Optimal Planning and Shortcut Learning: An Unfulfilled Promise

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology

May 28, 2013

Outline

2 Learning Shortcut Rules

(3) Empirical Evaluation

STRIPS

- A strips planning problem with action costs is a 5 -tuple $\Pi=\left\langle P, s_{0}, G, A, C\right\rangle$
- P is a set of boolean propositions
- $s_{0} \subseteq P$ is the initial state
- $G \subseteq P$ is the goal
- A is a set of actions.
- Each action is a triple $a=\langle\operatorname{pre}(a), \operatorname{add}(a), \operatorname{del}(a)\rangle$
- $C: A \rightarrow \mathbb{R}^{0+}$ assigns a cost to each action
- Applying action sequence $\rho=\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle$ at state s leads to $s[[\rho]]$
- The cost of action sequence ρ is $\sum_{i=0}^{n} C\left(a_{i}\right)$

Intended Effects

Chicken logic
Why did the chicken cross the road?

$\widetilde{7}$

Intended Effects

Chicken logic
Why did the chicken cross the road?
To get to the other side

$\widetilde{7}$

Intended Effects

Chicken logic
Why did the chicken cross the road?
To get to the other side

Observation

Every action along an optimal plan is there for a reason

- Achieve a precondition for another action
- Achieve a goal

Intended Effects - Example

- If $\left\langle\right.$ load-o-t $\left.t_{1}\right\rangle$ is the beginning of an optimal plan, then:

Intended Effects - Example

- If $\left\langle\right.$ load $\left.-o-t_{1}\right\rangle$ is the beginning of an optimal plan, then:

Intended Effects - Example

- If $\left\langle\right.$ load $\left.-o-t_{1}\right\rangle$ is the beginning of an optimal plan, then:
- There must be a reason for applying load-o- t_{1}
- load-o- t_{1} achieves o-in- t_{1}
- Any continuation of this path to an optimal plan must use some action which requires o-in- t_{1}

Intended Effects — Example

- If $\left\langle\right.$ load $\left.-o-t_{1}\right\rangle$ is the beginning of an optimal plan, then:
- There must be a reason for applying load- $o-t_{1}$
- load-o- t_{1} achieves o-in- t_{1}
- Any continuation of this path to an optimal plan must use some action which requires o-in- t_{1}

Intended Effects — Example

- If $\left\langle\right.$ load $\left.-o-t_{1}\right\rangle$ is the beginning of an optimal plan, then:
- There must be a reason for applying load-o- t_{1}
- load-o- t_{1} achieves o-in- t_{1}
- Any continuation of this path to an optimal plan must use some action which requires o-in- t_{1}

Intended Effects - Example

- If $\left\langle\right.$ load- $\left.o-t_{1}\right\rangle$ is the beginning of an optimal plan, then:
- There must be a reason for applying load-o- t_{1}
- load-o- t_{1} achieves o-in- t_{1}
- Any continuation of this path to an optimal plan must use some action which requires o-in- t_{1}

Intended Effects — Formal Definition

Intended Effects

Given a path $\pi=\left\langle a_{0}, a_{1}, \ldots a_{n}\right\rangle$ a set of propositions $X \subseteq s_{0}[[\pi]]$ is an intended effect of π iff there exists a path π^{\prime} such that $\pi \cdot \pi^{\prime}$ is an optimal plan and π^{\prime} consumes exactly X, i.e.,
($p \in X$ iff there is a causal link $\left\langle a_{i}, p, a_{j}\right\rangle$ in $\pi \cdot \pi^{\prime}$, with $a_{i} \in \pi$ and $\left.a_{j} \in \pi^{\prime}\right)$.

- $\operatorname{IE}(\pi)$ - the set of all intended effect of π

Intended Effects: Complexity

Hard to Find Exactly

It is P-SPACE Hard to find the intended effects of path π.

Sound Approximation

We can use supersets of $\operatorname{IE}(\pi)$ to derive constraints about any continuation of π.

