
Learning to Combine Admissible Heuristics Under Bounded Time

Carmel Domshlak and Erez Karpas
Faculty of Industrial Engineering & Management

Technion, Israel

Shaul Markovitch
Faculty of Computer Science

Technion, Israel

Abstract
Usually, combining admissible heuristics for optimal search
(e.g. by using their maximum) requires computing numerous
heuristic estimates at each state. In many cases, the cost of
computing these heuristic estimates outweighs the benefit in
the reduced number of expanded states. If only state expan-
sions are considered, this is a good option. However, if time
is of the essence, we can do better than that. We propose a
novel method that reduces the cost of combining admissible
heuristics for optimal planning, while maintaining its bene-
fits. We first describe a simplified model for deciding which
heuristic is best to compute at each state. We then formulate
an active learning approach to decide which heuristic to com-
pute at each state, online, during search. The resulting tech-
nique, which we call selective max is evaluated empirically,
and is shown to outperform each of the individual heuristics
that were used, as well as their regular maximum, in terms of
number of solved instances and average solution time.

Introduction
One of the most prominent approaches to cost-optimal plan-
ning (and cost-optimal search in general) is using the A∗

search algorithm with an admissible heuristic. Many admis-
sible heuristics for domain-independent planning have been
proposed (Bonet and Geffner 2001; Helmert, Haslum, and
Hoffmann 2007; Haslum et al. 2007; Coles et al. 2008;
Katz and Domshlak 2008; Karpas and Domshlak 2009;
Helmert and Domshlak 2009; Katz and Domshlak 2009),
varying from cheap to compute and not very informative
(Bonet and Geffner 2001) to expensive to compute and very
informative (Katz and Domshlak 2008).

Although some heuristics perform better than others on
some planning problems, it is difficult to choose a clear-cut
“best” heuristic for domain-independent planning in gen-
eral. Sometimes it is even difficult to choose the best heuris-
tic for a specific planning domain, as different heuristics per-
form differently on different problem instances in the same
domain. Furthermore, it is very hard (if not impossible) to
predict how well a given heuristic will perform on a new
domain.

One way of producing a more robust planner is by com-
bining several heuristics. The simplest way of doing this
is by using their point-wise maximum at each state. Pre-
sumably, each heuristic is better (i.e. has a higher esti-
mate) in different regions of the search space, and thus the

maximum is more informative than each of the individual
heuristics. Another way to combine several heuristics is to
use additive heuristics (Katz and Domshlak 2008; Haslum,
Bonet, and Geffner 2005; Felner, Korf, and Hanan 2004) or
even use both addition and maximum (Coles et al. 2008;
Haslum et al. 2007). The problem with both max-based and
sum-based approaches is that sometimes the cost of comput-
ing numerous heuristic estimates at each state outweighs the
benefit in the reduced number of states expanded.

While performing additive combination of heuristics re-
quires computing all of their values, combining heuristics
using their maximum does not. Observe that, in every state,
the maximum value comes from one of the heuristics. If
we had an oracle indicating the most informed heuristic at
each state, then computing only that heuristic would result in
the same search behavior as max-based combination. How-
ever, even if we had such an oracle, it is possible that the
extra time spent on computing the more informed heuristic
may not be worth the reduction in expanded states. In fact,
the results from the last International Planning Competition
(IPC-2008) show that it is pretty hard to beat blind search
(i.e. A∗ with a heuristic which returns 0 for goal states and 1
for non-goal states) – the least informative, and at the same
time fastest to compute, heuristic possible.

In this paper we propose a novel method that reduces the
cost of combining admissible heuristics, while maintaining
its benefits, which we call selective max. We first describe
a simplified formal model for deciding which heuristic to
compute at each state in order to reduce the total search time.
We then describe an online active learning scheme that uses
a decision rule, derived from our formal model, to decide
which heuristic to compute at every state, and can therefore
be seen as a hyper-heuristic (Burke et al. 2003). An ex-
perimental evaluation of our approach using the hLA heuris-
tic (Karpas and Domshlak 2009) and the hLM-CUT heuris-
tic (Helmert and Domshlak 2009) shows that it solves more
planning problems than both of these heuristics individually,
as well as their max-based combination, and does it faster on
average. Our approach is also shown to exhibit better any-
time behavior.

