
Optimal Planning and Shortcut Learning: An Unfulfilled Promise

Erez Karpas and Carmel Domshlak
Faculty of Industrial Engineering and Management, Technion — Israel Institute of Technology

Abstract

An existential optimal landmark is a set of actions, one of
which must be used in some optimal plan. Recently, Karpas
and Domshlak (2012) introduced a technique for deriving
such existential optimal landmarks, which is based on using
shortcut rules — rules which take a path, and attempt to find
a cheaper path that achieves some of the propositions that the
original path achieved. The shortcut rules that were originally
used were of a limited form, and only attempted to remove
parts of the given path. One would expect that using more
sophisticated shortcut rules would result in a more informa-
tive heuristic, although possibly at the cost of increased com-
putation time. We show that, somewhat surprisingly, more
sophisticated shortcut rules, which are learned online, dur-
ing search, result in a very small increase in informativeness
on IPC benchmarks. Together with the increased computa-
tional cost, this leads to a decrease in the number of problems
solved, and leaves finding efficient, informative shortcut rules
as a standing challenge.

Introduction
Until not long ago, admissible heuristics were perceived as a
necessary component of optimal heuristic search. However,
recently, Karpas and Domshlak (2012) defined the notions
of global admissibility and global path-admissibility of a
heuristic. We denote the cost of an optimal path from s to the
closest goal by h∗(s). A heuristic h is globally admissible
if there exists some optimal solution ρ, such that for every
state s along ρ, h(s) ≤ h∗(s). A path-dependent heuristic h
is globally path-admissible if there exists some optimal solu-
tion ρ, such that for every prefix π of ρ, h(π) ≤ h∗(s0JπK),
where s0JπK is the state reached by path π. Both of these
properties are weaker than admissibility, but are still enough
to guarantee optimality of the solution. Karpas and Domsh-
lak described a globally path-admissible heuristic, based
upon existential optimal landmarks (∃-opt landmarks, for
short). An ∃-opt landmark is a set of actions, one of which
must be used in some optimal plan. These ∃-opt landmarks
are derived using the notion of intended effects of a path π
— the possible justifications for why π might be a prefix of
an optimal solution.

Because finding the exact set of intended effects is com-
putationally infeasible, a sound approximation of the in-
tended effects was used, which is based upon shortcut rules.

A shortcut rule can be viewed as a function that takes as its
input a path π, and attempts to find a cheaper path π′, which
achieves some of the facts that π achieves. Any subset of
facts that is achieved by π′ can not be an intended effect
of π, because there is a cheaper way to achieve it. There-
fore, any continuation of π into an optimal plan must use
some fact which was achieved by π, but not by π′. Thus,
Φ = s0JπK \ s0Jπ′K describes an ∃-opt landmark for π, con-
sisting of all actions which have a precondition in Φ.

While any type of shortcut rule can be used to derive ∃-opt
landmarks, Karpas and Domshlak implemented only short-
cut rules of a limited form, which attempt to remove some
actions from π, without trying to add any new actions to
replace them. One would expect that using more sophis-
ticated shortcut rules, which combine action removal with
adding actions, would result in a more informative heuristic.
Similarly to our work, the planning by rewriting paradigm
(Ambite and Knoblock 2001) is also based on shortcut rules.
However the rules considered by Ambite and Knoblock are
manually specified, while we attempt to learn these short-
cut rules automatically, online. One possible source for new
shortcut rules are plan improvement methods (Nakhost and
Müller 2010; Chrpa, McCluskey, and Osborne 2012). How-
ever, these are designed to be used as a post-processing step,
and are too slow to be used on every evaluated state. Addi-
tionally, these methods are based on a specified goal, while
shortcut rules try to find shortcuts which lead to some ∃-opt
landmark, without any specific goal to guide them.

We note that there is an interesting similarity between
shortcut rules in planning and learned conflict clauses in
SAT problems (Marques-Silva and Sakallah 1996). A short-
cut rule can be seen as a “proof of suboptimality”, demon-
strating why some path can never be a prefix of an optimal
solution, or, more generally, pose some constraints about the
continuation of some path into an optimal solution. Sim-
ilarly, a learned conflict clause can prune a partial assign-
ment (that is, a path) in a SAT problem, or pose additional
constraints on it. In SAT planning, online clause learning
has increased the effectiveness of SAT solvers significantly
(Marques-Silva and Sakallah 1996). Thus, we would ex-
pect that online learning of shortcut rules will, at the very
least, result in a significant increase in the informativeness
of a heuristic that is based upon the ∃-opt landmarks derived
from them.



