
Heuristics for Planning under Partial Observability with Sensing Actions

Guy Shani and Ronen Brafman and Shlomi Maliah
Ben Gurion University

Erez Karpas
Technion

Abstract

In planning under partial observability with sensing actions
(PPOS) problems, the solution progresses from one sensing
action to another, until sufficient information is gathered and
the goal can be reached. In between sensing actions, one can
use classical planning to derive the path to the next sensing
action. We suggest an online algorithm that repeatedly se-
lects the next sensing action to execute, and plans to achieve
it in a classical setting. Our algorithm avoids the difficulty
in representing and updating a belief space. Our heuristic
uses landmarks, and we explain how landmarks can be com-
puted over a relaxation of the PPOS problem. We compare
our Heuristic Contingent Planner (HCP) to state-of-the-art,
translation-based online contingent planners, and show how it
solves many problems much faster than previous approaches.

Introduction
Agents acting under partial observability must acquire in-
formation about the true state of the world using sensing ac-
tions to achieve their goals. Such problems can be modeled
using contingent planning, where action effects may be con-
ditioned on some unknown world features. Contingent plan-
ning is difficult because the plan must branch given different
sensor values, resulting in potentially large plan trees.

Currently, there are two popular techniques for generating
contingent plans. Both approaches can be used in an offline
scenario – where the entire plan tree is generated offline, or
in an online scenario — where only the branch correspond-
ing to the online observations is generated incrementally.

The first technique builds on a compilation method for
conformant planning (Palacios and Geffner, 2009), trans-
lating the contingent planning problem, into a classical
planning problem that “reasons” about the agent’s state of
knowledge. Solutions to this classical problem correspond
to complete or partial contingent plans (Albore, Palacios,
and Geffner, 2009; Shani and Brafman, 2011; Bonet and
Geffner, 2011a). A major difficulty with this approach is
the size of the generated classical planning problems and
the time required for their solution.

The second technique directly searches in belief
space (Bonet and Geffner, 2000; Hoffmann and Brafman,
2005; To, Son, and Pontelli, 2011). As the effect of sensing

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

actions is non-deterministic, the search can be modeled as an
AND/OR tree, and various search heuristics can be applied.
The major difficulty with this approach is to compactly rep-
resent and efficiently update the belief state, and currently no
known method works well in all domains (To, Pontelli, and
Son, 2011). Generating good heuristics estimates in belief
space is also a challenge.

This paper describes a new, online method that overcomes
the weaknesses of both methods. We solve a sequence of
simple classical planning problems defined on the original
state space. Thus, we avoid reasoning about the agent’s
knowledge, and maintaining and updating its belief state.
Our method currently focuses on contingent planning do-
mains in which sensing actions do not alter the state of the
world — a condition which is true in all current contingent
planning benchmarks. In such domains, every branch of a
contingent plan contains a sequence of sensing actions. Be-
tween every two sensing actions, there is a sequence of non-
sensing actions. This is well known, and most online con-
tingent planners leverage it, whether explicitly or implicitly.

The key insight in our method, though, is that the se-
quence of non-sensing actions in between every two sensing
actions can be viewed as a classical planning problem de-
fined over the original (in fact, even slightly reduced) state
space of the problem, rather than the belief space. Thus, if at
each stage we are given the next sensing action to perform
by an oracle, we can quickly plan to achieve its precondi-
tions using a suitable classical planner.

Given the agent’s current state, there may be multiple
reachable sensing actions. Thus, we require a method for
selecting among them — an oracle. Indeed, technically, our
main contribution is the development of a method for ap-
proximating the value of information of every achievable
sensing action using an estimate of the number of landmarks
that can be achieved following the execution of each sensing
action. This requires, in turn, adjusting landmark generation
techniques to the setting of partial observability and sensing.

Our Heuristic Contingent Planner (HCP) first computes a
set of landmarks over a specially designed relaxation of the
planning problem. Next, at each step, we compute the set of
reachable sensing actions and estimate their value of infor-
mation. We use then a classical planner to generate a plan
from the current state to the seemingly best sensing action.
We repeat this process until we reach the goal.