Notation
We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995); a SAS+ description of a planning task

sg

s0

f1 = c∗f2 = c∗

Figure 1: State Space Tree

can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS+ task is given by a 4-tuple
Π = 〈V,A, s0, G〉. V = {v1, . . . , vn} is a set of state
variables, each associated with a finite domain dom(vi).
Each complete assignment s to V is called a state; s0 is
an initial state, and the goal G is a partial assignment to V .
A is a finite set of actions, where each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precondi-
tions and effects, respectively.

An action a is applicable in a state s ∈ dom(V) iff
pre(a) ⊆ s, and applying such a changes the value of each
state variable v to eff(a)[v] if eff(a)[v] is specified. The re-
sulting state is denoted by sJaK; by sJ〈a1, . . . , ak〉K we de-
note the state obtained from sequential application of the (re-
spectively applicable) actions a1, . . . , ak starting at state s.
Such an action sequence is a plan if G ⊆ sJ〈a1, . . . , ak〉K.

Model for Heuristic Selection
In order to analyze when computing one admissible heuristic
should be preferred to computing another, we need to make
certain assumptions about the state space. We assume that
the state-space is a tree with a constant branching factor b,
uniform cost actions, and that there exists a single goal state
(as in the classical results on heuristic-search effort (Pearl
1984)). We also assume that the heuristics are consistent,
and that the time ti required for computing hi for a state s
is independent of s. These assumption do not hold in many
planning problems, but we explain how to deal with that in
the next section.

A∗ expands states according to f = g + h, where g(s) is
the length of the shortest path to s, and h(s) is the heuristic
estimate of the distance from s to the goal. Suppose we have

two admissible heuristics: h1 and h2. Define maxh(s)
4
=

max(h1(s), h2(s)), we then use the notation f1 = g + h1,
f2 = g + h2, and maxf = g + maxh.

Assuming the goal state is at depth c∗, let us consider the
states satisfying f1(s) = c∗ (the dotted line in Fig. 1) and
those satisfying f2(s) = c∗ (the solid line in Fig. 1). The
states above the f1 = c∗ and f2 = c∗ contours are those that
are surely expanded by A∗ with h1 and h2, respectively. The
states above both these contours (the grid-marked region in
Fig. 1) are those that are surely expanded by maxh. These
states, which we denote SE (for “surely expanded”), are
SE = {s | maxf (s) < c∗}.

Observe that the optimal decision for any state s ∈ SE is
not to compute any heuristic at all, because all these states
are surely expanded anyway. The optimal decision for states
that are not surely expanded by maxh is a bit more com-
plicated. Let us consider the states where f1(s) < c∗ and
f2(s) = c∗ (that is, in Fig. 1, the states on part of the
f2 = c∗ contour that separates between grid-marked and
lines-marked areas). Since g(s) is the same in f1(s) and
f2(s), we know that h2(s) > h1(s) (i.e. h2 is more infor-
mative in state s). If we consider only state expansions, h2

would be the best heuristic to compute at state s. However,
h2 could be more expensive to compute than h1, so if we
consider search time, the choice is not straightforward.

If we compute h2(s), then s is no longer surely expanded
(because f2(s) = c∗, and therefore it may be expanded or
not, according to tie-breaking). In contrast, if we compute
h1(s), then s is surely expanded, because f1(s) < c∗. Note
that computing h2 for one of the descendants of s is surely
sub-optimal, as we pay the cost of computing h2, yet only
part of the search sub-tree rooted in s is no longer surely
expanded. Therefore, our choices can be restricted only to
either computing h2 for s, or computing h1 for all the states
in the sub-tree rooted at s on the f1 = c∗ line (i.e. the leaves
of the sub-tree rooted at s and ending at the f1 = c∗ line).

Assume we need to expand l complete levels of the state-
space from s to reach the f1 = c∗ line. This means we need
to generate on the order of bl states, and then calculate h1

for all of the states on the f1 = c∗ line, which would take
blt1 time. If, instead, we compute h2, the time required to
“explore” the sub-tree rooted in s would be t2 (assuming
favorable tie-breaking). Given that, the optimal decision is
thus to calculate h2 iff t2 < blt1, or if we rewrite this, if
l > logb(t2/t1). As a special case, if both heuristics take the
same time to compute, this decision rule boils down to l > 0,
that is, the optimal choice is simply the more informed (for
state s) heuristic.

