
Deeply Preferred Operators: Lazy Search Meets Lookahead

Roei Bahumi and Carmel Domshlak and Erez Karpas
Faculty of Industrial Engineering & Management, Technion

Abstract

Heuristics in state-space search are primarily used to estimate
the distance from states to the goal. In domain-independent
heuristic-search planning, using extra information derived
from the heuristic computation to mark some successors as
preferred, and then biasing the search towards the preferred
successors, resulted in significant improvements in planning
performance. Preferred operators, however, help to discrimi-
nate only between the immediate successors of the evaluated
state. We propose a simple and effective technique that takes
advantage of more of the information provided by the heuris-
tic computation. This technique, called lazy lookahead, con-
sists of two components: A generalization of preferred oper-
ators to deeper descendants of the evaluated states, and a suit-
able generalization of deferred heuristic evaluation (aka lazy
search) to such “deeply preferred” descendants. Our evalu-
ation shows that employing lazy lookahead results in better
performance than using standard preferred operators.

Introduction
Heuristic state-space search is one of the most prominent
approaches to domain independent planning. For satisficing
planning, the most common such approach is to use greedy
best-first search, guided by heuristic functions. Heuristics
are used primarily to estimate the distance from search states
to the goal. The search algorithm can then use these distance
estimates to choose a state which is likely to be closer to the
goal, and thus hopefully to find a solution faster.

One of the most important advances in satisficing plan-
ning was the introduction of helpful actions in the FF plan-
ner (Hoffmann and Nebel 2001), where FF’s relaxed plan
was used not only for estimating the distance to the goal, but
also to mark a few successors of the evaluated state as “help-
ful”, in the sense of, “more likely to lead towards the goal”.
This concept was later generalized under the name of pre-
ferred operators (Helmert 2006), and was found especially
helpful when used with lazy search (also called deferred
evaluation, Richter and Helmert 2009). In lazy search, a
state is evaluated not when it is generated, but when it is se-
lected for expansion and removed from the open list. Lazy
search aims at reducing the number of expensive heuristic
evaluations: many states in the last layer of the search do not
need to be evaluated, and preferred operators help focusing
the evaluation on the more promising such states.

While which operators are considered preferred varies be-
tween the specific search components, the set of preferred
operators of a given state always appears to be a subset of
operators applicable at that state. At least in principle, this
property appears to be unnecessarily limiting. Consider, for
example, a state s for which a relaxed plan ρ+ is generated.
It is possible that ρ+ (considered in terms of the original ac-
tions) is actually a valid plan from s to a goal state, and thus
it provides us with the overall solution to the problem. Nev-
ertheless, even using preferred operators, the search would
need to evaluate at least every state along ρ+ until the goal
is found, despite the fact that we already have a solution at
hand. Furthermore, it is possible that when the successor of
s along ρ+ is evaluated, a completely different relaxed plan
will be generated for it, leading the search off the solution
path that was already discovered.

Previous work has noted this, and suggested using FF’s
relaxed plan ρ+ from state s for lookahead from s on-
wards (Vidal 2004). Specifically, an action sequence π ap-
plicable at state s is constructed from ρ+, and then the state
s′ reached by π from s, called a lookahead state, is added
to the open list, along with the regular successors of s. The
weak point of such a lookahead is that often it is only some
prefix of π that takes us closer to the goal, while the remain-
ing part of π goes off in the wrong direction. In that case,
adding only the end state achieved by π from s would prob-
ably not be the best thing to do.

Here we propose a technique that takes advantage of
such heuristically-suggested paths π, that is, “preferred se-
quences” of real actions induced by the heuristic computa-
tion. This technique, called lazy lookahead, consists of two
components. First, it extends the notion of preferred opera-
tors into what we call deeply preferred operators, which lead
not only to the immediate successors of state s, but rather to
all the states along the heuristically-suggested path π from s.
Second, it extends the machinery of lazy search to properly
support such deeply preferred descendants. Comparing to
various approaches to satisficing heuristic-search planning
that are based on standard notions of preferred operators and
lazy search, our technique aims at reducing the number of
heuristic evaluations even further, by obviating the need to
compute heuristic estimates for states at various depths, not
just in the last layer of the search. Our empirical evaluation
shows that searching with lazy lookahead indeed results in

significant runtime and memory improvements, and even in-
creases the number of planning tasks being solved.

