Heuristics for Planning under Partial Observability with Sensing Actions

Shlomi Maliah Guy Shani Ronen Brafman Erez Karpas

ICAPS 2013 Workshop on Heuristic Search for Domain-Independent Planning

Outline

2 Landmarks for PPOS

- 3 The Heuristic Contingent Planner
- 4 Empirical Evaluation

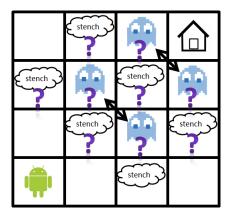
▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Setting

PPOS

Planning under Partial Observability with Sensing Actions

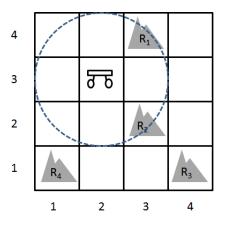
- Partial observability
- Uncertainty about the initial state
- Actions
 - Deterministic
 - Observation effects
 - Conditional effects
- $\bullet \Rightarrow$ Effects of actions during runtime are uncertain


Setting

PPOS

Planning under Partial Observability with Sensing Actions

- Partial observability
- Uncertainty about the initial state
- Actions
 - Deterministic
 - Observation effects
 - Conditional effects
- \Rightarrow Effects of actions during runtime are uncertain


Example PPOS Task 1: Wumpus

- Each Wumpus is in one of two possible locations
- Cells adjacent to a wumpus have stench
- Goal is to reach top right corner

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Example PPOS Task 2: Mars Rover

- Rocks can be good/bad
- Activating sensor tells whether there are good rocks in range of the antenna
- Goal is to sample a good rock

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Formal Setting

- PPOS task $\pi = \langle P, A, \varphi_l, G \rangle$
 - P is a set of propositions
 - A is a set of actions
 - φ_l is a formula that describes the set of possible initial states
 - $G \subseteq P$ is the goal
- Each action $a \in A$ consists of:
 - $pre(a) \subseteq P$ is a set of literals denoting the action's preconditions.
 - *effects*(*a*) is a set of pairs (*c*, *e*) denoting conditional effects, where *c* is a conjunction of literals and *e* is a single literal
 - obs(a) ⊆ P are the propositions whose value is observed when a is executed
- Assume actions either have observations or effects, but not both

PPOS Solution

- Offline:
 - Prepare for every possible outcome in advance
 - Contingent plan / policy possibly very big
- Online
 - Choose the next action to execute online
 - Between every two sensing actions, there is a sequence of non-sensing actions

PPOS Solution

- Offline:
 - Prepare for every possible outcome in advance
 - Contingent plan / policy possibly very big
- Online
 - Choose the next action to execute online
 - Between every two sensing actions, there is a sequence of non-sensing actions

PPOS Solution

• Offline:

- Prepare for every possible outcome in advance
- Contingent plan / policy possibly very big
- Online
 - Choose the next action to execute online
 - Between every two sensing actions, there is a sequence of non-sensing actions

Key Insight

In simple domains, the sequence of non-sensing actions between every two sensing actions, can be obtained by solving a classical planning problem over the original state space of the problem

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Heuristic Contingent Planner — High Level Control

- If we can achieve the goal without sensing do so
 - Classical planning, assuming all unknown propositions are false
- Otherwise, choose a reachable sensing action *a*
- Plan to execute *a*, and execute *a*
- Repeat

▲□▶▲□▶▲□▶▲□▶ □ のQで

Heuristic Contingent Planner — High Level Control

- If we can achieve the goal without sensing do so
 - Classical planning, assuming all unknown propositions are false
- Otherwise, choose a reachable sensing action a
- Plan to execute a, and execute a
- Repeat