We empirically evaluate HCP on a set of contingent
planning benchmarks. Our experiments show that HCP
is much faster than the state-of-the-art contingent planners
SDR (Brafman and Shani, 2012b) and CLG (Albore, Pala-
cios, and Geffner, 2009), on domains with structured belief
spaces, where certain conditions that we explain hold, and
good landmarks can be discovered.

Partially Observable Contingent Planning
Partially observable contingent planning problems are char-
acterized by uncertainty about the initial state of the world,
partial observability, and the existence of sensing actions.
Actions may be non-deterministic, but much of the litera-
ture focuses on deterministic actions, and in this paper we
will assume deterministic actions, too.

Problem Definition
A contingent planning problem is a quadruple: π =
〈P,A, ϕI , G〉. P is a set of propositions, A is a set of ac-
tions, ϕI is a formula over P that describes the set of pos-
sible initial states, and G ⊂ P is the goal propositions. We
often abuse notation, treating a set of literals as a conjunc-
tion of the literals in the set, as well as an assignment of the
propositions in it. For example, {p,¬q} will also be treated
as p ∧ ¬q and as an assignment of true to p and false to q.

A state of the world, s, assigns a truth value to all elements
of P . A belief-state is a set of possible states, and the initial
belief state, bI = {s : s |= ϕI} defines the set of states
that are possible initially. An action a ∈ A is a three-tuple,
{pre(a),effects(a),obs(a)}. pre(a) is a set of literals denoting
the action’s preconditions. effects(a) is a set of pairs (c, e)
denoting conditional effects, where c is a set (conjunction)
of literals and e is a single literal. Finally, obs(a) is a set of
propositions, denoting those propositions whose value is ob-
served when a is executed. We assume that a is well defined,
that is, if (c, e) ∈ effects(a) then c∧pre(a) is consistent, and
that if both (c, e), (c′, e′) ∈ effects(a) and s |= c ∧ c′ for
some state s then e ∧ e′ is consistent. In current benchmark
problems, either the set effects or the set obs are empty. That
is, actions either alter the state of the world but provide no
information, or they are pure sensing actions that do not alter
the state of the world, but this is not a mandatory limitation.

We use a(s) to denote the state that is obtained when a
is executed in state s. If s does not satisfy all literals in
pre(a), then a(s) is undefined. Otherwise, a(s) assigns to
each proposition p the same value as s, unless there exists
a pair (c, e) ∈ effects(a) such that s |= c and e assigns p a
different value than s. Observations affect the agent’s belief
state. We assume throughout that all observations are deter-
ministic and accurate, and reflect the state of the world prior
to the execution of the action. It is possible to have observa-
tion reflect the post-action state, at the price of slightly more
complicated notation. Thus, if p ∈obs(a) then following the
execution of a, the agent will observe p if p holds now, and
otherwise it will observe ¬p. Thus, if s is the true state of the
world, and b is the current belief state of the agent, then ba,o,
is the belief state following the execution of a and observ-
ing o. The new belief state corresponds to the progression
through a of all states in b where o is observed.

A complete plan for a contingent planning problem can be
described as an tree τ = (N,E). The nodes, N , are labeled
with actions, and the edges, E, are labeled with observa-
tions. A node labeled by an action with no observations has
a single child, and the edge leading to it is labeled by the
null observation true. Otherwise, each node has one child
for each possible observation value. The edge leading to
this child is labeled by the corresponding observation. τ is a
solution plan (or plan) for π if τ(s) |= G for every s ∈ bI .

We illustrate these ideas using a 4 × 4 Wumpus do-
main (Albore, Palacios, and Geffner, 2009), which will
serve as our running example. Figure 1 illustrates this do-
main, where an agent is located on a 4 × 4 grid. The agent
can move in all four directions, and if moving into a wall,
it remains in place. The agent initially is in the low-left
corner and must reach the top-right corner. There are two
monsters called Wumpuses hidden along the grid diagonal,
the agent knows that Wumpus 1 can be at location 3,2 or
2,3, and Wumpus 2 can be at location 4,3 or 3,4. Thus
the possible states are: {wat(3, 2) ∧ wat(4, 3), wat(3, 2) ∧
wat(3, 4), wat(2, 3)∧wat(4, 3), orwat(2, 3)∧wat(3, 4)}.
The stench of a Wumpus carries to all adjacent locations,
and the agent can observe the stench in order to deduce the
whereabouts of the Wumpuses.