Lazy Search Meets Lookahead
We consider planning tasks Π = 〈P,A, cost, s0, G〉 formu-
lated in STRIPS with action costs, where P are propositions,
A are (standard syntax and semantics) actions, s0 ⊆ P is the
inital state, and G ⊆ P is the goal (Fikes and Nilsson 1971).
The cost cost(π) of an action sequence π = 〈a0, a1, . . . , an〉
is

∑n
i=0 cost(ai). An action sequence π is an s-path if it is

applicable in state s; the state resulting from applying an s-
path π in s is denoted by sJπK. An s-path is an s-plan if
G ⊆ s0JπK. In basic satisficing planning, the objective is to
find an s0-plan as efficiently as possible.

Lazy Lookahead
As previously mentioned, heuristics can provide us with
more than just an estimate of the distance from state s to
the goal. For now, let us assume that an (imperfect) oracle
provided us with some s-path π = 〈a1, a2, . . . an〉, which
is likely to lead towards the goal. We call such a path π a
heuristically-suggested path, and later we discuss usage of
a distinct class of heuristics as a respective oracle. In any
case, given such π, the current mechanisms for supporting
preferred operators allows us to “favor” the immediate suc-
cessor sJ〈a1〉K of s, biasing the search towards expanding
it. However, these mechanisms cannot assist us with “fa-
voring” the indirect successors {sJ〈a1, . . . , ai〉K}ni=2 of s,
despite their purported attractiveness suggested via π.

Aiming at taking advantage of as much of the infor-
mation provided by the heuristic computation as possi-
ble, we propose a simple new mechanism for prefer-
ring “deeper” states along the simulated execution of
the heuristically-suggested paths that we refer to as lazy
lookahead. Given a heuristically-suggested s-path π =
〈a1, . . . , an〉, lazy lookahead adds to the open list all the
states {sJ〈a1, . . . , ai〉K}ni=1, with the lazy heuristic estimate
of sJ〈a1, . . . , ai〉K being set to the true heuristic value of s,
adjusted by the cost of the actions {a1, . . . , ai}. That is, for
1 ≤ i ≤ n, hlazy(sJ〈a1, . . . , ai〉K) = h(s)−

∑i
j=1 cost(aj).

Note that the adjusted heuristic estimate differs from what
is normally done in lazy search, where the successors of
state s are added to the open list with a heuristic estimate
of h(s) (Richter and Helmert 2009). The reason for this dif-
ference is that we want the “deeper” states to be expanded
earlier, as they are more likely to be closer to a goal state.
In contrast, lazy search only adds states on the same level,
making this argument irrelevant. We also note that it is,
of course, possible to simply perform an eager lookahead
by evaluating each state along the simulated execution of π
at s before adding these states to the open list. However,
as heuristic computation is typically much more expensive
than state generation, we believe this effort is very unlikely
to pay off. For example, if the last state sJπK along that
simulated execution is already a goal state, then search with
lazy lookahead finishes immediately, with no need to evalu-
ate all the intermediate states {sJ〈a1, . . . , ai〉K}n−1

i=1 . Even if
the last state sJπK is not a goal state, but it has a lower true

heuristic estimate than h(s), the search will continue from
there, again, without the need to evaluate all the intermedi-
ate states.

Of course, there is no guarantee that a heuristically-
suggested path leads anywhere near the goal. Consider
the following scenario, where the search reaches a large
heuristic plateau: State s is evaluated, and a heuristically-
suggested path leading to state s′ is generated. s′ is evalu-
ated next and found to have the same heuristic estimate as
state s, and a heuristically-suggested path leading to state
s′′ is generated, and so on. This adds numerous states to
the open list, as each heuristically-suggested path adds all
the states along its simulation to the open list. In this sce-
nario, the open list fills up with “junk” states, which might
go much deeper than what search without lookahead would
need to expand to escape the bad region. Having this poten-
tial negative effect of the lookahead in mind, we have also
evaluated a variant of the lazy lookahead that we call condi-
tional lookahead. The basic idea is simply to apply looka-
head only for a selection of the expanded states. A simple
and intuitive selection condition we have evaluated empiri-
cally aimed at preventing sequential lookahead that does not
show any improvement. Specifically, we only look ahead
from state s if it meets one of the following criteria:

1. s has been generated via the “regular” search, not via a
heuristically-suggested path.

2. s was generated via a heuristically-suggested path from
state s′, and h(s) < h(s′).