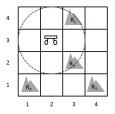
Main Contribution

A novel landmark-based heuristic for choosing the next sensing action in PPOS

Outline

3 The Heuristic Contingent Planner

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

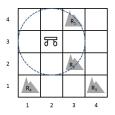

▲□▶▲□▶▲□▶▲□▶ □ のQで

Landmarks

- A landmark is a logical formula over the facts, which must be satisfied by some state along every solution
- Landmark detection is hard even in classical planning
- Challenge for PPOS: must handle uncertainty and sensing
- Our solution:
 - Augment the problem with artificial reasoning actions
 - Join reasoning and observation actions
 - Relax the problem (as for classical planning)

Reasoning Actions: Example

- Suppose we know from φ_l that good-rock₁∨ good-rock₂∨ good-rock₃∨ good-rock₄
- Suppose we also know
 - ¬good-rock₁
 - ¬good-rock₂
 - ¬good-rock₃
- We create a reasoning action that can deduce that *good-rock*₄ holds


▲□▶▲□▶▲□▶▲□▶ □ のQで

Reasoning Actions

- Proposition p ∈ P is constant if its value never changes (Geffner and Palacios)
 - Easy to check that p does not appear in effects of any action
- Create reasoning actions from clauses of φ_l containing only constant propositions
 - For disjunctive clause $c = \bigvee_{i=1..k} l_i$, create actions which "reason" that if k 1 of the literals are false, then the remaining one is true $A_c = \{a_{l_i}\}_{i=1}^k$, with $pre(a_{l_i}) = \bigwedge_{j=1..k, j \neq i} \neg l_j$, and $effects(a_{l_i}) = l_i$
 - For one of clause $c = one of_{i=1..k} I_i$, create actions which "reason" that if one of the literals is true, then all the others are false $A_c = \{a_{l_i}\}_{i=1}^k$, with $pre(a_{l_i}) = I_i$, and $effects(a_{l_i}) = \bigwedge_{j=1..k, j \neq i} \neg I_j$
- Works only when initial state uncertainty is expressed using such clauses

Joining Immediate Reasoning and Observations: Example

- Action activate-sensor-at-2-3
 - Pre: at-2-3
 - CE: good-rock₁ \rightarrow good-rocks-in-range
 - CE: good-rock₂ \rightarrow good-rocks-in-range
- Observation action observe-good-rocks-in-range observes fact good-rocks-in-range
- The only actions which affect good-rocks-in-range are activate-sensor-at-x-y, which are all mutex
- Create two joined actions, for i = 1 and j = 2 and for i = 2 and j = 1, where:
 - Pre: at-2-3 ∧ ¬good-rock_j
 - Obs: good-rocks-in-range
 - Eff: good-rock_i

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Joining Immediate Reasoning and Observations

- Can split propositions into 3 sets:
 - Known (e.g., location of rover/android)
 - Unknown, but observable (e.g., stench/good-rocks-in-range)
 - Unknown and unobservable (e.g., location of wumpus/"goodness" of specific rock)

Joining Immediate Reasoning and Observations

- Let *a* be an action with conditional effects $\{(c_i, e)\}_{i=1}^k$ where
 - c_i is unknown and unobservable, and
 - e is observable, and
 - There is no other action that affects the value of *e* which is not mutually exclusive with *a*
- Let *a*_{obs} be an action that observes *e*
- We create *k* new actions $a_i \circ a_{obs}$ where:
 - $pre(a_i \circ a_{obs}) = pre(a) \land pre(a_{obs}) \land \bigwedge_{j \neq i} \neg c_j$
 - obs(a_i ∘ a_{obs}) = {e}
 - effects(a_i ∘ a_{obs}) = effects_u(a) ∧ c_i, where effects_u(a) are the unconditional effects of a.
- Although this is ad-hoc and not complete, this works in many benchmarks

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Joining Immediate Reasoning and Observations