From Model to Practice
The above simplified formal model for deciding when it is
best to evaluate which heuristic makes several assumptions,
some of which appear to be problematic to meet in prac-
tice. Here we examine these assumptions more closely, sug-
gest pragmatic compromises when possible, and then de-
scribe an algorithm, called selective max, for speeding up
heuristic-search optimal planning according to the principle
suggested by our model for exploiting an ensemble of ad-
missible heuristics.

Dealing with Model Assumptions
First, the simplified model assumes that the search space is
a tree with a single goal state and uniform cost actions, and
that the ensemble heuristics are consistent. Although the
first assumption does not hold in most planning problems,
and the second assumption is not satisfied by some state of
the art heuristics, they do not prevent us from using the de-
cision rule suggested by the model. Considering the expo-
nential growth of the search space “from s” as a function of
the heuristic’s error, there is some empirical evidence to sup-
port the conclusion from the simplified model. For instance,
Helmert and Röger (2008) prove for many planning domains
that heuristics with a small constant additive error lead A∗ to
expand an exponential number of states, and the authors also
illustrate this phenomenon experimentally. From the per-
spective of our goals here, from the same empirical results
of Helmert and Röger (2008) it is also evident that the num-
ber of expanded states increases exponentially as the (still
very small and additive) error increases. The latter suggests
that the connection between the number of nodes to be ex-
panded in our model and in practice can actually be quite
right.

The next step is to somehow estimate the “depth to go”
l. For that, we need to make another assumption about the
rate at which f1 grows in the sub-tree rooted at s. Although
there are many possibilities here, we will look at two likely
options. The first option is that the heuristic estimate h1 re-
mains constant in the subtree rooted at s (i.e. the additive
error increases by 1 for each level below s). In this case, f1
increases by 1 for each level expanded (because h1 remains
the same, and g increases by 1), and it will take expanding
∆h(s) = h2(s) − h1(s) levels to reach the f1 = c∗ line.
The second option we examine is when the absolute error of
h1 remains constant (i.e. h1 increases by 1 for each level
expanded, so f1 increases by 2). In this case, we will need
to expand ∆h(s)/2 levels. This can be generalized to the
case where the estimate h1 increases by any constant addi-
tive factor c, which results in ∆h(s)/(c + 1) levels being

expanded. In either case, l is linear in ∆h(s), and our de-
cision would be to compute h2 if ∆h(s) > α logb(t2/t1),
where α is a hyper-parameter for our algorithm.

Next, the model assumes that the branching factor is con-
stant, and that the times to compute the heuristics are the
same across all states. We deal with these two assumptions
by estimating and relying upon the average branching factor
and average heuristic computation times. These estimates
are made on the basis of a random sample of states; the pre-
cise estimation procedure is described later on. Third, the
model also assumes we know if a state is surely expanded
or not. Since we do not, in fact, know this, we treat every
state as if it was on the decision border, and thus apply the
decision rule at every state.

Learning the Selection Rule Online
Without loss of generality, assume that t2 > t1. Accord-
ing to the model, the correct decision rule is to use h2 when
∆h(s) = h2(s) − h1(s) > α logb(t2/t1) (since we do not
know c∗, we apply this decision rule at every state). In order
to do this, we learn a binary classifier that predicts whether,
for a given state s, ∆h(s) > α logb(t2/t1). The learning
procedure we devise is an online active learning procedure.
In this procedure, the classifier is presented with a series
of examples (states). For every example, the classifier can
choose whether to classify the current example using the
model learnt so far, or to ask an oracle for the classification
of the current example, and then learn from it.

To build a classifier, we first need to collect training ex-
amples, which should be representative of the entire search
space. One option for collecting the training examples is to
use the first k states of the search (where k is the desired
number of training examples). However, this method has
a bias towards states that are closer to the initial state, and
therefore is not likely to represent well the structure of the
states in the search space. Hence, we instead collect training
examples by sending “probes” from the initial state. Each
such “probe” simulates a stochastic hill-climbing search, un-
til a certain depth-limit is reached. All the states generated
by such a probe are used as training examples. We send
several such probes, until we have collected enough training
examples. A more complex sampling method was proposed
in (Haslum et al. 2007), but our approach is simpler, and
works well in practice.

