
university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Deeply Preferred Operators:
Lazy Search Meets Lookahead

Roei Bahumi Carmel Domshlak Erez Karpas

Faculty of Industrial Engineering and Management,
Technion — Israel Institute of Technology

May 14, 2012



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Outline

1 Background & Motivation

2 Lazy Lookahead: Deeply Preferred Operators

3 Empirical Evaluation



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Heuristic Search

Search algorithm
Chooses which state to expand next
Choice is based on heuristic evaluation function

Heuristic
Used to estimate distance from state s to the goal
Can also prefer some successors of s



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Heuristic Search

Search algorithm
Chooses which state to expand next
Choice is based on heuristic evaluation function

Heuristic
Used to estimate distance from state s to the goal
Can also prefer some successors of s



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Preferred Operators

FF’s relaxed plan heuristic (Hoffmann & Nebel, 2001) uses the
relaxed planning graph to construct a relaxed plan

The chosen actions in the first layer of the relaxed planning graph
are denoted as helpful
Later generalized to preferred operators

Causal graph heuristic (Helmert, 2006)
Landmark count heuristic (Richter, Helmert & Westphal, 2008)
Structural pattern heuristic (Bahumi, Domshlak & Katz, 2011)



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Using Preferred Operators

Originally, used in FF by pruning all non-preferred operators in
EHC search

Incomplete, but very effective
If first search fails, uses complete GBFS search, ignoring
preferred operators

Fast Downward uses “alternating dual queues”
Two open lists: one containing all states, the other only preferred
states
Alternate between the open lists
Preserves completeness



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search

Lazy search (deferred evaluation) changes the search: a state is
inserted into the open list with the heuristic value of its parent

A state is only evaluated when it is removed from the open list and
expanded
This reduces the number of heuristic evaluations at the last layer
of the search

Found by Richter & Helmert (2009) to work especially well when
using preferred operators



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

s

s

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3
h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

s

s

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3
h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3
h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3

h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3
h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

s

s1

s11

s111

s2 s3
h=3 h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1

4 Insert s1,s2,s3 into open
list with h = 3

Information about the rest of
the plan is lost



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lookahead

Vidal (2004) proposed lookahead:
1 Attempt to follow FF’s relaxed plan
2 Add the last state reached by the relaxed plan to the open list

Uses a sophisticated procedure for following the relaxed plan

This lookahead was integrated into eager search



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Outline

1 Background & Motivation

2 Lazy Lookahead: Deeply Preferred Operators

3 Empirical Evaluation



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead

We propose combining lookahead with lazy search
1 Expand and evaluate state s
2 A heuristically suggested path is generated
3 Follow the heuristically suggested path, adding every state along it

to the open list
4 The heuristic estimate of each of these states is adjusted by the

cost along the heuristically suggested path to reach it



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Deeply Preferred Operators: Illustration

s

s

s1 s2 s3

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1, s11, s111

4 Insert into open list:
s2,s3 with h = 3
s1 with h = 2
s11 with h = 1
s111 with h = 0



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Deeply Preferred Operators: Illustration

s

s

s1 s2 s3

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1, s11, s111

4 Insert into open list:
s2,s3 with h = 3
s1 with h = 2
s11 with h = 1
s111 with h = 0



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Deeply Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

h=2

h=1

h=0

h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1, s11, s111

4 Insert into open list:
s2,s3 with h = 3
s1 with h = 2
s11 with h = 1
s111 with h = 0



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Deeply Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3

h=2

h=1

h=0

h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1, s11, s111

4 Insert into open list:
s2,s3 with h = 3
s1 with h = 2
s11 with h = 1
s111 with h = 0



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search with Deeply Preferred Operators: Illustration

ss

s1 s2 s3

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

1 Expand s
2 Evaluate s: h(s) = 3
3 Preferred: s1, s11, s111

4 Insert into open list:
s2,s3 with h = 3
s1 with h = 2
s11 with h = 1
s111 with h = 0



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Heuristically Suggeted Paths

Not always easy to generate from a plan for an abstraction
Might be partially ordered
Might not be applicable
Might not reach the goal



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Generating Heuristically Suggeted Paths

We repeatedly attempt to apply actions according to the partial
order, until no more actions can be applied

When more than one action is applicable, we choose according
to some arbitrary order (LL), or choose at random (rnd-LL)

In the implementation for the relaxed plan heuristic, we also order
actions according to the layers in the relaxed planning graph

It is possible to use more sophisticated reasoning (Vidal, 2004)