- Let *a* be an action with conditional effects $\{(c_i, e)\}_{i=1}^k$ where
 - c_i is unknown and unobservable, and
 - e is observable, and
 - There is no other action that affects the value of *e* which is not mutually exclusive with *a*
- Let *a*_{obs} be an action that observes *e*
- We create *k* new actions $a_i \circ a_{obs}$ where:
 - $pre(a_i \circ a_{obs}) = pre(a) \land pre(a_{obs}) \land \bigwedge_{j \neq i} \neg c_j$
 - obs(a_i ∘ a_{obs}) = {e}
 - effects(a_i ∘ a_{obs}) = effects_u(a) ∧ c_i, where effects_u(a) are the unconditional effects of a.
- Although this is ad-hoc and not complete, this works in many benchmarks

▲□▶▲□▶▲□▶▲□▶ □ のQで

Action Relaxation

- Ignore delete effects
- Given action *a* ∈ *A* with *k* conditional effects {(*c_i*, *e_i*) : *i* = 1..*k*}, generate *k* actions where *a*(*c_i*, *e_i*) is defined by

•
$$pre(a_{(c_i,e_i)}) = pre(a) \land c_i$$

• $effects(a_{(c_i,e_i)}) = effects(a) \land e_i$

Landmark Detection

- We use a landmark detection algorithm for a classical task
- The classical task is generated by:
 - Adding reasoning actions
 - Joining reasoning and observation actions
 - Relaxing the actions in the original task
- One modification to classical landmark detection: "optimistic" sensing — we assume a sensing action will sense the required value

Properties of PPOS Landmark Detection

- Sound
- Not complete
- Only works for certain (common) types of problems
- Example: joining sensing and reasoning fails to capture cases with sequences of actions over unobservable propositions

Outline

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Overall Scheme

- If we can achieve the goal without sensing do so
- Otherwise, choose a reachable sensing action a
- Plan to execute *a*, and execute *a*
- Repeat

• Note: reachability is checked in the *relaxed* problem

Choosing the Next Sensing Action

- Denote by s what is reachable now
- For each reachable sensing action a
 - Assume a senses true, and denote by s'_+ what is reachable
 - Assume a senses false and denote by s' what is reachable
- Score for *a* is:
 - number of landmarks satisfied in s'_+ and s'_- , but not in s
- Tie-breaking by:
 - **()** number of literals achievable in s'_+ and s'_- , but not in s
 - ② number of sensing actions achievable in s'_+ and s'_- , but not in s
 - number of actions required from current state before a can be executed (in relaxed problem)

Outline

- 2 Landmarks for PPOS
- 3 The Heuristic Contingent Planner

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Empirical Results

	HCP		MPSR		SDR		CLG		K-Planner	
Name	A.	T.	A.	T.	Α.	Т.	Α.	Т.	Α.	T.
cloghuge	55.48	5.9			61.17	117.13	51.76	8.25		
ebtcs-70	42.32	1.12	44.5	22.4	35.52	3.18	36.52	73.96		
elog7	20	0.32	23.5	1.4	21.76	0.85	20.12	1.4		
CB-9-5	324	158.9			392.16	505.48	CSU		358.08	94.18
CB-9-7	425	373			487.04	833.52	CSU		458.36	116.63
doors13	96.68	30	197.92	105.5	120.8	158.54	105.48	330.73	109.72	37.96
doors15	137.9	52.6	262.2	190	143.24	268.16			150.88	55.24
doors17	170	91	368.25	335.3	188	416.88			188.8	79.24
localize17			59.8	230.4	45	928.56	CSU			
unix3	40.48	1.77	69.7	5.2	56.32	5.47	51.32	18.56	45.48	16.87
unix4	94.56	20.21	158.6	30.4	151.72	35.22	90.8	189.41	87.04	38.81
Wumpus15	65.08	9.57	65	126.6	120.14	324.32	101.12	330.54	107.64	7.17
Wumpus20	90	34	71.6	261.1	173.21	773.01	155.32	1432	151.52	16.03
Rock 8-12	105.76	6.3			127.24	113.4				
Rock 8-14	135	9			142.08	146.75				

Summary

- Presented a method for discovering landmarks in PPOS
- Presented a landmark-based heuristic for choosing the next sensing action in online PPOS
- An online planner using this heuristic performs very well

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Thank You