There are several parameters for this probing procedure.
The maximum depth of each probe was set to twice the
heuristic estimate of the initial state, that is 2 maxh(s0).
Choosing a successor state to continue the probe from was
done according to the inverse of the heuristic value (that is,
the probability of choosing a successor s is proportional to
1/maxh(s)). The “inverse heuristic” selection biases the
sample towards states with a lower heuristic value, which
have a higher chance of being expanded by the search.

After the training examples T are collected, they are first
used to estimate b, t1 and t2 by averaging the respective
quantities over T . Once b, t1 and t2 are estimated, we can
compute the threshold α logb(t2/t1) for our decision rule.
We generate a label for each training example by calculating
∆h(s) = h2(s) − h1(s), and comparing it to the decision

evaluate(s)

1. 〈class, confidence〉 ← CLASSIFY(s, model)
2. if (confidence > ρ)

(a) return hclass(s)
3. else

(a) ∆h ← h2(s)− h1(s)
(b) label← (∆h > α logb(t2/t1))
(c) Update model with 〈s, label〉
(d) return max(h1(s), h2(s))

Figure 2: The state evaluation algorithm.

threshold. If ∆h(s) > α logb(t2/t1), we label s with h2,
and otherwise with h1. If t1 > t2 we simply switch between
the heuristics; our decision is always whether to evaluate the
more expensive heuristic or not (i.e. the default is to evaluate
the cheaper heuristic, unless the classifier says otherwise).

Another requirement for building a classifier is deciding
what features characterize states with respect to the deci-
sion rule. We decided to start our investigation with the sim-
plest and most accessible features possible, notably the ac-
tual state variables of the planning problem, and postpone
feasibility analysis for automatic generation of more com-
plex features for later.

Once we have a classifier (constructed from the initial
training set), we start the search from the initial state. For
every state we evaluate, we use the classifier to decide which
heuristic to compute. If the confidence for one of the pos-
sible answers is greater than some confidence threshold ρ,
then we follow that decision (i.e. compute the heuristic that
was chosen, and use its value). Otherwise, we do not have
sufficient information about that state to predict the best
heuristic to use, and therefore want to learn from it. This
is done by computing the values of both heuristics, gener-
ating a label, and learning from this new example1. This is
described in pseudo-code in Figure 2.

Although many classifiers can be used here, for several
reasons we decided to use the Naive Bayes classifier. First
of all, both training and classification with Naive Bayes are
very fast, which is extremely desirable in the time-bounded
setting we are interested in. Another advantage is that it is an
incremental classifier, which allows us to learn from a new
example very quickly. Finally, when classifying an exam-
ple, Naive Bayes provides us with a probability distribution
over possible classifications, and these probabilities have a
natural semantics in terms of the classification confidence.

The Naive Bayes classifier assumes that the features are
independent. Although this is not a fully realistic assump-
tion for planning problems, using a SAS+ formulation of the
problem instead of STRIPS helps, as instead of many binary
variables which are highly dependent upon each other, we
have a small number of variables which are less dependent
upon each other. The PDDL to SAS+ translator (Helmert

1We do not change the estimate for b, t1 and t2, so the decision
threshold remains fixed.

2009) which is used in our implementation, does not gen-
erate the “best” possible SAS+ formulation, but gets pretty
close to it, by detecting one kind of dependence between
propositions in the PDDL representation (mutual exclusion),
and creating a single SAS+ state variable that represents all
of them. This is most likely part of the reason Naive Bayes
works well here.

As a final note, extending selective max to use more than
two heuristics is rather straightforward—simply compare
the heuristics in a pair-wise manner, and choose the best
heuristic by a vote, which can either be a regular vote (i.e. 1
for the winner, 0 for the loser), or weighted according to the
classifier’s confidence. Although this requires a quadratic
number of classifiers, training and classification time (at
least with Naive Bayes) appear to be much lower than the
heuristic computation time, and thus the overall learning and
classification overhead is likely to remain relatively low.

Extending the proposed approach for use with non-
uniform action costs remains as future work. Altough the
decision rule proposed here can be used “as is” with non-
uniform action costs, it is likely that it should be adjusted to
account for the different action costs.