These conditions prevent us from performing deeper and
deeper lookahead, without any sign of improvement. Of
course, more involved conditions, which might also be based
upon information from the heuristic h, can be found even
more beneficial in practice.

Generating Heuristically-Suggested Paths
Having described the way we suggest exploiting
heuristically-suggested paths in the context of best-first
search, we proceed with considering means for generating
such heuristically-suggested paths. A natural option that we
adopt here is to extract heuristically-suggested paths from
the artifacts of computation of a certain class of heuristics—
those that are based on solving a simplified version of the
planning task at hand. Examples of such heuristics include
FF’s relaxed plan heuristic (Hoffmann and Nebel 2001),
and abstraction heuristics such as PDBs (Culberson and
Schaeffer 1998), merge and shrink (Helmert, Haslum, and
Hoffmann 2008), and implicit abstraction heuristics (Katz
and Domshlak 2010). What all of these heuristics have in
common is that the heuristic value for state s is based upon
a solution to a simpler, but still a planning, problem. While
the state-of-the-art abstraction heuristics listed above avoid
storing these solutions explicitly in order to reduce their
memory overhead, the relaxed-plan FF heuristic generates
such a solution every time it is evaluated. Note that this
solution does not have to be a linear sequence of actions,
but can rather comprise a partially ordered set of actions.
The procedure we describe next is general, and can be used

with any heuristic that is based upon estimating the cost of
such a partially ordered set of actions.

Given a partially ordered relaxed plan ρ+ from state s,
we attempt to find an applicable action sequence π which is
compatible with that partially ordered plan. Our procedure
attempts to apply actions from ρ+, while keeping track of
the current heuristically-suggested path, and of the state that
is reached by it. An action from ρ+ is eligible to be tried
if all of its predecessors in ρ+ have already been added to
π. The partially ordered plan ρ+ is traversed according to
some linear order compatible with it, and checks whether
an eligible action is applicable at the state sJπK reached by
the current heuristically-suggested path. If an applicable ac-
tion a was found, we update the currently reached state to
sJπ · 〈a〉K, and we update π to π · 〈a〉. Once a complete pass
over ρ+ is accomplished, we go back to the beginning of
ρ+, and perform another pass, as some previously inappli-
cable actions might now become applicable. The procedure
terminates after a complete pass over ρ+, in which no ac-
tion was added to the heuristically-suggested path π. Note
that traversing ρ+ according to different orders might lead
to different heuristically-suggested path.

It is possible to employ some sophisticated tactics for
choosing the linear order in which the partially ordered plan
ρ+ shall be traversed; for instance, some of such possi-
ble tactics in the context of FF relaxed plans are discussed
in a related context by Vidal (2004). In our evaluation,
however, our objective was to separate between the basics
and optimizations, and thus we have implemented two sim-
ple choices: either try actions according to some arbitrary,
implementation-dependent order, or choose the next eligible
action at random. The only optimization we do apply is us-
ing the layer structure of FF’s relaxed plan so that the linear
order on actions is compatible with the order of the layers,
and choosing at random from actions in the same layer. As
the empirical evaluation will demonstrate, even these simple
choices suffice to improve over the baseline lazy search with
the FF heuristic.

Empirical Evaluation
In order to evaluate lazy lookahead empirically, we im-
plemented it on top of the Fast Downward planning sys-
tem (Helmert 2006), and conducted experiments on all do-
mains from IPC 1998–2008, except MOVIE and ASSEMBLY. All
of the experiments reported here were conducted on a single
core of an Intel E8400 CPU, with a time limit of 30 minutes,
and a memory limit of 1.5 GB.

As the current implementations of abstraction heuristics
do not support obtaining a concrete solution for the abstrac-
tion from each state, we only evaluated the effect of lazy
lookahead on search using FF’s relaxed plan heuristic. In
all of the experiments here, we used lazy greedy best-first
search (with lazy lookahead, in our configurations) using
boosted dual queues (Richter and Helmert 2009) and pre-
ferred operators (deeply preferred operators in our config-
urations). All of the states which were generated by the
lazy lookahead procedure have been distinguished as pre-
ferred. We compare the baseline relaxed plan heuristic with
using both (unconditional) lazy lookahead (denoted by LL)

