Optimal Planning and Shortcut Learning: An Unfulfilled Promise

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management, Technion — Israel Institute of Technology

May 28, 2013

2 Learning Shortcut Rules

(ロト (P) (E) (E) (O Q)

STRIPS

- A STRIPS planning problem with action costs is a 5-tuple
 - $\Pi = \langle P, s_0, G, A, C \rangle$
 - P is a set of boolean propositions
 - $s_0 \subseteq P$ is the initial state
 - $G \subseteq P$ is the goal
 - A is a set of actions.
 - Each action is a triple $a = \langle pre(a), add(a), del(a) \rangle$
 - $C: A \to \mathbb{R}^{0+}$ assigns a cost to each action
- Applying action sequence $ho=\langle a_0,a_1,\ldots,a_n
 angle$ at state s leads to s[[
 ho]]
- The cost of action sequence ρ is $\sum_{i=0}^{n} C(a_i)$

Intended Effects

Chicken logic

Why did the chicken cross the road?

Intended Effects

Chicken logic

Why did the chicken cross the road? To get to the other side

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Intended Effects

Chicken logic

Why did the chicken cross the road? To get to the other side

Observation

Every action along an optimal plan is there for a reason

- Achieve a precondition for another action
- Achieve a goal

<ロ> (四) (四) (三) (三) (三)

Intended Effects — Example

• If $\langle \text{load-}o-t_1 \rangle$ is the beginning of an optimal plan, then:

- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

<ロ> (四) (四) (三) (三) (三)

Intended Effects — Example

• If $\langle load-o-t_1 \rangle$ is the beginning of an optimal plan, then:

- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

• If $\langle load-o-t_1 \rangle$ is the beginning of an optimal plan, then:

- There must be a reason for applying load-o-t₁
- load-o-t1 achieves o-in-t1
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう イヨン

• If $\langle load-o-t_1 \rangle$ is the beginning of an optimal plan, then:

- There must be a reason for applying load-o-t1
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう イヨン

- If $\langle load-o-t_1 \rangle$ is the beginning of an optimal plan, then:
 - There must be a reason for applying load-o-t1
 - load-o-t₁ achieves o-in-t₁
 - Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう イヨン

- If $\langle load-o-t_1 \rangle$ is the beginning of an optimal plan, then:
 - There must be a reason for applying load-o-t1
 - load-o-t₁ achieves o-in-t₁
 - Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう イヨン

Intended Effects — Formal Definition

Intended Effects

Given a path $\pi = \langle a_0, a_1, \dots a_n \rangle$ a set of propositions $X \subseteq s_0[[\pi]]$ is an intended effect of π iff there exists a path π' such that $\pi \cdot \pi'$ is an optimal plan and π' consumes exactly X, i.e., $(p \in X \text{ iff there is a causal link } \langle a_i, p, a_j \rangle \text{ in } \pi \cdot \pi', \text{ with } a_i \in \pi \text{ and } a_j \in \pi').$

• $IE(\pi)$ — the set of all intended effect of π

Intended Effects: Complexity

Hard to Find Exactly

It is P-SPACE Hard to find the intended effects of path π .

Sound Approximation

We can use supersets of $IE(\pi)$ to derive constraints about any continuation of π .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

ヘロト 人間 とくほとく ほとう

3

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

Any continuation of π into an optimal plan must use some fact in $s \setminus s'$

э.

Shortcuts and Approximate Intended Effects: Example

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B*

э

Shortcuts and Approximate Intended Effects: Example

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B*

э

Shortcuts and Approximate Intended Effects: Example

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B*

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

э

Shortcuts and Approximate Intended Effects: Example

 $\pi' = \langle \mathsf{drive-}t_2 \text{-}A \text{-}B
angle$

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B*

э

Shortcuts and Approximate Intended Effects: Example

- $\pi' = \langle \mathsf{drive-}\mathit{t_2} extsf{-}\mathit{A} extsf{-}\mathit{B}
 angle$
 - t_2 -at-*B* can not be an intended effect of π we must use t_1 -at-*B*

э

Shortcuts and Approximate Intended Effects: Example

 $\pi'=\langle \mathsf{drive-}\mathit{t_2} extsf{-}\mathit{A} extsf{-}\mathit{B}
angle$

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B* $\pi'' = \langle drive-t_1-A-B \rangle$

э

Shortcuts and Approximate Intended Effects: Example

 $\pi'=\langle \mathsf{drive-}\mathit{t_2} extsf{-}\mathit{A} extsf{-}\mathit{B}
angle$

