Optimal Planning and Shortcut Learning:
An Unfulfilled Promise

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management,
Technion — Israel Institute of Technology

May 28, 2013

<<

Background

Outline

e Background

<<

Background

STRIPS

@ A sTRIPS planning problem with action costs is a 5-tuple
MNn=(P,sy,G,AC)

P is a set of boolean propositions

Sp C P is the initial state

G C Pis the goal

Ais a set of actions.

Each action is a triple a = (pre(a),add(a),del(a))

C : A— R assigns a cost to each action

@ Applying action sequence p = (a, a1, ..., an) at state s leads to

s[lp]]

@ The cost of action sequence p is Y/, C(a;)

=

Background

Intended Effects

Chicken logic
Why did the chicken cross the road?

=

Background

Intended Effects

Chicken logic

Why did the chicken cross the road?
To get to the other side

<<

Background

Intended Effects

Chicken logic
Why did the chicken cross the road?
To get to the other side

4

Every action along an optimal plan is there for a reason

@ Achieve a precondition for another action

@ Achieve a goal

=

Intended Effects — Example

=

Background

Intended Effects — Example

wi= wi=

=

Background

Intended Effects — Example

wi= wi=

@ If (load-o-t;) is the beginning of an optimal plan, then:

<<

Background

Intended Effects — Example

wi= wi=

@ If (load-o-t;) is the beginning of an optimal plan, then:
e There must be a reason for applying load-o-t

<<

Background

Intended Effects — Example

wi= wi=

@ If (load-o0-t;) is the beginning of an optimal plan, then:
e There must be a reason for applying load-o-t
e load-o-t; achieves o-in-t

=

Background

Intended Effects — Example

wi= wi=

@ If (load-o0-t;) is the beginning of an optimal plan, then:
e There must be a reason for applying load-o-t
e load-o-t; achieves o-in-t
@ Any continuation of this path to an optimal plan must use some
action which requires o-in-t

=

Background

Intended Effects — Formal Definition

Intended Effects

Given a path T = (ap, a1, ... ap) a set of propositions X C s [[7]] is an
intended effect of 7 iff there exists a path 7’ such that - 7’ is an
optimal plan and @’ consumes exactly X, i.e.,

(p € X iff there is a causal link (a;,p, g) in - 7/, with a; € 7 and

a €n').

@ |E(m) — the set of all intended effect of

<<

Background

Intended Effects: Complexity

Hard to Find Exactly
It is P-SPACE Hard to find the intended effects of path 7.

Sound Approximation

We can use supersets of IE(7) to derive constraints about any
continuation of 7.

<<

Background

Shortcuts and Approximate Intended Effects

X can not be an intended effect of « if there is a cheaper way to
achieve X

=

Background

Shortcuts and Approximate Intended Effects

X can not be an intended effect of « if there is a cheaper way to
achieve X

(s N
<&

=

Background

Shortcuts and Approximate Intended Effects

X can not be an intended effect of « if there is a cheaper way to
achieve X

=

Background

Shortcuts and Approximate Intended Effects

X can not be an intended effect of « if there is a cheaper way to
achieve X

Any continuation of 7 into an optimal
plan must use some factin s\ s

c(r') < o(x)

=

Background

Shortcuts and Approximate Intended Effects: Example

<<

Background

Shortcuts and Approximate Intended Effects: Example

s
®

= (drive-t;-A-B)

<<

Background

Shortcuts and Approximate Intended Effects: Example

ke
e

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

<<

Background

Shortcuts and Approximate Intended Effects: Example

ke
e

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

' = (drive-t,-A-B)

<<

Background

Shortcuts and Approximate Intended Effects: Example

ke
e

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

nt! = (drive-t,-A-B)
@ fr-at-B can not be an intended effect of T — we must use t;-at-B

<<

Background

Shortcuts and Approximate Intended Effects: Example

ke
e

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

nt! = (drive-t,-A-B)
@ fr-at-B can not be an intended effect of T — we must use t;-at-B
n” = (drive-t;-A-B)

<<

Background

Shortcuts and Approximate Intended Effects: Example

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

nt’ = (drive-t,-A-B)

@ fr-at-B can not be an intended effect of T — we must use t;-at-B
n” = (drive-t;-A-B)

@ ty-at-B can not be an intended effect of T — we must use f-at-B

<<

Background

Shortcuts and Approximate Intended Effects: Example

@ @ 7 = (drive-t;-A-B ,drive-t,-A-B)

nt’ = (drive-t,-A-B)