Figure 1: The 4× 4 Wumpus domain

Landmarks in Classical Planning
In general, a landmark Φ for a classical planning task Π =
〈P,A, I,G〉 is a logical formula over the facts P , which
must be satisfied at some state along every solution of Π
(Hoffmann, Porteous, and Sebastia, 2004). As in most litera-
ture dealing with landmarks, we will restrict our attention to
landmarks that are simple disjunctions or conjunctions over
facts. Each planning task has some trivial landmark, consist-
ing of all goal facts, and all facts in the initial state. In the
Wumpus problem described above, e.g., these trivial land-
marks are the goal, at-4-4, and the initial state fact at-1-1.

Another related notion is that of orderings between land-
marks. Several types of orderings have been defined (Hoff-
mann, Porteous, and Sebastia, 2004). We use the most gen-
eral type of ordering (that is, the one with the weakest con-
dition), called reasonable-ordering, denoted Φ → Ψ. Intu-
itively, this implies that a “reasonable” plan will achieve Φ
before Ψ; the exact definitions of the different orderings are
not important in this context.

Although it is PSPACE-hard even to check whether a
given fact is a landmark or not, there are several efficient



algorithms which return a set of landmarks and orderings
(Hoffmann, Porteous, and Sebastia, 2004; Zhu and Givan,
2003; Richter and Westphal, 2010; Keyder, Richter, and
Helmert, 2010). These algorithms all exploit the principle
that, if some fact p ∈ P is a landmark that is not true in the
initial state, and all actions which achieve p have some fact
q ∈ P as a precondition, then q is also a landmark. Fur-
thermore, q must be achieved before p, and so we also have
the ordering q → p. If there is no common precondition,
we can still find a set of facts which occur in the precondi-
tions of all actions, and use them as a disjunctive landmark.
For example, the landmark at-4-4 has two achievers, going
up from at-4-3, and going right from at-3-4. These actions
do not have a common precondition, but we can still infer
that at-4-3 ∨ at-3-4 is a landmark, which is ordered before
at-4-4.

Originally, landmarks were used as subgoals (Hoffmann,
Porteous, and Sebastia, 2004), guiding a base planner inside
a control loop. At each iteration of the loop, the set of land-
marks which could be achieved — that is, the landmarks
which do not have an unachieved landmark that is ordered
before them — are passed to the base planner as a disjunctive
goal. The base planner then returns a plan which achieves
one or more of these landmarks, the landmarks which have
been achieved are marked, and the control loop continues
planning from the state which was reached. Although this
technique has been shown to speed up planning significantly,
it can not guarantee the optimality of the solution found, nor
even the completeness of the overall planning process. This
is because the base planner might reach a state which is a
dead-end for the planning task Π, and the control loop does
not backtrack.

More recently, the number of landmarks which are yet
to be achieved was used as a path-dependent heuristic in
the LAMA planner (Richter and Westphal, 2010), winner in
the sequential satisfying track in IPC-2008 and IPC-2011.
This is an inadmissible heuristic estimate, because an ac-
tion might achieve more than one landmark. If optimal
planning is of interest, it is possible to derive an admissible
landmarks-based heuristic by performing an action cost par-
titioning over the landmarks (Karpas and Domshlak, 2009).

Landmark Detection under Partial
Observability

Adapting landmark detection to PPOS, we must be able to
handle uncertainty and sensing. In principle, we could run
classical landmark detection in belief space or in the pseudo
belief space of the translation approach, both of which are
potentially exponentially larger. To be useful, however,
landmark detection must be efficient and informative.

One of the main goals and contributions of this work is
to use classical techniques on the original state space when
possible, while planning in a partially observable domain.
To reduce the detection cost, as in classical planning, we
run landmark detection on a relaxed problem. We use the
popular delete-relaxation approach in which negative effects
of actions are ignored.