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B* $\pi'' = \langle drive-t_1-A-B \rangle$

t₁-at-B can not be an intended effect of π — we must use t₂-at-B

イロト イポト イヨト イヨト

э

Shortcuts and Approximate Intended Effects: Example

 $\pi'=\langle \mathsf{drive-}\mathit{t_2} extsf{-}m{A} extsf{-}m{B}
angle$

• t_2 -at-*B* can not be an intended effect of π — we must use t_1 -at-*B* $\pi'' = \langle drive-t_1-A-B \rangle$

• t_1 -at-*B* can not be an intended effect of π — we must use t_2 -at-*B* We must use both t_1 -at-*B* and t_2 -at-*B*

イロト 不得 トイヨト イヨト 三日

Finding Shortcuts

- Where do the shortcuts come from?
- They can be dynamically generated for each path
- Our previous paper used the causal structure of the current path

 a graph whose nodes are action occurrences, with an edge from a_i to a_j if there is a causal link where a_i provides some proposition for a_j
- Previous shortcut rules attempted to remove some actions, according to the the causal structure, to obtain a shortcut

◆□> ◆□> ◆豆> ◆豆> □豆

Shortcuts Example

Causal Structure

 $\pi = \langle$

>

ヘロト 人間 とくほとく ほとう

Ñ

æ

Shortcuts Example

 $\pi = \langle \text{ drive-}t_1 - A - B \rangle$

æ

ヘロト 人間 とくほとく ほとう

Shortcuts Example

 $\pi = \langle \ ext{drive-}t_1 ext{-}A ext{-}B ext{,} ext{drive-}t_2 ext{-}A ext{-}B$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Shortcuts Example

 $\pi = \langle \text{ drive-}t_1 - A - B, \text{drive-}t_2 - A - B, \text{drive-}t_1 - B - C \rangle$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Shortcuts Example

 $\pi = \langle \text{ drive-}t_1 - A - B, \text{ drive-}t_2 - A - B, \text{ drive-}t_1 - B - C, \text{ drive-}t_1 - C - A \rangle$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Shortcuts Example

 $\pi = \langle \text{ drive-}t_1-A-B , \text{drive-}t_2-A-B , \text{drive-}t_1-B-C , \text{drive-}t_1-C-A \rangle$ $\pi' = \langle \text{drive-}t_2-A-B \rangle$

Shortcut Rules that Add Actions

• The previous shortcut rules only remove actions from π

• The previous shortcut rules can not generate the shortcut $\pi' = \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Shortcut Rules that Add Actions

• The previous shortcut rules only remove actions from π

 $\pi = \langle \text{ drive-}t_1 - A - B \rangle$

• The previous shortcut rules can not generate the shortcut $\pi' = \langle drive-t_1-A-C \rangle$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Shortcut Rules that Add Actions

• The previous shortcut rules only remove actions from π

 $\pi = \langle \ \mathsf{drive-}t_1 \text{-} A \text{-} B \ \mathsf{,} \mathsf{drive-}t_1 \text{-} B \text{-} C \
angle$

• The previous shortcut rules can not generate the shortcut $\pi' = \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Shortcut Rules that Add Actions

• The previous shortcut rules only remove actions from π

 $\pi = \langle \ \mathsf{drive-}t_1 \text{-} A \text{-} B \ \mathsf{,} \mathsf{drive-}t_1 \text{-} B \text{-} C \
angle$

• The previous shortcut rules can not generate the shortcut $\pi' = \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Learning Shortcut Rules that Add Actions

We developed techniques for learning shortcut rules that add new actions

Spoiler

These shortcut rules do not improve performance

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

When to Learn

- Recall that a good shortcut π' achieves almost everything the original path π did
- In the extreme: π' achieves everything π achieved
- The search algorithm detects when this happens when a new path to an existing state is detected
- We learn whenever we have two paths reaching the same state, regardless of whether the new path is cheaper or not

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

▲□▶▲□▶▲□▶▲□▶ □ のQで

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─

Shortcut Rules

- From the pair of partial paths reaching each fact, we learn a new shortcut rule
- Shortcut rules are used when a path π is evaluated, as follows:
 - Each shortcut rule is checked for applicability
 - If it is applicable, a set of shortcuts is generated
 - Isom each such shortcut, an ∃-opt landmark is derived
- Three types of shortcut rules, which differ in the details of these steps

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \frac{\text{drive-}t_1 - A - B}{\text{drive-}t_1 - B - C}, \frac{\text{drive-}t_2 - A - B}{\text{drive-}t_2 - A - B} \rangle$