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Pros & Cons

Pros
Can drastically reduce number of heuristic evaluations
Can provide guidance even if only first part of heuristically
suggested path is good

Cons
Could lead to expansion of huge heuristic plateaus



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Bad Behavior

s

s1

s11

s111

s2 s3

h=2

h=1

h=0

h=3 h=3

s

s1

s11

s111

s2 s3

h(s111)=3

s

s1

s11

s111 · · ·

s2 s3

s

s1

s11 · · ·

s111 · · ·

s2 s3



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Bad Behavior

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

s

s1

s11

s111

s2 s3

h(s111)=3

s

s1

s11

s111 · · ·

s2 s3

s

s1

s11 · · ·

s111 · · ·

s2 s3



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Bad Behavior

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

s

s1

s11

s111

s2 s3

h(s111)=3

s

s1

s11

s111 · · ·

s2 s3

s

s1

s11 · · ·

s111 · · ·

s2 s3



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Bad Behavior

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

s

s1

s11

s111

s2 s3

h(s111)=3

s

s1

s11

s111 · · ·

s2 s3

s

s1

s11 · · ·

s111 · · ·

s2 s3



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Lookahead: Bad Behavior

s

s1

s11

s111

s2 s3
h=2

h=1

h=0

h=3 h=3

s

s1

s11

s111

s2 s3

h(s111)=3

s

s1

s11

s111 · · ·

s2 s3

s

s1

s11 · · ·

s111 · · ·

s2 s3



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Conditional Lookahead (CLL)

Addressed the bad behaior above
Only performs look ahead from state s when:

State s was reached “normally” (not from look ahead), or
The true heuristic value state s (computed when s is expanded) is
lower than the true heuristic value of the ancestor where the look
ahead started

Requires keeping track of extra information at each search node



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Outline

1 Background & Motivation

2 Lazy Lookahead: Deeply Preferred Operators

3 Empirical Evaluation



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Experiment Setup

Implemented on top of Fast Downward

We use the relaxed plan heuristic in the evaluation
Lazy greedy best first search, boosted dual queues with preferred
operators

LL — lazy lookahead with arbitrary action ordering
rnd-LL — lazy lookahead with random action ordering
CLL — conditional lazy lookahead with arbitrary action ordering
rnd-CLL — conditional lazy lookahead with random action
ordering
FF — baseline relaxed plan heuristic (FD implementation)

1.5 GB memory limit, 30 minute time limit



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Empirical Evaluation: Solved Instances

domain LL rnd-LL CLL rnd-CLL FF

airport (50) 37 38 38 35 37
depot (22) 19 20 19 18 19
logistics98 (35) 33 35 35 35 33
mystery (30) 15 16 16 16 16
openstacks (30) 6 6 6 6 6
optical-telegraphs (48) 3 3 3 3 2
parcprinter (30) 27 17 26 18 21
pathways (30) 20 22 21 22 29
philosophers (48) 48 48 20 40 42
pw-notankage (50) 43 44 43 43 41
pw-tankage (50) 41 43 40 41 40
psr-large (50) 15 16 15 16 15
psr-middle (50) 43 42 43 44 42
schedule (150) 150 150 150 150 149
sokoban (30) 28 29 28 28 28
storage (30) 17 19 17 19 20
transport (30) 30 30 30 30 21
trucks-strips (30) 16 17 16 17 18
woodworking (30) 30 29 30 30 27

TOTAL 1260 1263 1235 1250 1245
Only domains where there was any difference in the results are shown.



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Empirical Evaluation: Anytime Results

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0  200  400  600  800  1000  1200  1400  1600  1800

S
o
lv

e
d

 I
n
s
ta

n
c
e
s

Timeout (seconds)

Rnd_LL

LL

Rnd_CLL

FF

CLL



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Empirical Evaluation: Generated/Evaluated States

We computed the metric score of the number of generated states
and the number of evaluated states.

The metric score of configuration c is v∗
vc

Averages over problems solved by all configurations in each
domain

Here we report only the overall average (over domain scores)

Attribute LL rnd-LL CLL rnd-CLL FF
Generated States 0.70 0.73 0.62 0.66 0.40
Evaluated States 0.76 0.72 0.66 0.63 0.36



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Summary

Presented a method of combining lookahead with lazy search

Random action ordering helps

Conditional lookahead might be too costly

Lazy lookahead performs better than the baseline



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Thank You


	Background & Motivation
	Lazy Lookahead: Deeply Preferred Operators
	Empirical Evaluation