domain rnd-LL LL rnd-CLL CLL FF

airport (50) 38 37 35 38 37
depot (22) 20 19 18 19 19
elevators (30) 30 19 25 12 11
logistics98 (35) 35 33 35 35 33
mystery (30) 16 15 16 16 16
openstacks (30) 6 6 6 6 6
optical-telegraphs (48) 3 3 3 3 2
parcprinter (30) 17 27 18 26 21
pathways (30) 22 20 22 21 29
philosophers (48) 48 48 40 20 42
pw-notankage (50) 44 43 43 43 41
pw-tankage (50) 43 41 41 40 40
psr-large (50) 16 15 16 15 15
psr-middle (50) 42 43 44 43 42
schedule (150) 150 150 150 150 149
sokoban (30) 29 28 28 28 28
storage (30) 19 17 19 17 20
transport (30) 30 30 30 30 21
trucks (30) 17 16 17 16 18
woodworking (30) 29 30 30 30 27

TOTAL (shown domains) 654 640 636 608 617

Table 1: Number of tasks solved, per domain and overall.
Domains where all approaches solved the same number of
problems are not shown.

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 1260

 1280

 0 200 400 600 800 1000 1200 1400 1600 1800

S
o
lv

e
d
 I
n
s
ta

n
c
e
s

Timeout (seconds)

rnd-LL

LL

rnd-CLL

FF

CLL

Figure 1: Anytime profile of different approaches.
Each line shows the number of problems solved by each ap-
proach (y-axis), under different timeouts (x-axis).

and conditional lazy lookahead (denoted by CLL). For each
such method, we have two variants of partial order plans
linearization: random (denoted with the prefix rnd-) and ar-
bitrary (no prefix).

Table 1 shows the number of problems solved using each
approach, in each domain. We omitted here the domains in
which all the approaches solved all the tasks in the domain.
These results show that greedy best first search using the ran-
domized variant of both conditional and unconditional lazy
lookahead solves overall more problems than the baseline,
and that adopting lazy lookahead was beneficial on more do-
mains than domains in which it hurt the performance.

A more detailed examination of the results shows that ran-
domization in the lookahead greatly helps in ELEVATORS, and
greatly hurts in PARCPRINTER. One possible reason for this is
that the arbitrary action ordering in PARCPRINTER is actually
very good for the relaxed plan, while in ELEVATORS it is very
bad. However, overall, randomization performs better than
using the arbitrary order.

Another observation is that conditional lookahead does
not seem to pay off, and does not seem to perform as well as
(unconditional) lookahead. This is likely to do with the extra
overhead associated with conditional lookahead, where we

domain rnd-LL LL rnd-CLL CLL FF

airport 0.81 0.63 0.82 0.65 0.72
blocks 0.71 0.7 0.69 0.58 0.7
depot 0.59 0.55 0.63 0.55 0.36
driverlog 0.7 0.68 0.72 0.71 0.32
elevators 0.93 0.35 0.46 0.12 0.11
freecell 0.76 0.74 0.65 0.66 0.37
grid 0.87 0.59 0.62 0.62 0.44
gripper 0.76 0.88 0.93 0.94 0.22
logistics00 0.82 0.7 0.78 0.78 0.1
logistics98 0.83 0.51 0.8 0.58 0.06
miconic 0.83 0.95 0.77 0.91 0.17
mprime 0.81 0.72 0.58 0.62 0.29
mystery 0.66 0.71 0.81 0.73 0.48
openstacks 0.53 0.52 0.57 0.44 0.76
optical-telegraphs 0.51 0.72 0.17 0.04 0.07
parcprinter 0.46 0.65 0.5 0.59 0.49
pathways 0.89 0.82 0.8 0.8 0.12
pegsol 0.47 0.55 0.6 0.56 0.71
philosophers 0.82 1 0.02 0.03 0.04
pw-notankage 0.48 0.53 0.58 0.57 0.55
pw-tankage 0.59 0.56 0.48 0.45 0.39
psr-large 0.82 0.84 0.88 0.87 0.91
psr-middle 0.84 0.84 0.88 0.89 0.91
psr-small 0.66 0.67 0.73 0.73 1
rovers 0.84 0.81 0.87 0.85 0.07
satellite 0.76 0.87 0.82 0.9 0.12
scanalyzer 0.78 0.85 0.5 0.48 0.29
schedule 0.73 0.69 0.74 0.67 0.11
sokoban 0.72 0.62 0.72 0.72 0.85
storage 0.64 0.62 0.82 0.78 0.81
tpp 0.93 0.59 0.48 0.32 0.14
transport 0.83 0.75 0.36 0.27 0.16
trucks 0.46 0.38 0.69 0.46 0.52
woodworking 0.74 0.8 0.75 0.83 0.42
zenotravel 0.83 0.87 0.75 0.86 0.2

NORM. AVG 0.73 0.69 0.66 0.62 0.4

Table 2: Generated states: average metric scores.

need to keep track of how each state was reached (via looka-
head or not), and of the heuristic value of the state where
the respective lookahead started (if it was reached via looka-
head).