@ fr-at-B can not be an intended effect of T — we must use t;-at-B
n” = (drive-t;-A-B)

@ ty-at-B can not be an intended effect of T — we must use f-at-B
We must use both tj-at-B and f-at-B

<<

Background

Finding Shortcuts

@ Where do the shortcuts come from?
@ They can be dynamically generated for each path

@ Our previous paper used the causal structure of the current path
— a graph whose nodes are action occurrences, with an edge
from g; to g; if there is a causal link where a; provides some
proposition for a;

@ Previous shortcut rules attempted to remove some actions,
according to the the causal structure, to obtain a shortcut

<<

Background
Shortcuts Example

Causal Structure

s
s

<<

Background

Shortcuts Example

Causal Structure

© (G AD)

A B

7 = (drive-t-A-B)

<<

Background

Shortcuts Example

Causal Structure

e
L_'/—t;-'l_—l (drive-t1-A-B) (drive-t,-A-B)

7 = (drive-ti-A-B drive-t,-A-B)

<<

Background

Shortcuts Example

Causal Structure

drive-ti-A-B drive-t,-A-B
_ 5 FAE) (FweesD

n = (drive-;-A-B ,drive-t,-A-B ,drive-t;-B-C)

<<

Background

Shortcuts Example

Causal Structure

v drive-t;-A-B drive-t-A-B
: Scs CTE
drive-t;-B-C

drive-t;-C-A

7 = (drive-t;-A-B ,drive-t,-A-B ,drive-t;-B-C ,drive-t;-C-A)

<<

Background

Shortcuts Example

Causal Structure

drive-t>-A-B

Arive-t,-C-A

7 = (drive-t;-A-B ,drive-t,-A-B ,drive-t;-B-C ,drive-t;-C-A)
7' = (drive-t,-A-B)

<<

Background

Shortcut Rules that Add Actions

@ The previous shortcut rules only remove actions from 7

=

Background

Shortcut Rules that Add Actions

@ The previous shortcut rules only remove actions from 7

rira

A B

= { drive-t;-A-B)

=

Background

Shortcut Rules that Add Actions

@ The previous shortcut rules only remove actions from 7

7 = (drive-t;-A-B ,drive-;-B-C)

=

Background

Shortcut Rules that Add Actions

@ The previous shortcut rules only remove actions from 7

7 = (drive-t;-A-B ,drive-;-B-C)

@ The previous shortcut rules can not generate the shortcut
n’ = (drive-t;-A-C)

=

Learning Shortcut Rules

Outline

e Learning Shortcut Rules

=

Learning Shortcut Rules

Learning Shortcut Rules that Add Actions

@ We developed techniques for learning shortcut rules that add new
actions

These shortcut rules do not improve performance

=

Learning Shortcut Rules

When to Learn

@ Recall that a good shortcut 7’ achieves almost everything the
original path & did

@ Inthe extreme: 7’ achieves everything 7 achieved
@ The search algorithm detects when this happens — when a new
path to an existing state is detected

@ We learn whenever we have two paths reaching the same state,
regardless of whether the new path is cheaper or not

<<

Learning Shortcut Rules

How to Learn

@ The input to our learning algorithm is two paths reaching the
same state

@ Instead of looking at the state as a whole, we look at individual
facts, and the causal structure leading to each fact

T i

(drive-t;-A-B drive-t,-A-B drive-t;-B-C) (drive-t;-A-C drive-t-A-B)

(drive-t;-A-B) drive-t,-A-B) [omve-t1 -A- c] (drive-t,-A-B)

drive-t,-B-C

¥

Learning Shortcut Rules

How to Learn

@ The input to our learning algorithm is two paths reaching the
same state

@ Instead of looking at the state as a whole, we look at individual
facts, and the causal structure leading to each fact

/

T T
(drive-t;-A-B drive-t;-B-C) | (drive-t;-A-C)
drive-t;-A-B drive-t-A-C

drive-t,-B-C

=l

Learning Shortcut Rules

How to Learn

@ The input to our learning algorithm is two paths reaching the
same state

@ Instead of looking at the state as a whole, we look at individual
facts, and the causal structure leading to each fact

T i

(drive-t-A-B Yol drive-t,-A-B)

Learning Shortcut Rules

Shortcut Rules

@ From the pair of partial paths reaching each fact, we learn a new
shortcut rule
@ Shortcut rules are used when a path 7 is evaluated, as follows:

@ Each shortcut rule is checked for applicability
@ Ifitis applicable, a set of shortcuts is generated
© From each such shortcut, an 3-opt landmark is derived

@ Three types of shortcut rules, which differ in the details of these
steps

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t,-A-B)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)
(drive-t,-C-A, drive-t;-A-C)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)

(drive-t,-C-A, drive-t;-A-C)
(drive-to-C-A, drive-t;-A-C, drive-t,-A-B)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

Example 1
7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)

(drive-t,-C-A, drive-t;-A-C)
(drive-to-C-A, drive-t;-A-C, drive-t,-A-B)

| A

Example 2
7 = (drive-t,-C-A, drive-t;-A-B, drive-t;-A-B, drive-t;-B-C)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

Example 1
7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)

(drive-t,-C-A, drive-t;-A-C)
(drive-to-C-A, drive-t;-A-C, drive-t,-A-B)

| A

Example 2
7 = (drive-t,-C-A, drive-t;-A-B, drive-t;-A-B, drive-t;-B-C)

<<

Learning Shortcut Rules

Concrete Shortcut Rule

(drive-t;-A-B, drive-t;-B-C) «— (drive-t;-A-C)

Example 1
7 = (drive-t-C-A, drive-t;-A-B, drive-t;-B-C, drive-t>-A-B)

(drive-t,-C-A, drive-t;-A-C)
(drive-to-C-A, drive-t;-A-C, drive-t,-A-B)

| A

Example 2
7 = (drive-t,-C-A, drive-t;-A-B, drive-t;-A-B, drive-t;-B-C)

Not applicable

<<

Learning Shortcut Rules

Unordered Shortcut Rule

{drive-t;-A-B, drive-t;-B-C} < {drive-t;-A-C}

Example 1
7 = (drive-t,-C-A, drive-t;-A-B, drive-t;-B-C, drive-t,-A-B)

(drive-to-C-A, drive-t;-A-C)
(drive-t,-C-A, drive-t;-A-C, drive-t,-A-B)

| A

Example 2
7T = (drive-t,-C-A, drive-t;-A-B, drive-t,-A-B, drive-t;-B-C)

(drive-t,-C-A, drive-t;-A-C)
(drive-to-C-A, drive-t;-A-C, drive-t-A-B)

<<

Learning Shortcut Rules

Generalized Shortcut Rule

{drive-T-X-Y, drive-T-Y-Z} « {drive-T-X-Z}

7 = (drive-t;-B-C, drive-t,-A-B, drive-t;-C-A)

(drive-t;-B-A, drive-t,-A-B)

<<

Learning Shortcut Rules

The Utility Problem

@ Checking if a shortcut rule is applicable takes time
@ Sometimes, this applicabilty check says the rule is not applicable
@ This is the well known utility problem

@ We address it by keeping counts of how many times each rule
was checked for applicability, and how many times it was
applicable

@ Low utlity shortcut rules are discarded

<<

Empirical Evaluation

Outline

© Empirical Evaluation

=

Empirical Evaluation

Coverage

Shortcut Rules | Solved Problems
none 661
concrete 609
unordered 585
generalized 487

@ None of the shortcut rules solve more problems than no shortcuts

in any domain

=

Empirical Evaluation

Expansions

Shortcut Rules | Total Expanded States
none 3785517
concrete 3758042
unordered 3736052
generalized 3777860

@ The reduction in total number of expanded state for commonly
solved problems is about 1%

=

Empirical Evaluation

Discussions

@ Possible reasons for failure:

e Concrete shortcut rules are too strict

e Unordered and generalized shortcut rules generate too many
possible shortcuts, and we only look at some of them

e The base heuristic (3-opt and regular landmarks) is already very
powerful

@ Future work:

e Exploit the partial order information from the causal structure
e Smarter ways of applying unordered/generalized shortcut rules
e Inter-problem learning with generalized shortcut rules

<<

Empirical Evaluation

Discussions

@ Possible reasons for failure:

e Concrete shortcut rules are too strict

e Unordered and generalized shortcut rules generate too many
possible shortcuts, and we only look at some of them

e The base heuristic (3-opt and regular landmarks) is already very
powerful

@ Future work:

Exploit the partial order information from the causal structure
Smarter ways of applying unordered/generalized shortcut rules
Inter-problem learning with generalized shortcut rules

Insert your idea here

<<

Thank You

<<

	Background
	Learning Shortcut Rules
	Empirical Evaluation