In addition to ignoring delete-effects, we augment the do-

main with additional artificial actions that help us deal with
uncertainty and observation. As the value of some propo-
sitions is unknowns, there is typically no path from the ini-
tial state to a goal state that does not involve observations
and deductions from these observations concerning the set
of possible states. The actions that we add help us bridge
this gap to a certain extent, without requiring us to represent
the agent’s belief state.

Our relaxation is motivated by features of current bench-
marks, as we explain below. In that sense, it is not general
and may fail to produce meaningful landmarks when certain
conditions do not apply. That being said, we demonstrate
how our relatively simple relaxation is highly useful in a
large set of benchmarks. Like other landmark detection al-
gorithm, our approach is sound, in that every landmark that
is detected is indeed a landmark of the real domain, but in-
complete, in that many landmarks may go undetected. We
skip the soundness proof due to the lack of space.

Conditional Effects Removal
We break down each action into actions with unary ef-
fects, by replacing each action a ∈ A with conditional
effects {(ci, ei) : i = 1..k}, with k actions, such
that pre(a(ci,ei)) = pre(a) ∧ ci and effects(a(ci,ei) =
effects(a) ∧ ei.

In general such a compilation is unsound, because several
conditions may apply together at a given state, while we al-
low only one condition per action. As we are computing a
heuristic, though, and since we will apply these actions in
a delete-relaxation, forward-search manner, we will allow
the application of multiple actions concurrently (Blum and
Furst, 1997). Thus, all conditions that apply will be executed
simultaneously at the same phase of the forward search.

Reasoning over the Initial Uncertainty
In many cases the uncertainty over some sets of proposi-
tions is encoded into the initial belief state, and remains un-
changed throughout the execution of the solution (Bonet and
Geffner, 2011b). In the Wumpus domain, e.g., the monsters
remain at a given location and never move, and the stench
around them is unchanged. For such sets of propositions, we
can create reasoning actions that, upon detecting the value of
some propositions of that set, reason about the rest.

The detection of these sets of propositions is simple, as
propositions whose value is constant do not appear in the ef-
fects of any action. We find clauses of the initial belief for-
mula that contain only constant propositions, and use these
to create reasoning actions. We assume here that the initial
state formula is expressed as a conjunction of either simple
disjunctions of literals, or xor (so called “one-of”) clauses.

For each such clause c containing only unchanged propo-
sitions we create a set of “reasoning” actions Ac, as follows:

• If c =
∨

i=1..k li, then Ac = {ali}ki=1, with pre(ali) =∧
j=1..k,j 6=i ¬lj , and effects(ali) = li.

• If c = ⊕i=1..kli, then Ac = {ali}ki=1, with pre(ali) = li,
and effects(ali) =

∧
j=1..k,j 6=i ¬lj .



Joining Immediate Reasoning and Observations
In a PPOS we can split the propositions into 3 disjoint sets
— propositions whose value is always known (e.g. the lo-
cation of the agent in the Wumpus problem), propositions
whose value may be unknown, but for which there is an
observation action (e.g., the stench in cells near the Wum-
pus lair), and propositions whose value can not be observed
(e.g., the location of the lair of the Wumpus). Note that we
must have some way to reason about the values of the vari-
ables which can not be observed, as otherwise we can just
ignore them.

Figure 2: A Mars Rover rock sampling example, with a 4× 4
grid and 4 rocks. The rover is at location 2, 3, and the dotted
line shows the range of its mineral sensor. Hence, only rocks
1 and 2 are within range at this location.

In many cases it is natural to define the value of the ob-
servable propositions through conditional effects over un-
observable propositions. Consider for example the Mars
Rover rock sample (Smith and Simmons, 2004; Brafman
and Shani, 2012b), where the rover must sample rocks con-
taining a desirable mineral in a grid (Figure 2). The rocks lo-
cations are known, but the agent must sense for the mineral
using a long range sensor. The sensor reports the existence
of the mineral in some rock within its range.