In this paper, we propose and examine three new types of
shortcut rules, which are based upon online learning, dur-
ing search. Our learning procedure exploits the fact that
search often discovers several paths leading to the same
state. When this occurs, we attempt to extract some rele-
vant information about where these paths differ, and learn
a shortcut rule for deriving more existential optimal land-
marks from that information.

Surprisingly, our empirical results show that these more
sophisticated shortcut rules result in a very small improve-
ment in search guidance. Furthermore, and not that surpris-
ingly, the overall number of problems solved under a time
limit decreases, due to the increased computational cost per
search node. However, we believe that additional work can
place online shortcut learning at the state-of-the-art of cost-
optimal planning, and leave our findings as a basis for future
research.

Preliminaries

We consider planning tasks formulated in STRIPS with ac-
tion costs; our notation mostly follows that of Helmert and
Domshlak (2009). A planning task is described by a 5-
tuple Π = 〈P,A, C, s0, G〉, where P is a set of propo-
sitions, A is a set of actions, each of which is a triple
a = 〈pre(a), add(a), del(a)〉, C : A → R0+ is a cost func-
tion on actions, s0 ⊆ P is the initial state, and G ⊆ P is the
goal.

An action a is applicable in state s if pre(a) ⊆ s, and if
applied in s, results in the state s′ = (s\del(a))∪add(a). A
sequence of actions 〈a0, a1, . . . , an〉 is applicable in state s0
if a0 is applicable in s0 and results in state s1, a1 is applica-
ble in s1 and results in s2, and so on. The cost of action se-
quence π = 〈a0, a1, . . . , an〉 is

∑n
i=0 C(ai), and is denoted

by C(π). The state resulting from applying action sequence
π in state s is denoted by sJπK. If π1 and π2 are action se-
quences, by π1 · π2 we denote the concatenation of π1 and
π2. Action sequence π is an s-path if it is applicable in state
s, and it is also an s-plan if G ⊆ sJπK. Optimal plans for Π
are its cheapest s0-plans, and the objective of cost-optimal
planning is to find such an optimal plan for Π. We denote
the cost of a cheapest s-plan by h∗(s).

Let π = 〈a0, a1, . . . an〉 be an s-path. The triple
〈ai, p, aj〉 forms a causal link (Tate 1977) in π if i < j,
p ∈ add(ai), p ∈ pre(aj), and for i < k < j, p 6∈
del(ak) ∪ add(ak). In other words, ai is the actual provider
of precondition p for aj . In such a causal link, ai is called
the provider, and aj is called the consumer.

The causal structure of a given path π is a graph whose
nodes are the action occurrences in π, and which has an
edge from ai to aj if there is a causal link where ai sup-
ports aj . Figure 1 illustrates this, by showing the causal
structure of the path 〈drive(t1, A,B), load(t1, p1, B),
drive(t1, B,A)〉. The shortcut rules of Karpas and Domsh-
lak (2012) look for certain patterns in the causal structure,
and attempt to remove actions which fit these patterns.

drive(t1, A,B)

START

drive(t1, B,A) load(t1, p1, B)

Figure 1: Causal structure of path 〈drive(t1, A,B),
load(t1, p1, B), drive(t1, B,A)〉.

Learning Shortcut Rules
We now turn our attention to learning shortcut rules online.
We begin by discussing when learning takes place, and then
describe how the learning is actually done.

When to Learn
The purpose of a shortcut rule is to take a given path π, and
produce a different path π′, or several such paths, that are
(a) cheaper than π, and (b) achieve at least one of the propo-
sitions that π achieves. Because each such path π′ generates
an ∃-opt landmark that consists of the facts that π achieved
and π′ did not, a good shortcut rule should generate a short-
cut π′ that achieves “almost all of” s0JπK. One extreme ex-
ample of such a pair of paths is two paths π, π′ that reach
the same state.