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$ $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C, \text{drive-}t_2 - A - B \rangle$

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$ $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C, \text{drive-}t_2 - A - B \rangle$

Example 2

 $\pi = \langle \text{drive-}t_2 \text{-}C \text{-}A, \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_2 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle$

Ĩ

э

ヘロト ヘアト ヘリト ヘリト

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$ $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C, \text{drive-}t_2 - A - B \rangle$

Example 2

 $\pi = \langle \text{drive-}t_2 \text{-}C \text{-}A, \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_2 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \rangle$

Ĩ

э

ヘロト ヘアト ヘリト ヘリト

Rule

 $\langle \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle \leftarrow \langle \text{drive-}t_1 \text{-}A \text{-}C \rangle$

Example 1

 $\pi = \langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - B, \text{drive-}t_1 - B - C, \text{drive-}t_2 - A - B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$ $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C, \text{drive-}t_2 - A - B \rangle$

Example 2

 $\pi = \langle \text{drive-}t_2 - C - A, \frac{\text{drive-}t_1 - A - B}{\text{drive-}t_2 - A - B}, \frac{\text{drive-}t_1 - B - C}{\text{drive-}t_1 - B - C} \rangle$

Not applicable

Ĩ

э

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Unordered Shortcut Rule

Rule

$$\{\text{drive-}t_1\text{-}A\text{-}B, \text{drive-}t_1\text{-}B\text{-}C\} \leftarrow \{\text{drive-}t_1\text{-}A\text{-}C\}$$

Example 1

 $\pi = \langle \text{drive-}t_2 \text{-}C \text{-}A, \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C, \text{drive-}t_2 \text{-}A \text{-}B \rangle$

 $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C \rangle$ $\langle \text{drive-}t_2 - C - A, \text{drive-}t_1 - A - C, \text{drive-}t_2 - A - B \rangle$

Example 2

 $\pi = \langle \text{drive-}t_2 \text{-}C \text{-}A, \text{drive-}t_1 \text{-}A \text{-}B, \text{drive-}t_2 \text{-}A \text{-}B, \text{drive-}t_1 \text{-}B \text{-}C \rangle$

$$\langle \text{drive-}t_2 - C - A, \text{ drive-}t_1 - A - C \rangle$$

 $\langle \text{drive-}t_2 - C - A, \text{ drive-}t_1 - A - C, \text{ drive-}t_2 - A - B \rangle$

Generalized Shortcut Rule

Rule

$$\{ \text{drive-}T\text{-}X\text{-}Y, \text{drive-}T\text{-}Y\text{-}Z \} \leftarrow \{ \text{drive-}T\text{-}X\text{-}Z \}$$

Example 1

$$\pi = \langle \operatorname{drive-} t_1 - B - C, \operatorname{drive-} t_2 - A - B, \operatorname{drive-} t_1 - C - A \rangle$$

 $\langle \text{drive-}t_1 - B - A, \text{drive-}t_2 - A - B \rangle$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The Utility Problem

- Checking if a shortcut rule is applicable takes time
- Sometimes, this applicability check says the rule is not applicable
- This is the well known utility problem
- We address it by keeping counts of how many times each rule was checked for applicability, and how many times it was applicable
- Low utility shortcut rules are discarded

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Shortcut Rules	Solved Problems
none	661
concrete	609
unordered	585
generalized	487

 None of the shortcut rules solve more problems than no shortcuts in any domain

ñ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Shortcut Rules	Total Expanded States
none	3785517
concrete	3758042
unordered	3736052
generalized	3777860

 The reduction in total number of expanded state for commonly solved problems is about 1%

イロト 不得 トイヨト イヨト 三日

Discussions

- Possible reasons for failure:
 - Concrete shortcut rules are too strict
 - Unordered and generalized shortcut rules generate too many possible shortcuts, and we only look at some of them
 - The base heuristic (∃-opt and regular landmarks) is already very powerful
- Future work:
 - Exploit the partial order information from the causal structure
 - Smarter ways of applying unordered/generalized shortcut rules
 - Inter-problem learning with generalized shortcut rules
 - Insert your idea here

Discussions

- Possible reasons for failure:
 - Concrete shortcut rules are too strict
 - Unordered and generalized shortcut rules generate too many possible shortcuts, and we only look at some of them
 - The base heuristic (∃-opt and regular landmarks) is already very powerful
- Future work:
 - Exploit the partial order information from the causal structure
 - Smarter ways of applying unordered/generalized shortcut rules
 - Inter-problem learning with generalized shortcut rules
 - Insert your idea here

Ĩ

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Thank You