A natural formalization of this domain may have an ac-
tion activate-sensor-at-2-3 with preconditions at-2-3 and
conditional effects good-rock1 → good-rocks-in-range and
good-rock2 → good-rocks-in-range, and an additional ac-
tion observe-rocks-in-range which observes the good-rocks-
in-range proposition which signifies the sensor’s output.
While these are separate actions, used together they allow
us to reason about which rocks contain the good mineral. In
this case, at-x-y is always known, good-rocks-in-range is un-
known but directly observable, and good-rocki is unknown
and not directly observable. We now explain how these two
actions — activate-sensor and observe-good-rocks-in-range
can be joined to allow us to observe and reason about certain
propositions together.

Let a be an action that contains a set of conditional effects
of the form (ci, e) where ci is unknown and unobservable
and e is observable, and there is no other action that affects
the value of e that is not mutually exclusive, i.e., that can be
executed at the same state as a. In our example the activate-
sensor-at-x-y actions are the only actions that affect good-

rocks-in-range, and each such action requires the agent to
be at a different location. For all such actions we consider
the reverse of the conditions — (e,

∨
i ci).

We now create a new action a ◦ aobs where aobs is an
observation action over e. The preconditions of the new ac-
tion will be the conjunction of the preconditions of a and
aobs. The observation of a◦aobs is e, and effects effects(a◦
aobs) = effectsu(a) ∧

∨
i ci, where effectsu(a) are the un-

conditional effects of a. When there is more than a single ci,
we remove the non-determinism, by creating a set of actions
ai ◦aobs whose preconditions pre(a◦aobs)∧

∧
j 6=i ¬cj , and

whose effect is effects(ai ◦ aobs) = effectsu(a) ∧ ci. In the
example above we have two such joined actions with pre-
conditions at-2-3 ∧ ¬good-rockj , observation good-rocks-
in-range and effect good-rocki where i = 1 and j = 2 or
vice versa.

Note that this method is not general, in that there might be
a sequence of unobservable propositions p1, ..., pk and a set
of actions ai with conditional effects (pi, pi+1), and an ob-
servation action only for pk. Our translation only allows rea-
soning over the value of pk−1, and not about any of its pre-
decessors. That being said, the only benchmark that exhibits
this behavior is localize, while many other (e.g. medpks,
rock-sample) contain the behavior we exploit above.

Finding Fact Landmarks
We now run a landmark detection algorithm on our relaxed
domain that contains the actions created above, as well as
all the “regular” actions that have no conditional effects, and
operates only on the known propositions. In our experi-
ments we used back-chaining using the possible first achiev-
ers (Richter, 2010). However, one can use any landmark de-
tection algorithm on the relaxed problem described above.
The only change in the landmark detection algorithms is
with respect to the sensing actions, where we assume that
they optimistically provide any required value of the ob-
served proposition.

The Heuristic Contingent Planner Algorithm
We can now present our online contingent planning solver.
The planner progresses by repeatedly identifying a reachable
observation action that heuristically provides valuable infor-
mation towards the achievement of the goal. The planner
then plans in a classical setting to execute the observation
action, assuming all unknown propositions to have a nega-
tive value. The plan is executed, followed by the observation
action. Now, the process repeats with the additional infor-
mation that was provided by the observation action. This
process is repeated until the goal can be achieved without
executing any additional observation actions. Algorithm 1
shows this high level algorithm.

Algorithm 2 shows the process for selecting the next sens-
ing action. It estimates the myopic value of information of
the observation action, i.e., how much value will be achieved
from executing the action, ignoring future observations.