We exploit the fact that pairs of paths that reach the same
state are discovered during search, and we use these occa-
sions to learn new shortcut rules. Recall that A∗ handles the
case of a cheaper path to a closed state s being discovered
by reopening s, and this is one occasion when learning takes
place. However, we can also learn whenever a more expen-
sive path to a known state is discovered.

Algorithm 1 shows the pseudo-code of a slightly modified
version of A∗. The notations ĥ and ĝ refer to the currently
known heuristic estimate and cost-to-go, respectively, and
f̂ := ĝ + ĥ. Pa(s) is the current parent (state and action)
of s, and trace(s) is the currently best known path to s, ob-
tained by following the parent pointers back until the initial
state. Finally, h refers to the function which performs the
actual computation of the heuristic estimate given a path.

The difference between path-A∗ (Karpas and Domshlak
2012) and A∗ is that path-A∗ reevaluates the heuristic value
of a state s, whenever a cheaper path to s is discovered (line
20). This is necessary to ensure optimality with a globally
path-admissible heuristic. On top of that, learning path-A∗

attempts to learn a new shortcut rule whenever a new path to
a known state is discovered (line 17), regardless of whether
the new path is cheaper or not.

How to Learn
Having seen the context in which learning takes place, we
now turn our attention to how learning works. The input to
the LEARN method is a pair of different paths, π and π′,
from s0 to the same state s. LEARN begins by building
the causal structures of the two paths. Then, for each fact
that holds in s, only the causally relevant part of the causal



Algorithm 1 Learning path-A∗

1 Closed← ∅, Open← ∅
2 ĝ(s0)← 0, ĥ(s0)← h(trace(s0)), f̂(s0)← ĝ(s0) + ĥ(s0)
3 Open.insert(s0)
4 while Open 6= ∅ do
5 remove s with minimum f̂(s) from Open
6 if is goal(s) then
7 return trace(s)
8 end if
9 Closed.insert(s)
10 for 〈a, s′〉 ∈ succ(s) do
11 if s′ 6∈ Closed ∪Open then
12 ĝ(s′)← ĝ(s) + C(a), Pa(s′)← 〈s, a〉
13 ĥ(s′)← h(trace(s′))
14 f̂(s′)← ĝ(s′) + ĥ(s′)
15 Open.insert(s′)
16 else
17 LEARN(trace(s) · 〈a〉, trace(s′))
18 if ĝ(s) + C(a) < ĝ(s′) then
19 ĝ(s′)← ĝ(s) + C(a), Pa(s′)← 〈s, a〉
20 ĥ(s′)← h(trace(s′))
21 f̂(s′)← ĝ(s′) + ĥ(s′)
22 Open.insert(s′)
23 end if
24 end if
25 end for
26 end while
27 return NO SOLUTION

structure is extracted; this is easily obtained by the transitive
closure of edges, going backwards from the last action to
achieve each fact.

Now we have, for each fact p in s, two causal structures
which achieve p. These causal structures are similar to par-
tially ordered plans, consisting of actions with causal links.
However, we can not guarantee that all orderings that are
consistent with these causal links will be valid plans, be-
cause causal structures do not account for threats — an ac-
tion which could delete some precondition of another action,
if applied in the wrong order. Nevertheless, we can guaran-
tee that applying these actions according to the original order
of the plan will generate a valid plan achieving p.

The simplest type of shortcut rule we consider, called con-
crete shortcut rule, exploits this fact. A concrete shortcut
rule consists of a pair of action sequences, the head and the
tail. Given two partial causal structures which achieve the
same fact, we construct the two corresponding actions se-
quences, according to the order of the actions in the original
plan. The cheaper action sequence π′ becomes the tail, and
the more expensive action sequence π becomes the head. In
order for our shortcut rules to be more general, we trim the
common prefix and suffix from the head and tail of the rule.