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X
§

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

$C\left(\pi^{\prime}\right)<C(\pi)$

Shortcuts and Approximate Intended Effects

Intuition

X can not be an intended effect of π if there is a cheaper way to achieve X

Any continuation of π into an optimal plan must use some fact in $s \backslash s^{\prime}$
$C\left(\pi^{\prime}\right)<C(\pi)$

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\langle
$$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

- $t_{2}-$ at- B can not be an intended effect of $\pi-$ we must use $t_{1}-$ at- B
- t_{1}-at- B can not be an intended effect of $\pi-$ we must use $t_{2}-a t-B$

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B $\pi^{\prime \prime}=\left\langle\right.$ drive $\left.-t_{1}-A-B\right\rangle$
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B $\pi^{\prime \prime}=\left\langle\right.$ drive $\left.-t_{1}-A-B\right\rangle$
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B

Shortcuts and Approximate Intended Effects: Example

$$
\pi=\left\langle\text { drive }-t_{1}-A-B \text {,drive }-t_{2}-A-B\right\rangle
$$

$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

- t_{2}-at- B can not be an intended effect of π - we must use t_{1}-at- B $\pi^{\prime \prime}=\left\langle\right.$ drive $\left.-t_{1}-A-B\right\rangle$
- t_{1}-at- B can not be an intended effect of π - we must use t_{2}-at- B We must use both t_{1}-at- B and t_{2}-at- B

Finding Shortcuts

- Where do the shortcuts come from?
- They can be dynamically generated for each path
- Our previous paper used the causal structure of the current path - a graph whose nodes are action occurrences, with an edge from a_{i} to a_{j} if there is a causal link where a_{i} provides some proposition for a_{j}
- Previous shortcut rules attempted to remove some actions, according to the the causal structure, to obtain a shortcut

Shortcuts Example

Causal Structure

Shortcuts Example

Causal Structure

$$
\pi=\left\langle\text { drive }-t_{1}-A-B\right.
$$

Shortcuts Example

Causal Structure

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$,drive $-t_{2}-A-B$

Shortcuts Example

Causal Structure

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$,drive $-t_{2}-A-B$,drive $-t_{1}-B-C$

Shortcuts Example

Causal Structure

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$, drive $-t_{2}-A-B$, drive $-t_{1}-B-C$,drive $\left.-t_{1}-C-A\right\rangle$

Shortcuts Example

Causal Structure

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$, drive $-t_{2}-A-B$,drive $-t_{1}-B-C$,drive $\left.-t_{1}-C-A\right\rangle$
$\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{2}-A-B\right\rangle$

Shortcut Rules that Add Actions

- The previous shortcut rules only remove actions from π

$\pi=\langle$
- The previous shortcut rules can not generate the shortcut $\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Shortcut Rules that Add Actions

- The previous shortcut rules only remove actions from π

$$
\pi=\left\langle\text { drive }-t_{1}-A-B\right.
$$

- The previous shortcut rules can not generate the shortcut $\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Shortcut Rules that Add Actions

- The previous shortcut rules only remove actions from π

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle$
- The previous shortcut rules can not generate the shortcut $\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Shortcut Rules that Add Actions

- The previous shortcut rules only remove actions from π

$\pi=\left\langle\right.$ drive $-t_{1}-A-B$,drive $\left.-t_{1}-B-C\right\rangle$
- The previous shortcut rules can not generate the shortcut $\pi^{\prime}=\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Outline

(1) Background

2 Learning Shortcut Rules

(3) Empirical Evaluation

Learning Shortcut Rules that Add Actions

- We developed techniques for learning shortcut rules that add new actions

Spoiler

These shortcut rules do not improve performance

When to Learn

- Recall that a good shortcut π^{\prime} achieves almost everything the original path π did
- In the extreme: π^{\prime} achieves everything π achieved
- The search algorithm detects when this happens - when a new path to an existing state is detected
- We learn whenever we have two paths reaching the same state, regardless of whether the new path is cheaper or not

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

How to Learn

- The input to our learning algorithm is two paths reaching the same state
- Instead of looking at the state as a whole, we look at individual facts, and the causal structure leading to each fact

$\begin{gathered} \pi \\ \left\langle\text { drive }-t_{1}-A-B\right. \\ \text { drive }-t_{2}-A-B \end{gathered}$	$\left\langle\pi^{\prime} \quad\right.$ drive- $t_{1}-A-C^{\left.\text {drive }-t_{2}-A-B\right\rangle}$
drive-t $-A-B$ drive $-t_{2}-A-B$	drive- $t_{1}-A-C$ drive- $t_{2}-A-B$
$\text { drive- } \left.t_{1}-B-C\right)$	
$t_{1}-\mathrm{at}-C \quad t_{2}-\mathrm{at}-B$	ti-at-C teat t_{2}-at-