We first compute the set of achievable literals in the re-
laxed problem. Then, we see which observation actions can



Algorithm 1 Heuristic Contingent Planner
Input: π — a PPOS problem
1: πrelaxed ← The relaxation of π as explained above
2: L← The set of landmarks for πrelaxed

3: s← All known literals at the initial state
4: while There is no classical plan that achieves G from s with

no observation actions do
5: aobs ← ChooseNextSensingAction(πrelaxed, L, s)
6: Pclassic ← Plan(s, pre(aobs))
7: s′ ← Execute(Pclassic, s)
8: Execute(aobs) and observe literal l
9: s← s′ ∪ {l}

10: end while
11: Pclassic ← Plan(s,G)
12: Execute(Pclassic, s)

be executed that sense the value of some unknown proposi-
tion. These are the candidate actions to be returned by the
algorithm. To choose the heuristically best observation ac-
tion, we analyze the value of observing p, by assuming that
we have observed p, and computing which literals now be-
come reachable. Then, we assume that we have observed ¬p
and compute again which literals become available.

Our policy for returning the heuristically best action first
looks at the number of satisfied landmarks following the ob-
servation. Given multiple observation actions that satisfy the
same number of landmarks, we break ties by looking at the
sum of the number of literals and new observation actions
that become achievable following the execution of the ob-
servation action. Finally, we break ties again in favor of the
action which requires the minimal number of actions (in the
relaxed domain) to execute.

Algorithm 2 Choosing the Next Sensing Action
Input: πrelaxed — a relaxed PPOS problem, L a set of landmarks,

s the set of currently known literals
1: s′ ← the set of achievable literals given πrelaxed and s
2: Ω← {a : a ∈ A, pre(a) ∈ s′, obs(a) 6= φ, obs(a) /∈ s′}
3: for each action a ∈ Ω do
4: p← obs(a), s′+ ← s′ ∪ {p}, s′− ← s′ ∪ {¬p}
5: s′′+ ← the set of achievable literals given πrelaxed and s′+
6: s′′− ← the set of achievable literals given πrelaxed and s′−
7: scorelandmarks(a)← the number of landmarks satisfied in

s′′+ and s′′−, but not in s′

8: scoreliterals(a) ← the number of literals achievable in s′′+
and s′′−, but not in s′

9: scoreobs(a)← the number of sensing actions achievable in
s′′+ and s′′−, but not in s′

10: scorecost(a) ← the number of actions required from s be-
fore a can be executed in πrelaxed

11: score(a) ← 〈scorelandmarks(a), scoreliterals(a) +
scoreobs(a), scorecost(a)〉

12: end for
13: return argmaxa∈Ωscore(a)

Empirical Evaluation
We now compare HCP to state-of-the-art online contingent
planners, CLG (Albore, Palacios, and Geffner, 2009), SDR

(Brafman and Shani, 2012b), MPSR (Brafman and Shani,
2012a), and K-Planner (Bonet and Geffner, 2011b) on var-
ious benchmarks. The experiments were conducted on a
Windows Server 2008 machine with 24 2.66GHz cores (al-
though each experiment uses only a single core) and 32GB
of RAM. The underlying classical planner is FF (Hoffmann
and Nebel, 2001).

Table 1 shows that HCP is much faster than all other plan-
ners, except for the K-Planner. The plan quality (number of
actions) of HCP is also typically quite good. The only do-
main that could not be solved by HCP is localize, because it
does not conform to our assumptions concerning reasoning
about the hidden propositions.

K-Planner is very fast, but it can only run on domains
where the hidden propositions remain constant throughout
the execution. Thus, it is unsuitable for solving many of the
benchmarks. Except for K-Planner, HCP is by far the fastest
contingent planner, and in many cases improves runtime by
more than an order of magnitude.

Related Work
Bonet and Geffner (2000) first proposed using heuristic
search in belief space. Since then, several heuristics for be-
lief states were proposed. Bryce, Kambhampati, and Smith
(2006) argue that belief state heuristics typically aggregate
distance estimates from the individual states which the be-
lief state describes to the goal. Taking the maximum dis-
tance corresponds to assuming positive interaction (that is,
the plan for reaching the goal from s1 also helps to reach the
goal from s2 ), while summarizing the distances corresponds
to assuming independence between these plans (that is, the
plans for s1 and s2 neither help or interfere with each other).

Contingent-FF (CFF) (Hoffmann and Brafman, 2005)
uses delete-relaxation, assuming generous execution seman-
tics, which ignores actions whose preconditions are not sat-
isfied during execution. They construct a relaxed confor-
mant plan by building a variant of the relaxed planning
graph, accounting for which facts are known at each layer.
CFF represents and reasons about knowledge through a logic
formula over the history. CFF also identifies observation
goals — observations needed by a later action.