When a concrete shortcut rule π ← π′ is applied to some
path ρ, it looks for π as a subsequence of ρ. Suppose
ρ = ρ1 · π · ρ2, for some prefix ρ1 and suffix ρ2. Then
the action sequence that is obtained from applying the con-

crete shortcut rule π ← π′ is simply ρ′ = ρ1 · π′ · ρ2. Since
C(π′) < C(π), we know that C(ρ′) < C(ρ). However ρ′
might not be applicable, because π′ might not achieve all the
facts necessary for ρ2. Therefore, we apply actions by fol-
lowing ρ′ as far as possible, until some action is no longer
applicable, resulting in path ρ′′. Clearly, C(ρ′′) < C(ρ′),
so ρ′′ is indeed a shortcut, allowing us to generate some ∃-
opt landmark. For example, if ρ achieved the propositions
{x, y} and ρ′′ achieves {x, z}, then we can deduce that the
possible consumers of {y} = {x, y} \ {x, z} form an ∃-opt
landmark of ρ.

The total order on the actions, however, might be too re-
strictive, as the actions in the shortcut rule might be appli-
cable even if the order of the actions changes. Therefore,
our second type of shortcut rule, called unordered shortcut
rule, relaxes this total order. While we would like to use
the partial order information from the causal structure, this
makes reasoning about these shortcut rules much more com-
plicated. Therefore, we completely ignore any information
about ordering between actions, and represent the head and
tail of an unordered shortcut rule as sets of actions. The
learning procedure for unordered shortcut rules is the same
as for concrete shortcut rules, except that we add a final
stage, where we convert the action sequences into sets of
actions.

When such an unordered shortcut rule A1 ← A2 is ap-
plied to path ρ, we first check whether A1 is a subset of the
actions in ρ. If so, we remove these actions from ρ, and
start applying the actions from ρ, in order, until we reach
the first action that was removed. From this point, we at-
tempt to apply either an action from A2 that was not applied
already, or, if no such action is applicable, the next action
from ρ. This process terminates when there are no more ap-
plicable actions, and generates the action sequence ρ′. Since
C(A1) < C(A2), ρ′ is a shortcut, generating an ∃-opt land-
mark. For example, assume that action a1 achieves {x}, a2

achieves {y}, and a3 achieves {x, y}. Then we could learn
the unordered shortcut rule {a1, a2} ← {a3}, and for any
action sequence containing both a1 and a2, in any order, we
would attempt to remove them, and add a3 instead.

While unordered shortcut rules are more general than
concrete shortcut rules, we can exploit the fact that plan-
ning problems are typically described concisely in PDDL,
and specifically the fact that actions are defined by an op-
erator type with a list of arguments. Our final shortcut
rule uses this structure, and attempts to generalize concrete
shortcut rules. Consider for example, the concrete shortcut
rule 〈drive(t1, A,B), drive(t1, B,C)〉 ← 〈drive(t1, A,C)〉,
learned when truck t1 drove the long way from locationA to
location C. This rule can be generalized to specify that any
truck should not drive the long way between any two loca-
tions, written here as: 〈drive(?t, ?X, ?Y ), drive(?t, ?Y, ?Z)〉
← 〈drive(?t, ?X, ?Z)〉.

Such generalized shortcut rules are learned the same way
as concrete shortcut rules. However, instead of treating the
action sequences as sequences of ground actions, we treat
them as sequences of terms, similar to terms in first-order
logic. When a generalized shortcut rule π ← π′ is applied
to path ρ, we look for a subsequence of ρ which matches the



operator types in π, disregarding any action parameters. If
such a subsequence is found, we then attempt to unify π with
the subsequence. If this is not possible, the shortcut rule is
not applicable. Otherwise, we have a substitution θ, which
we apply to π′. Then, we attempt to apply actions from ρ
without the subsequence, and then from π′ and the rest of ρ,
in a similar manner to unordered shortcut rules.

Using the Learned Knowledge
Having described how and when shortcut rules are learned,
we must still use them. The learned shortcut rules are used
whenever a path is evaluated (lines 13 and 20 in Algorithm
1). For each such evaluated path, we test all learned shortcut
rules for applicability. However, this testing is fairly expen-
sive, and it is quite possible that the cost of testing whether
a shortcut rule is applicable could outweigh its benefits in
terms of increased accuracy — this is known as the utility
problem (Minton 1990).

Therefore, we keep track of how many times each shortcut
rule has been used, and of how many times each shortcut
rule produced a valid shortcut. If a rule has been tried many
times, but produced very few valid shortcuts, we erase this
low-utility rule. The exact numeric values controlling this
behavior are parameters of the learning method.