Experimental Evaluation
To empirically evaluate the performance of selective max
we have implemented it on top of the A∗ implementation
of the Fast Downward planner (Helmert 2006), and con-
ducted an empirical study on a wide range of planning do-
mains from the International Planning Competitions 1998-
2006. The search for each problem instance was limited by
a time limit of 30 minutes and memory limit of 1.5 GB; all
the experiments were on 3GHz Intel E8400 CPU machines.
The reported times do not include the PDDL to SAS+ trans-
lation as it is common to all planners, and is tangential to
the issues considered in our study. The reported times do
include learning and classification time for selective max. In
the experiments we set the size of the training set to 100, the
confidence threshold ρ to 0.6, and α to 1.

Our evaluation of selective max was based on two state-
of-the-art admissible heuristics hLA (Karpas and Domshlak
2009) and hLM-CUT (Helmert and Domshlak 2009). Both
of these heuristics perform most of their computation on-
line, in contrast to abstraction heuristics that are based on
expensive offline preprocessing, and then very fast per-
state computation (Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2009). As it is later shown in Ta-
ble 1, neither of our two base heuristics was better than the
other across all planning domains, although hLM-CUT overall
solves more problems. On the other hand, the empirical time
complexity of computing hLA is typically much lower than
that of computing hLM-CUT.

We compare our selective max approach (selh) to each
of the two base heuristics individually, and their standard,
max-based aggregation (maxh). In addition, to avoid erro-
neous conclusions about the impact of the specific decision
criterion induced by our model on the effectiveness of selec-
tive max, we also compare to a trivial version of selective
max that chooses between the two base heuristics simply at
random (rndh).

The top portion of Table 1 shows the number of solved
problem instances in each planning domain by each method
in question. Selective max solved more problems overall
than (A∗ with) both each of the individual base heuristics, as
well as their max aggregation. Also, note that selective max
solved at least as many problems as maxh and rndh in all
domains. Comparing to the individual base heuristics on a
per-domain basis, selective max solved all of the problems
solved by hLA (and more), and did not solve only 4 prob-
lems that were solved by hLM-CUT (2 in AIRPORT and 1 each
in PSR-SMALL and TRUCKS). Finally, note that the results
with rndh clearly indicate that the impact of the concrete
decision rule suggested by our model on the performance of
selective max is spectacular.

The middle and bottom portions of Table 1 provide a more
detailed view of the results, depicting the average and me-
dian number of expanded states, as well as the average so-
lution times, per domain. The expanded states numbers for
different search strategies are normalized by the respective
numbers for maxh. All data is averaged only for problems
that were solved by all methods. The two most interesting
observations from Table 1 are probably as follows.

1. Supporting our original motivation, selh is on average,
substantially faster than any of the other planners, includ-
ing not only the max-based aggregation of the base heuris-
tics, but also both our individual base heuristics.

2. Although selective max by definition expands at least
as many states as the regular maxh, in our experi-
ments selh typically expanded only slightly more nodes
than maxh. Together with the poor performance of the
random-choice rndh, this indicates the quality of the
learned prediction.
Our first observation above on the relative speed of solv-

ing problems with selective max gets additional support if
the time complexity results for different methods are con-
sidered in more detail. For each examined method, Figure 3
plots the total number of solved instances as a function of
timeout. The plot is self-explanatory, and it clearly indicates
that selective max has much better anytime behavior than
either of the heuristics individually, or their maximum.

Finally, we compared to two other version of selective
max: one version which chooses the successor state in the
“probes” to generate the initial training set with uniform
probability, and another which always uses 0 as the threshold
in the decision rule (instead of α logb(t2/t1)). The results of
this comparison are not shown here for the sake of brevity,
but they indicate that the version of selective max described
in this paper is slightly better than both other versions.

Discussion and Future Work
Learning for planning has been a very active field start-
ing in the early days of planning (Fikes, Hart, and Nils-
son 1972), and is recently receiving growing attention in the
community. So far, however, relatively little work has dealt
with learning for heuristic search planning, one of the most
prominent approaches to planning these days. Most works
in this direction have been devoted to learning macro-actions
(see, e.g., Botea et al. 2005, and Coles and Smith 2007).