The DNF planner (To, Pontelli, and Son, 2009) uses a
heuristic based on the number of satisfied goals, the cardi-
nality of the belief state, and a measure called the square
distance of the belief state to the goal, which is the sum of
the number of unsatisfied goals in each individual state in the
belief state. Goals are trivially also landmarks, and thus the
number of unsatisfied goals can be seen as a special case of
the number of unsatisfied landmarks, with a trivial landmark
discovery method.

HCP is related to these planners as it also searches in be-
lief space, although it doesn’t explicitly represent and rea-
sons about it. On the other hand, our use of landmark detec-
tion is far beyond any heuristics currently applied by other
belief search planners.

Surprisingly, online planners that plan repeatedly once
new knowledge has been acquired are less popular in this
line of research. This reduces the scalability of these meth-
ods, because the complete plan tree can be exponential in the



Table 1: Comparing the performance of state of the art contingent planners. Blank cells represent problems that the planners
were unable to solve. CSU denotes models that CLG can solve but cannot simulate execution for.

HCP MPSR SDR CLG K-Planner
Name Actions Time Actions Time Actions Time Actions Time Actions Time

cloghuge 55.48 5.9 61.17 117.13 51.76 8.25
(0.304) (0.0452) (0.44) (4.19) (0.33) (0.08)

ebtcs-70 42.32 1.12 44.5 22.4 35.52 3.18 36.52 73.96
(0.6712) (0.0188) (0.7) (0.3) (0.75) (0.07) (0.86) (0.14)

elog7 20 0.32 23.5 1.4 21.76 0.85 20.12 1.4
(0.076) (0.0016) (0.1) (0.1) (0.07) (0.01) (0.05) (0.08)

CB-9-5 324 158.9 392.16 505.48 CSU 358.08 94.18
(2.24) (1.76) (2.81) (8.82) (15.8) (3.31)

CB-9-7 425 373 487.04 833.52 CSU 458.36 116.63
(2.2636) (2.28) (2.95) (15.82) (14.64) (3.24)

doors13 96.68 30 197.92 105.5 120.8 158.54 105.48 330.73 109.72 37.96
(0.52) (0.1296) (1.2) (2.1) (0.93) (2.01) (0.89) (0.21) (4.76) (1.72)

doors15 137.9 52.6 262.2 190 143.24 268.16 150.88 55.24
(1.1052) (0.6228) (1.9) (3.3) (1.36) (3.78) (4.7) (2)

doors17 170 91 368.25 335.3 188 416.88 188.8 79.24
(1.456) (0.708) (3.4) (5.3) (1.64) (6.16) (5.79) (2.62)

localize17 59.8 230.4 45 928.56 CSU
(0.9) (7.7) (0.86) (33.2)

unix3 40.48 1.77 69.7 5.2 56.32 5.47 51.32 18.56 45.48 16.87
(1.156) (0.0448) (1.7) (0.1) (1.72) (0.18) (0.97) (0.05) (4.59) (1.56)

unix4 94.56 20.21 158.6 30.4 151.72 35.22 90.8 189.41 87.04 38.81
(1.88) (0.2868) (4.3) (1.1) (4.12) (0.94) (2.12) (0.6) (8.54) (3.53)

Wumpus15 65.08 9.57 65 126.6 120.14 324.32 101.12 330.54 107.64 7.17
(1.1052) (0.11248) (1.6) (3.1) (2.4) (7.14) (0.67) (0.25) (4.6) (0.6)

Wumpus20 90 34 71.6 261.1 173.21 773.01 155.32 1432 151.52 16.03
(1.3984) (0.3396) (1.2) (7) (3.4) (20.78) (0.95) (0.47) (6.29) (1)

RockSample 105.76 6.3 127.24 113.4
8-12 (0.3984) (0.0496) (0.68) (0.79)

RockSample 135 9 142.08 146.75
8-14 (0.52) (0.038) (0.8) (1.19)

worst case in the number of propositions. Thus, even fully
specifying the plan tree may be impossible.