Empirical Evaluation
In order to evaluate how effective the learned shortcut rules
are, we implemented all three learning schemes on top of
the Fast Downward planner (Helmert 2006). We base all
of our experiments on the admissible landmarks heuristic
(Karpas and Domshlak 2009) using an optimal cost par-
titioning over all regular single fact landmarks (Keyder,
Richter, and Helmert 2010) and the ∃-opt landmarks de-
rived from the original shortcut rules (Karpas and Domshlak
2012). We compare four different variants of the landmarks
heuristic, differing in the type of learned shortcut rules they
employ.
• none — no online learning
• concrete — concrete shortcut rules
• unordered — unordered shortcut rules
• generalized — generalized shortcut rules
All of the experiments reported here were run on a single
core of an Intel E8400 CPU, with a time limit of 30 minutes
and a memory limit of 6 GB, on a 64-bit linux OS.

Table 1a shows the number of problems solved in each
domain by learning path-A∗ using each of the above heuris-
tics. These results show that, indeed, the overhead of learn-
ing shortcut rules online is significant, and using them re-
duces the number of problems solved in total. While there
is no clear winner between the concrete shortcut rules and
unordered shortcut rules, generalized shortcut rules fare the
worst, because the overhead of unification and substitution
is quite significant.

The reduction in the number of problems solved might be
due to an inefficient implementation of the shortcut rules.
We therefore examine a measure which is relatively inde-
pendent of such concerns — the number of states expanded
by the search algorithm. Here, we only consider the prob-
lems that were solved using all four heuristics.

Table 1b lists the total number of states expanded to solve
all the problems that were solved using all four heuristics in
each domain. While we would expect the more sophisticated
shortcut rules to lead to a substantial improvement in search
guidance, the results tell a different tale. Although there is
a small decrease in the number of expanded states, it is not
very significant. In many domains, the learned shortcut rules
do not increase informativeness at all, and on average, all of
the new shortcut rules reduce the number of expanded states
by about 1%. This slight increase in informativeness is not
enough to compensate for the increase in computation time,
thus partly explaining the results in Table 1a.

While these results are quite surprising, we believe that
it should be possible to learn effective shortcut rules online,
and that this could lead to state-of-the-art performance in op-
timal planning. However, at the moment, the simple short-
cut rules of Karpas and Domshlak (2012) appear to result
in the best trade-off between heuristic computation time and
heuristic guidance.

Acknowledgements
This work was carried out in and supported by the Technion-
Microsoft Electronic-Commerce Research Center. We thank
Malte Helmert and the anonymous reviewers for discussions
and helpful advice.

References
Ambite, J. L., and Knoblock, C. A. 2001. Planning
by rewriting. Journal of Artificial Intelligence Research
15:207–261.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2012). AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In Boutilier, C., ed., Proceedings of the
21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), 1728–1733.
Karpas, E., and Domshlak, C. 2012. Optimal search
with inadmissible heuristics. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling (ICAPS 2012). AAAI Press.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Coelho, H.;
Studer, R.; and Wooldridge, M., eds., Proceedings of the
19th European Conference on Artificial Intelligence (ECAI
2010), 335–340. IOS Press.