Shortcut Rules

- From the pair of partial paths reaching each fact, we learn a new shortcut rule
- Shortcut rules are used when a path π is evaluated, as follows:
(1) Each shortcut rule is checked for applicability
(2) If it is applicable, a set of shortcuts is generated
(3) From each such shortcut, an \exists-opt landmark is derived
- Three types of shortcut rules, which differ in the details of these steps

Concrete Shortcut Rule

Rule
$\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive $-t_{2}-C-A$, drive $\left.-t_{1}-A-C\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive- $t_{1}-A-B$, drive- $\left.t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Example 2

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{2}-A-B$, drive $\left.-t_{1}-B-C\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive- $t_{1}-A-B$, drive- $\left.t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Example 2

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{2}-A-B$, drive $\left.-t_{1}-B-C\right\rangle$

Concrete Shortcut Rule

Rule

$\left\langle\right.$ drive- $t_{1}-A-B$, drive- $\left.t_{1}-B-C\right\rangle \leftarrow\left\langle\right.$ drive $\left.-t_{1}-A-C\right\rangle$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Example 2

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive- $t_{2}-A-B$, drive- $\left.t_{1}-B-C\right\rangle$
Not applicable

Unordered Shortcut Rule

Rule

$\left\{\right.$ drive $-t_{1}-A-B$, drive $\left.-t_{1}-B-C\right\} \leftarrow\left\{\right.$ drive $\left.-t_{1}-A-C\right\}$

Example 1

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{1}-B-C$, drive $\left.-t_{2}-A-B\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Example 2

$\pi=\left\langle\right.$ drive $-t_{2}-C-A$, drive $-t_{1}-A-B$, drive $-t_{2}-A-B$, drive $\left.-t_{1}-B-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $\left.t_{1}-A-C\right\rangle$
$\left\langle\right.$ drive- $t_{2}-C-A$, drive- $t_{1}-A-C$, drive- $\left.t_{2}-A-B\right\rangle$

Generalized Shortcut Rule

Rule

$\{$ drive $-T-X-Y$, drive $-T-Y-Z\} \leftarrow\{$ drive $-T-X-Z\}$

Example 1

$\pi=\left\langle\right.$ drive $-t_{1}-B-C$, drive $-t_{2}-A-B$, drive $\left.-t_{1}-C-A\right\rangle$
$\left\langle\right.$ drive $-t_{1}-B-A$, drive $\left.-t_{2}-A-B\right\rangle$

The Utility Problem

- Checking if a shortcut rule is applicable takes time
- Sometimes, this applicabilty check says the rule is not applicable
- This is the well known utility problem
- We address it by keeping counts of how many times each rule was checked for applicability, and how many times it was applicable
- Low utlity shortcut rules are discarded

Outline

(1) Background

2 Learning Shortcut Rules

(3) Empirical Evaluation

Coverage

Shortcut Rules	Solved Problems
none	$\mathbf{6 6 1}$
concrete	609
unordered	585
generalized	487

- None of the shortcut rules solve more problems than no shortcuts in any domain

Expansions

Shortcut Rules	Total Expanded States
none	3785517
concrete	3758042
unordered	$\mathbf{3 7 3 6 0 5 2}$
generalized	3777860

- The reduction in total number of expanded state for commonly solved problems is about 1\%

Discussions

- Possible reasons for failure:
- Concrete shortcut rules are too strict
- Unordered and generalized shortcut rules generate too many possible shortcuts, and we only look at some of them
- The base heuristic (\exists-opt and regular landmarks) is already very powerful
- Future work:
- Exploit the partial order information from the causal structure
- Smarter ways of applying unordered/generalized shortcut rules
- Inter-problem learning with generalized shortcut rules

Discussions

- Possible reasons for failure:
- Concrete shortcut rules are too strict
- Unordered and generalized shortcut rules generate too many possible shortcuts, and we only look at some of them
- The base heuristic (\exists-opt and regular landmarks) is already very powerful
- Future work:
- Exploit the partial order information from the causal structure
- Smarter ways of applying unordered/generalized shortcut rules
- Inter-problem learning with generalized shortcut rules
- Insert your idea here

Thank You

