO-safe heuristic.

Searching with Unjustified Actions

- We know that if the path to s is optimal, h'(s) is GO-Safe.
- With A^* , we don't know when the path to *s* is optimal.
- However, if we find a cheaper path to *s*, *s* will be reopened.
- So using A*, but re-evaluating h'(s) whenever s is reopened, will ensure optimality.

ヘロト 人間 とくほ とくほとう

э

Outline

- Safeness of Heuristics
- Path Dependent Heuristics
- 3 Unjustified Actions
- 4 The Connection
- 5 More than a Pruning Mechanism
- 6 Experimental Evaluation

Identifying Hopeless Paths

• Everything discussed before is purely theoretical, unless we can identify if a path π is hopeless

- We propose two approaches:
 - Compilation
 - Existential Landmarks
- Both approaches are based on causal link analysis

Causal Link Analysis

- Suppose we reached state s via path π
- We can easily identify which action achieved which proposition, and which propositions were used by actions
- So we can identify which actions have already been justified, and which were not
- We make one enhancement to standard causal link analysis, by not allowing an action to justify its inverse action

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

Causal Link Analysis — Unjustified Actions

- Denote by U the set of actions which were not justified yet
- For each action a ∈ U, denote by pp(a) the set of propositions which a is a supporter of
- *a* is justified when some action *a*' has one of *pp*(*a*) as a precondition
- Therefore, for π to be non-hopeless, there must be an action a' in the continuation of π, which uses one of pp(a) for every a ∈ U
- Note: if pp(a) = Ø then π must be hopeless, since a can not be justified

Compilation Based Approach

- One way of checking if π is non-hopeless is by compilation
- For each action a we add a proposition justified(a), which holds when action a has been justified (or does not need to be justified).
- Applying action *a* deletes *justified*(*a*)
- Applying action a', which has one of a's effects as a precondition, adds justified(a)
- This compilation is sound (although a bit weak)
- It is also not practical it adds too many propositions, and must be updated at each state

Existential Landmarks

- Remember that for every a ∈ U we want to have some action which uses one of pp(a)
- Then pp(a) can be seen as a landmark, which is achieved by any action a' which has one of pp(a) as a precondition
- Note that this is not a standard landmark it is only a landmark for the continutation of π

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

• Therefore we call this an existential landmark

ヘロト 人間 とくほ とくほとう

э

Outline

- Safeness of Heuristics
- Path Dependent Heuristics
- 3 Unjustified Actions
- 4 The Connection
- More than a Pruning Mechanism
- 6 Experimental Evaluation

Experiments

- We implemented the existential landmarks approach
- We applied it to 3 heuristics:
 - h_{GC} an admissible goal count heuristic
 - *h_{LA}* the admissible landmarks heuristic
 - h_{LM-CUT}
- We added the information from the existential landmarks to the first two, using optimal cost partitioning
- We did not add the existential landmark information to h_{LM-CUT} , we only used pruning of hopeless paths (if $pp(a) = \emptyset$)

Coverage

Domain	h _{GC}	h _{GC} + uj	h _{LA}	h _{LA} + uj	h _{LM-CUT}	h _{LM-CUT} + uj
BLOCKS	17	17	21	21	28	28
DEPOT	3	4	7	7	7	7
DRIVERLOG	7	9	12	13	13	13
LOGISTICS00	10	10	20	20	20	20
TRUCKS-STRIPS	3	3	6	5	10	9
ZENOTRAVEL	8	8	9	9	13	13
TOTAL	48	51	75	75	91	90

Expansions

Domain	h _{GC} ratio	h _{LA} ratio	h _{LM-CUT} ratio
BLOCKS	0.93	0.99	1.00
DEPOT	0.56	0.84	0.98
DRIVERLOG	0.58	0.68	0.82
LOGISTICS00	0.57	0.97	0.43
TRUCKS-STRIPS	0.5	0.57	0.9
ZENOTRAVEL	0.53	0.83	0.92
AVG.	0.69	0.87	0.82
NORMALIZED AVG.	0.61	0.81	0.84

・ロト・日本・日本・日本・日本

Evaluations

Domain	h _{GC} ratio	h _{LA} ratio	h _{LM-CUT} ratio
BLOCKS	0.93	1.00	1.00
DEPOT	0.64	0.92	0.99
DRIVERLOG	0.64	0.76	0.86
logistics00	0.61	0.99	0.52
TRUCKS-STRIPS	0.64	0.73	0.90
ZENOTRAVEL	0.58	0.89	0.91
AVG.	0.73	0.92	0.85
NORMALIZED AVG.	0.67	0.88	0.86

・ロト・4回・4回・4回・4日・

Total Time

Domain	h _{GC} ratio	h _{LA} ratio	h _{LM-CUT} ratio
BLOCKS	1.12	1.11	1.06
DEPOT	1.03	1.22	1.02
DRIVERLOG	0.84	0.96	0.98
LOGISTICS00	0.86	1.30	0.64
TRUCKS-STRIPS	1.03	1.29	1.01
ZENOTRAVEL	0.81	1.16	0.93
AVG.	0.96	1.17	0.93
NORMALIZED AVG.	0.95	1.17	0.94

・ロト・日本・日本・日本・日本

Conclusion

- We have shown how to create a path dependent globally optimally safe heuristic
- In the process, we have also shown a type of existential landmark

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Applying this seems to lead to improvements in practice

Thank You

Thank You