However, the number of problems solved after 30 minutes
does not tell the complete tale. Figure 1 shows the number
of problems solved by each approach, under different time-
outs. As the results show, deeply preferred operators help,
no matter which timeout is used, with an even greater ad-
vantage over the baseline relaxed plan heuristic when the
timeout is smaller.

Finally, we wish to explore the impact of using deeply
preferred operators on the number of generated states, as
well as on the number of heuristic evaluations performed.
Tables 2 and 3 give the metric score of the number of gen-
erated and evaluated state, respectively, over the problems
solved by all 5 configurations. The metric score for config-
uration c on some problem is v∗/vc, where vc is the value
of configuration c (number of generated or evaluates stated),
and v∗ is the best value of any configuration on that problem.
Thus the best value for each problem is assigned a metric
score of 1, and generating twice as many states would lead to
a score of 0.5. For each domain we report the average score,
as well as the average across all domain averages. As these
tables show, using lazy lookahead significantly reduces both
the number of generated states, as well as the number of
evaluated states, and this across all the four settings of lazy
lookahead.

domain rnd-LL LL rnd-CLL CLL FF

airport 0.84 0.66 0.85 0.7 0.53
blocks 0.75 0.75 0.69 0.59 0.57
depot 0.61 0.56 0.62 0.54 0.32
driverlog 0.7 0.68 0.72 0.7 0.28
elevators 0.93 0.35 0.44 0.12 0.1
freecell 0.75 0.75 0.62 0.66 0.3
grid 0.87 0.59 0.56 0.58 0.3
gripper 0.76 0.88 0.94 0.92 0.11
logistics00 0.79 0.68 0.75 0.77 0.07
logistics98 0.83 0.51 0.8 0.59 0.06
miconic 0.83 0.95 0.77 0.91 0.15
mprime 0.82 0.72 0.61 0.65 0.32
mystery 0.7 0.73 0.8 0.73 0.47
openstacks 0.62 0.6 0.59 0.48 0.68
optical-telegraphs 0.51 0.74 0.14 0.03 0.04
parcprinter 0.41 0.59 0.48 0.56 0.38
pathways 0.92 0.83 0.76 0.79 0.15
pegsol 0.53 0.63 0.63 0.57 0.59
philosophers 1 1 0.02 0.02 0.02
pw-notankage 0.52 0.56 0.59 0.58 0.5
pw-tankage 0.59 0.58 0.47 0.46 0.37
psr-large 0.89 0.9 0.93 0.92 0.9
psr-middle 0.9 0.91 0.93 0.93 0.91
psr-small 0.98 0.98 1 0.99 0.97
rovers 0.84 0.85 0.85 0.88 0.06
satellite 0.77 0.87 0.82 0.9 0.11
scanalyzer 0.79 0.85 0.5 0.47 0.26
schedule 0.74 0.68 0.73 0.66 0.12
sokoban 0.87 0.79 0.79 0.8 0.7
storage 0.76 0.74 0.86 0.82 0.77
tpp 0.91 0.57 0.42 0.3 0.07
transport 0.83 0.75 0.34 0.25 0.13
trucks 0.42 0.35 0.66 0.46 0.58
woodworking 0.74 0.8 0.71 0.82 0.45
zenotravel 0.79 0.82 0.74 0.85 0.19

NORM. AVG 0.76 0.72 0.66 0.63 0.36

Table 3: Evaluated states: average metric scores.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. AIJ 2:189–208.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2008. Explicit-
state abstraction: A new method for generating heuristic
functions. In Proc. AAAI 2008, 1547–1550.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics. JAIR 39:51–126.
Richter, S., and Helmert, M. 2009. Preferred operators and
deferred evaluation in satisficing planning. In Proc. ICAPS
2009, 273–280.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In Proc. ICAPS 2004, 150–159.