Domain hLA hLM-CUT maxh rndh selh
Number of Solved Instances

airport 25 38 36 29 36
blocks 20 28 28 28 28
depots 7 7 7 7 7
driverlog 14 14 14 14 14
freecell 28 15 22 15 28
grid 2 2 2 2 2
gripper 6 6 6 6 6
logistics-2000 19 20 20 20 20
logistics-98 5 6 6 5 6
miconic 140 140 140 140 140
mprime 21 25 25 19 25
mystery 13 17 17 14 17
openstacks 7 7 7 7 7
pathways 4 5 5 4 5
psr-small 48 49 48 48 48
pw-notankage 16 17 17 17 17
pw-tankange 9 11 11 10 11
rovers 6 7 7 6 7
satellite 7 8 9 7 9
tpp 6 6 6 6 6
trucks 7 10 9 7 9
zenotravel 9 12 12 10 12
Total 419 450 454 421 460

Average (Median) Expanded States
airport (25) 20.41 (1.48) 1 (1) 1 (1) 1.09 (1.03) 1.16 (1)
blocks (20) 10.87 (4.1) 1 (1) 1 (1) 1.25 (1.24) 1.15 (1.01)
depots (7) 17.08 (16.7) 1 (1) 1 (1) 2.59 (2.35) 1.9 (1.02)
driverlog (14) 14.95 (9.46) 1.08 (1) 1 (1) 2.2 (2.2) 2.27 (1.44)
freecell (15) 1.24 (1.11) 188.57 (22.5) 1 (1) 17.47 (2.29) 1.88 (1.37)
grid (2) 3.38 (3.38) 1.02 (1.02) 1 (1) 1.47 (1.47) 3.32 (3.32)
gripper (6) 1 (1) 1.05 (1.01) 1 (1) 1.01 (1) 1 (1)
logistics-2000 (19) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
logistics-98 (5) 8.43 (4.78) 1 (1) 1 (1) 1.66 (1.68) 4.67 (1.8)
miconic (140) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
mprime (19) 415.47 (6.4) 3.44 (1) 1 (1) 27.06 (2.31) 6.34 (1.13)
mystery (12) 144.33 (1.06) 1.3 (1) 1 (1) 12.08 (1.29) 3.85 (1)
openstacks (7) 1.07 (1.1) 2.32 (2.29) 1 (1) 1.18 (1.16) 1.1 (1.12)
pathways (4) 251.87 (187.08) 1 (1) 1 (1) 15.19 (10.16) 1 (1)
psr-small (48) 1.36 (1.16) 1 (1) 1 (1) 1.07 (1.03) 1.22 (1.01)
pw-notankage (16) 5.95 (3.25) 1.49 (1) 1 (1) 1.71 (1.53) 1.48 (1.11)
pw-tankange (9) 2.16 (2.03) 1.47 (1.19) 1 (1) 1.31 (1.38) 1.11 (1.02)
rovers (6) 86.2 (5.53) 1 (1) 1 (1) 5.37 (1.06) 1.42 (1.04)
satellite (7) 78.71 (30.88) 1.01 (1) 1 (1) 15.16 (2.68) 2.11 (1.05)
tpp (6) 55.39 (1) 1 (1) 1 (1) 3.42 (1) 1.35 (1)
trucks (7) 77.4 (53.6) 1.01 (1) 1 (1) 7.31 (5.11) 1.03 (1)
zenotravel (9) 24.04 (4.82) 1 (1) 1 (1) 3.61 (2.16) 2.06 (1.17)
Overall 35.41 (1.02) 8.16 (1) 1 (1) 3.97 (1) 1.61 (1)
Average (Domain) 55.61 (15.54) 9.76 (2.05) 1 (1) 5.69 (2.1) 1.97 (1.21)