coverage none concrete unordered generalized
airport (50) 26 26 26 25
blocks (35) 26 21 18 16
depot (22) 6 5 5 2
driverlog (20) 10 9 8 8
elevators-opt08-strips (30) 10 8 6 3
elevators-opt11-strips (20) 8 6 4 1
floortile-opt11-strips (20) 2 2 1 0
freecell (80) 50 48 47 34
grid (5) 2 2 1 1
gripper (20) 6 5 5 4
logistics00 (28) 20 20 20 20
logistics98 (35) 4 3 4 3
miconic (150) 141 141 140 140
mprime (35) 18 18 17 15
mystery (30) 15 15 15 15
nomystery-opt11-strips (20) 18 18 18 14
openstacks-opt08-strips (30) 14 11 14 6
openstacks-opt11-strips (20) 9 6 9 1
parcprinter-08-strips (30) 13 12 13 12
parcprinter-opt11-strips (20) 9 8 9 8
parking-opt11-strips (20) 1 1 1 0
pathways (30) 4 4 4 4
pegsol-08-strips (30) 26 26 19 9
pegsol-opt11-strips (20) 16 16 8 1
pipesworld-notankage (50) 14 13 13 11
pipesworld-tankage (50) 8 8 8 7
psr-small (50) 48 48 48 46
rovers (40) 6 5 6 5
scanalyzer-08-strips (30) 14 13 13 12
scanalyzer-opt11-strips (20) 11 10 10 9
sokoban-opt08-strips (30) 16 6 6 3
sokoban-opt11-strips (20) 13 3 3 1
storage (30) 14 14 12 11
tidybot-opt11-strips (20) 11 10 9 4
tpp (30) 6 6 6 5
transport-opt08-strips (30) 9 9 7 5
transport-opt11-strips (20) 4 4 2 0
visitall-opt11-strips (20) 12 12 11 9
woodworking-opt08-strips (30) 13 11 12 11
woodworking-opt11-strips (20) 8 6 7 6
SUM (1310) 661 609 585 487

expansions none concrete unordered generalized
airport (25) 50136 50136 50136 50136
blocks (16) 17712 16616 16203 16446
depot (2) 1016 1016 1016 1016
driverlog (8) 375488 372859 373260 375424
elevators-opt08-strips (3) 56436 56436 56436 56436
elevators-opt11-strips (1) 38125 38125 38125 38125
floortile-opt11-strips (0) N/A N/A N/A N/A
freecell (34) 10940 10940 10940 10940
grid (1) 141 141 126 133
gripper (4) 81988 81988 81988 81988
logistics00 (20) 816589 816589 816589 816589
logistics98 (3) 13227 13227 13227 13227
miconic (140) 48483 48483 48483 48483
mprime (15) 20694 17400 16662 20024
mystery (17) 96186 101899 92983 93873
nomystery-opt11-strips (14) 4778 4778 4778 4778
openstacks-opt08-strips (6) 31279 31279 31279 31279
openstacks-opt11-strips (1) 3658 3658 3658 3658
parcprinter-08-strips (12) 735545 732904 730269 735545
parcprinter-opt11-strips (8) 735473 732832 730197 735473
parking-opt11-strips (0) N/A N/A N/A N/A
pathways (4) 58156 58165 58089 58156
pegsol-08-strips (9) 9783 9783 9715 9783
pegsol-opt11-strips (1) 246 246 246 246
pipesworld-notankage (11) 33615 32772 32952 33408
pipesworld-tankage (7) 8875 7904 8285 8804
psr-small (46) 202184 192403 193633 198306
rovers (5) 98776 99474 99516 99566
scanalyzer-08-strips (12) 4564 4564 4564 4564
scanalyzer-opt11-strips (9) 4545 4545 4545 4545
sokoban-opt08-strips (3) 701 701 701 701
sokoban-opt11-strips (1) 51 51 51 51
storage (11) 20680 20548 20593 20644
tidybot-opt11-strips (4) 4827 4903 4867 4899
tpp (5) 4227 4227 4227 4227
transport-opt08-strips (5) 9510 9487 9464 9506
transport-opt11-strips (0) N/A N/A N/A N/A
visitall-opt11-strips (9) 4217 4217 4217 4217
woodworking-opt08-strips (11) 92184 87187 82786 92182
woodworking-opt11-strips (6) 90482 85559 81246 90482
SUM (489) 3785517 3758042 3736052 3777860

(a) Number of Problems Solved in Each Domain (b) Total Number of Expanded States
Over Problems Solved by All

Table 1: Empirical Results

Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP - a
new search algorithm for satisfiability. In Proceedings of the
1996 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD 1996), 220–227.
Minton, S. 1990. Quantitative results concerning the util-
ity of explanation-based learning. Artificial Intelligence
42(23):363–391.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Brafman, R.; Geffner, H.; Hoffmann, J.;
and Kautz, H., eds., Proceedings of the Twentieth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2010), 121–128. AAAI Press.
Tate, A. 1977. Generating project networks. In Reddy, R.,
ed., Proceedings of the 5th International Joint Conference
on Artificial Intelligence (IJCAI 1977), 888–893. William
Kaufmann.


