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Heuristic Search

Search algorithm
Chooses which state to expand next
Choice is based on heuristic evaluation function

Heuristic
Used to estimate distance from state s to the goal
Can also prefer some successors of s
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Preferred Operators

FF’s relaxed plan heuristic (Hoffmann & Nebel, 2001) uses the
relaxed planning graph to construct a relaxed plan

The chosen actions in the first layer of the relaxed planning graph
are denoted as helpful
Later generalized to preferred operators

Causal graph heuristic (Helmert, 2006)
Landmark count heuristic (Richter, Helmert & Westphal, 2008)
Structural pattern heuristic (Bahumi, Domshlak & Katz, 2011)
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Using Preferred Operators

Originally, used in FF by pruning all non-preferred operators in
EHC search

Incomplete, but very effective
If first search fails, uses complete GBFS search, ignoring
preferred operators

Fast Downward uses “alternating dual queues”
Two open lists: one containing all states, the other only preferred
states
Alternate between the open lists
Preserves completeness



university-logo

Background & Motivation Lazy Lookahead: Deeply Preferred Operators Empirical Evaluation

Lazy Search

Lazy search (deferred evaluation) changes the search: a state is
inserted into the open list with the heuristic value of its parent

A state is only evaluated when it is removed from the open list and
expanded
This reduces the number of heuristic evaluations at the last layer
of the search

Found by Richter & Helmert (2009) to work especially well when
using preferred operators
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Lazy Search with Preferred Operators: Illustration
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the plan is lost
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Lookahead

Vidal (2004) proposed lookahead:
1 Attempt to follow FF’s relaxed plan
2 Add the last state reached by the relaxed plan to the open list

Uses a sophisticated procedure for following the relaxed plan

This lookahead was integrated into eager search
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Lazy Lookahead

We propose combining lookahead with lazy search
1 Expand and evaluate state s
2 A heuristically suggested path is generated
3 Follow the heuristically suggested path, adding every state along it

to the open list
4 The heuristic estimate of each of these states is adjusted by the

cost along the heuristically suggested path to reach it
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Lazy Search with Deeply Preferred Operators: Illustration
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Heuristically Suggeted Paths

Not always easy to generate from a plan for an abstraction
Might be partially ordered
Might not be applicable
Might not reach the goal
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Generating Heuristically Suggeted Paths

We repeatedly attempt to apply actions according to the partial
order, until no more actions can be applied

When more than one action is applicable, we choose according
to some arbitrary order (LL), or choose at random (rnd-LL)

In the implementation for the relaxed plan heuristic, we also order
actions according to the layers in the relaxed planning graph

It is possible to use more sophisticated reasoning (Vidal, 2004)
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Lazy Lookahead: Pros & Cons

Pros
Can drastically reduce number of heuristic evaluations
Can provide guidance even if only first part of heuristically
suggested path is good

Cons
Could lead to expansion of huge heuristic plateaus
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Lazy Lookahead: Bad Behavior
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Conditional Lookahead (CLL)

Addressed the bad behaior above
Only performs look ahead from state s when:

State s was reached “normally” (not from look ahead), or
The true heuristic value state s (computed when s is expanded) is
lower than the true heuristic value of the ancestor where the look
ahead started

Requires keeping track of extra information at each search node
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Experiment Setup

Implemented on top of Fast Downward

We use the relaxed plan heuristic in the evaluation
Lazy greedy best first search, boosted dual queues with preferred
operators

LL — lazy lookahead with arbitrary action ordering
rnd-LL — lazy lookahead with random action ordering
CLL — conditional lazy lookahead with arbitrary action ordering
rnd-CLL — conditional lazy lookahead with random action
ordering
FF — baseline relaxed plan heuristic (FD implementation)

1.5 GB memory limit, 30 minute time limit
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Empirical Evaluation: Solved Instances

domain LL rnd-LL CLL rnd-CLL FF

airport (50) 37 38 38 35 37
depot (22) 19 20 19 18 19
logistics98 (35) 33 35 35 35 33
mystery (30) 15 16 16 16 16
openstacks (30) 6 6 6 6 6
optical-telegraphs (48) 3 3 3 3 2
parcprinter (30) 27 17 26 18 21
pathways (30) 20 22 21 22 29
philosophers (48) 48 48 20 40 42
pw-notankage (50) 43 44 43 43 41
pw-tankage (50) 41 43 40 41 40
psr-large (50) 15 16 15 16 15
psr-middle (50) 43 42 43 44 42
schedule (150) 150 150 150 150 149
sokoban (30) 28 29 28 28 28
storage (30) 17 19 17 19 20
transport (30) 30 30 30 30 21
trucks-strips (30) 16 17 16 17 18
woodworking (30) 30 29 30 30 27

TOTAL 1260 1263 1235 1250 1245
Only domains where there was any difference in the results are shown.
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Empirical Evaluation: Anytime Results
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Empirical Evaluation: Generated/Evaluated States

We computed the metric score of the number of generated states
and the number of evaluated states.

The metric score of configuration c is v∗
vc

Averages over problems solved by all configurations in each
domain

Here we report only the overall average (over domain scores)

Attribute LL rnd-LL CLL rnd-CLL FF
Generated States 0.70 0.73 0.62 0.66 0.40
Evaluated States 0.76 0.72 0.66 0.63 0.36
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Summary

Presented a method of combining lookahead with lazy search

Random action ordering helps

Conditional lookahead might be too costly

Lazy lookahead performs better than the baseline
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Thank You
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