Total Solution Time in Seconds
airport (25) 125.96 35.36 73.80 54.78 68.44
blocks (20) 66.01 3.71 6.39 6.44 5.59
depots (7) 196.91 65.99 103.26 155.14 94.36
driverlog (14) 66.67 110.87 86.04 120.84 81.31
freecell (15) 6.04 249.28 23.93 44.22 9.25
grid (2) 12.05 33.78 44.27 38.3 40.26
gripper (6) 71.6 106.48 264.79 161.98 77.07
logistics-2000 (19) 73.32 152.27 255.36 153.89 79.17
logistics-98 (5) 18.84 24.11 29.55 28.69 24.43
miconic (140) 2.03 8.04 10.08 5.67 7.65
mprime (19) 17.52 17.9 15.68 111.48 8
mystery (12) 7.55 1.61 2.03 57.93 2.49
openstacks (7) 15.93 72.3 75.83 52.69 17.11
pathways (4) 5.38 0.08 0.14 1.15 0.18
psr-small (48) 3.55 4.05 7.92 5.73 4.87
pw-notankage (16) 48.8 71.34 71.49 73.92 59
pw-tankange (9) 211.43 173.61 189.89 172.99 130.98
rovers (6) 122.7 5.23 8.79 45.72 7.97
satellite (7) 46.22 3.47 4.51 21.95 3.58
tpp (6) 108.54 14.36 5.9 56.32 5.69
trucks (7) 238.85 11.69 16.48 39.64 15.56
zenotravel (9) 9.84 0.91 1.33 8.27 1.28
Average (Problem) 39.65 38.59 41.39 42.6 24.53
Average (Domain) 67.08 53.02 58.97 64.44 33.83

Table 1: Summary of Results.
The top portion of the table shows the number of solved
problem instances for each domain and planner. The mid-
dle portion shows the average and median of the number of
expanded states (normalized by number of expanded states
for maxh) for each domain and planner. The bottom por-
tion shows the average solving time in each domain for each
planner. Averages and median are over problems solved by
all planners (the number of which is shown in parentheses
next to each domain).

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 0 200 400 600 800 1000 1200 1400 1600 1800

S
o
lv

e
d
 I

n
s
ta

n
c
e

s

Timeout

hLA

hLM-CUT

maxh

rndh

selh

Figure 3: Total number of solved instances under different
timeouts; the x-axis and y-axis capture the timeout in sec-
onds and the number of problems solved, respectively.

Among the other works, the one most closely related to ours
is probably the work by Yoon, Fern and Givan (2008) that
suggest learning an (inadmissible) heuristic function based
upon features extracted from relaxed plans. In contrast, our
focus is on optimal planning. Overall, we are not aware
of any previous work that deals with learning for optimal
heuristic search.

The experimental evaluation demonstrates that selective
max is a more effective method of combining arbitrary
admissible heuristics than max. Another advantage for
the selective max approach is that it can potentially com-
bine two heuristics where one dominates another. For
example, the hLA heuristic can be used with two cost-
partitioning schemes: uniform and optimal. The optimal
cost-partitioning scheme dominates the uniform one, but
takes much longer to compute. Selective max could be used
to learn when it is worth spending the extra time to compute
the optimal cost-partitioning, and when using the uniform
cost-partitioning is better. Using max with these two cost-
partioning schemes would simply waste the time spent on
computing the uniform cost-partitioning.

These are still preliminary results. Further research is
needed in order to study the effects of many of the param-
eters of selective max, such as training set size and confi-
dence threshold, as well as use of different types of clas-
sifiers. Evaluating the performance of selective max with
non-uniform cost actions, with different heuristics, as well
as with more than two heuristics is another important direc-
tion for future work. However, we can conclude that selec-
tive max seems to be a good method of combining admissi-
ble heuristics for optimal planning.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. AIJ 129(1–2):5–33.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automati-
cally learned macro-operators. JAIR 24:581–621.
Burke, E.; Kendall, G.; Newall, J.; Hart, E.; Ross, P.;
and Schulenburg, S. 2003. Hyper-heuristics: an emerg-
ing direction in modern search technology. In Glover, F.,
and Kochenberger, G., eds., Handbook of metaheuristics.
Kluwer Academic Publishers. chapter 16, 457–474.
Coles, A. I., and Smith, A. J. 2007. Marvin: A heuristic
search planner with online macro-action learning. Journal
of Artificial Intelligence Research 28:119–156.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
Additive-disjunctive heuristics for optimal planning. In
ICAPS, 44–51.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive
pattern database heuristics. JAIR 22:279–318.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. AIJ 3:251–288.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In AAAI,
1163–1168.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS. In press.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Fox, D., and Gomes, C. P., eds., AAAI, 944–
949. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ. in press.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI.
Katz, M., and Domshlak, C. 2008. Optimal additive
composition of abstraction-based admissible heuristics. In
ICAPS, 174–181.
Katz, M., and Domshlak, C. 2009. Structural-pattern
databases. In ICAPS. In press.
Pearl, J. 1984. Heuristics — Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. J. Mach. Learn.
Res. 9:683–718.