A second popular approach to contingent planning is the
compilation-based approach (Albore, Palacios, and Geffner,
2009; Shani and Brafman, 2011; Brafman and Shani, 2012a;
Bonet and Geffner, 2011a). These methods translate a PPOS
into a classical planning problem, directly reasoning about
the possible hidden state. Such methods add new “knowl-
edge” propositions and modify actions so that the state space
is transformed into a belief space, essentially allowing a
classical planner to plan in belief space. This reduction
allows leveraging advances in classical planning, such as
recent, powerful heuristic generation methods. In this set-
ting online approaches were developed, that plan only for
branches of the plan tree that can be reached given the true
hidden state at runtime.

Some of these methods make simplifying assumptions
concerning the problem structure, as we do. For example
CLG (Albore, Palacios, and Geffner, 2009) assumes lim-
ited uncertainty, modeled formally through the notion of
conformant-width. Specifically, CLG cannot solve problems
of width larger than 1, like Rock Sample. K-Planner Bonet
and Geffner (2011a) has an even more strict assumption —

it can solve only problems where the unknown proposition
remain constant through the plan execution. This makes rea-
soning about the hidden state much easier, and our reasoning
actions are inspired by this observation.

Conclusion and Future Work
We introduced a new approach to contingent planning, rely-
ing on heuristics computed over a relaxation of the domain
description, without maintaining a belief state explicitly, or
translating the problem into classical planning, which are the
two popular approaches to contingent planning under partial
observability.

Our planner, HCP, leverages certain properties of many
benchmarks in order to avoid the explicit maintenance of
belief states. Domains which do not conform to these prop-
erties, cannot be solved by HCP.

In the future we intend to generalize our assumptions
concerning these properties, and formally identify domains
where HCP works well, and provide a proof for its sound-
ness and completeness for these domains. We will also look
into less strict assumptions that may help us to solve do-
mains which are currently impossible for HCP.



References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A

translation-based approach to contingent planning. In IJ-
CAI, 1623–1628.

Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artif. Intell. 90(1-2):281–300.

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc.
AIPS’00, 52–61.

Bonet, B., and Geffner, H. 2011a. Planning under partial
observability by classical replanning: Theory and experi-
ments. In IJCAI’11.

Bonet, B., and Geffner, H. 2011b. Planning under partial
observability by classical replanning: Theory and experi-
ments. In IJCAI, 1936–1941.

Brafman, R. I., and Shani, G. 2012a. A multi-path compila-
tion approach to contingent planning. In AAAI.

Brafman, R. I., and Shani, G. 2012b. Replanning in domains
with partial information and sensing actions. Journal of
Artificial Intelligence Research (JAIR) 45:565–600.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning graph heuristics for belief space search. JOURNAL
OF AI RESEARCH 26:35–99.

Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS, 71–80.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of AI Research 22:215–
278.

Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound
and complete landmarks for and/or graphs. In Proceed-
ings of the European Conference on Artificial Intelligence
(ECAI), 335–340.

Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded
width. JAIR 35:623–675.

Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks.
JAIR 39:127–177.

Richter, S. 2010. Landmark-Based Heuristics and Search
Control for Automated Planning. Ph.D. Dissertation,
Griffith University.

Shani, G., and Brafman, R. I. 2011. Replanning in domains
with partial information and sensing actions. In IJCAI,
2021–2026.

Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In UAI 2004.

To, S. T.; Pontelli, E.; and Son, T. C. 2009. A conformant
planner with explicit disjunctive representation of belief
states. In ICAPS.

To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the ef-
fectiveness of cnf and dnf representations in contingent
planning. In IJCAI, 2033–2038.

To, S. T.; Son, T. C.; and Pontelli, E. 2011. Contingent
planning as and/or forward search with disjunctive repre-
sentation. In ICAPS.

Zhu, L., and Givan, R. 2003. Landmark extraction via plan-
ning graph propagation. In ICAPS 2003 Doctoral Con-
sortium, 156–160.




