
Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Towards Rational Deployment of Multiple Heuristics
in A*

David Tolpin Tal Beja Solomon Eyal Shimony
Ariel Felner
Erez Karpas

ICAPS 2013 Workshop on Heuristic Search for
Domain-Independent Planning



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Outline

1 Motivation

2 Lazy A∗

3 Rational Lazy A∗

4 Empirical Evaluation



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Motivation

We want to find an optimal solution, and we have admissible
heuristics

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Motivation

We want to find an optimal solution, and we have admissible
heuristics

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Motivation

We want to find an optimal solution, and we have admissible
heuristics

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Motivation

We want to find an optimal solution, and we have admissible
heuristics

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

openstacks-opt11 10 11 9
freecell 54 10 36

Number of problems solved in 5 minutes

A more informed heuristic — maxh— solves less problems



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

openstacks-opt11 10 11 9
freecell 54 10 36

Number of problems solved in 5 minutes

A more informed heuristic — maxh— solves less problems



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

openstacks-opt11 10 11 9
freecell 54 10 36

Number of problems solved in 5 minutes

A more informed heuristic — maxh— solves less problems



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

openstacks-opt11 10 11 9
freecell 54 10 36

Number of problems solved in 5 minutes

A more informed heuristic — maxh— solves less problems



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

The Accuracy / Computation Time Tradeoff

More Informed Heuristic Less Search Effort

Less Search Effort

Less Expanded States

More Time Per State



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

The Accuracy / Computation Time Tradeoff

More Informed Heuristic

Less Search Effort

Less Search Effort

Less Expanded States

More Time Per State



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

The Accuracy / Computation Time Tradeoff

More Informed Heuristic

Less Search Effort

Less Search Effort

Less Expanded States

More Time Per State



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Related Work

Selective Max (Domshlak, Karpas and Markovitch 2012)
Uses a classifier which tries to predict which heuristic to use for
each state
Classifier is learned online, during search

Lazy A∗ (Zhang and Bacchus, 2012)
Calculates heuristics only “as needed” to push a state further back
in the open list



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Contributions

Theoretical analysis of lazy A∗

Enhancements for lazy A∗

Rational lazy A∗ — applies rational meta-reasoning to decide
whether or not to push a state back in the open list



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Outline

1 Motivation

2 Lazy A∗

3 Rational Lazy A∗

4 Empirical Evaluation



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Notation and Assumptions

Two heuristics: h1 and h2

h1 is cheaper to compute than h2

h2 is more informative than h1 on average

h1 computation time is t1, h2 computation time is t2
Open list insertion/removal takes to time



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Lazy

A∗

Apply all heuristics to initial state s0

Insert s0 into OPEN

while OPEN not empty do
n← best node from OPEN

if Goal(n) then
return trace(n)

if h2 was not applied to n then
Apply h2 to n
insert n into OPEN

continue //next node in OPEN

foreach child c of n do
Apply h1 to c
insert c into OPEN

Insert n into CLOSED
return FAILURE



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Lazy A∗

Apply all heuristics to initial state s0

Insert s0 into OPEN

while OPEN not empty do
n← best node from OPEN

if Goal(n) then
return trace(n)

if h2 was not applied to n then
Apply h2 to n
insert n into OPEN

continue //next node in OPEN
foreach child c of n do

Apply h1 to c
insert c into OPEN

Insert n into CLOSED
return FAILURE



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Analysis of Lazy A∗

As informative as A∗ using max(h1,h2) (up to tie-breaking)

The surplus states are those that were generated but not
expanded (i.e., on the open list) when A∗MAX terminates

Out of the surplus states, lazy A∗ skips h2 computation for some
— denote them as good

Expanded Surplus
Alg Non good Good

A∗MAX t1 + t2 +2to t1 + t2 + to t1 + t2 + to
LA∗ t1 + t2 +4to t1 + t2 +3to t1 + to

If g(s)+h1(s) > C∗ then s will be good (if it is generated)



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Enhancements for Lazy A∗

Open bypassing
When state s is generated and h1(s) computed, if f (s) is smaller
than the lowest f -value on OPEN, compute h2(s) right away
When computing h2(s), if the new f (s) is smaller than the lowest
f -value on OPEN, expand s right away
Reduces the overhead on OPEN operations

Heuristic bypassing
Suppose we can derive upper and lower bounds for h1(s) and
h2(s), e.g., when the heuristics are consistent
With lazy A∗, if we can prove that h1(s) < h2(s), we use h2(s)
instead of computing h1

We can also skip computing h2(s) when h2(s)≤ h1(s)



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Outline

1 Motivation

2 Lazy A∗

3 Rational Lazy A∗

4 Empirical Evaluation



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Rational Lazy A∗

Sometimes, it’s better to expand more states in less time

Lazy A∗ does not consider this option

We introduce Rational Lazy A∗, which differs from lazy A∗ by
deciding whether or not to compute h2

The decision is based on rational meta-reasoning



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Rational Decision

When should we decide to compute h2?
Assume we computed h2 for state s. Then either:

1 s will be expanded later
2 s will not be expanded before the goal is found

We should only compute h2 if outcome 2 will occur — call this h2

being helpful

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Rational Decision

When should we decide to compute h2?
Assume we computed h2 for state s. Then either:

1 s will be expanded later
2 s will not be expanded before the goal is found

We should only compute h2 if outcome 2 will occur — call this h2

being helpful

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Rational Decision

When should we decide to compute h2?
Assume we computed h2 for state s. Then either:

1 s will be expanded later
2 s will not be expanded before the goal is found

We should only compute h2 if outcome 2 will occur — call this h2

being helpful

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Rational Decision

When should we decide to compute h2?
Assume we computed h2 for state s. Then either:

1 s will be expanded later
2 s will not be expanded before the goal is found

We should only compute h2 if outcome 2 will occur — call this h2

being helpful

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Almost Rational Decision

We look at an upper bound of the regret for each decision, under
each possible future

We assume rational lazy A∗ is better than lazy A∗, so by
assuming we continue with lazy A∗ we get an upper bound on
regret

Compute h2 Bypass h2

h2 helpful 0 ∼ b(s)t1 +(b(s)−1)t2
h2 not helpful ∼ t2 0

b(s) denotes the number of successors of s

Disclaimer: for the exact analysis, see the paper



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

From Regret to Rational Decision

Compute h2 Bypass h2

h2 helpful 0 ∼ b(s)t1 +(b(s)−1)t2
h2 not helpful ∼ t2 0

Assume the probability of h2 being helpful is ph

Then the rational decision is to compute h2 iff:

t2
t1

<
phb(s)

1−phb(s)



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Approximating ph

t2
t1

<
phb(s)

1−phb(s)

We can directly measure t1, t2 and b(s), but we need to
approximate ph

If s is a state at which h2 was helpful, then we computed h2 for s,
but did not expand s. Denote the number of such states by B.

Denote by A the number of states for which we computed h2.

We can use A
B as an estimate for ph

To get an estimate which is more stable, we use a weighted
average with k fictitious examples giving an estimate of pinit :

(A+pinit · k)

B + k

We use pinit = 0.5 and k = 1000



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Outline

1 Motivation

2 Lazy A∗

3 Rational Lazy A∗

4 Empirical Evaluation



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Planning Domains

623 Commonly Solved
Alg Solved Time (GM) Expanded Generated
hLA 698 1.18 183,320,267 1,184,443,684
hLM-CUT 697 0.98 23,797,219 114,315,382
max 722 0.98 22,774,804 108,132,460
selmax 747 0.89 54,557,689 193,980,693
LA∗ 747 0.79 22,790,804 108,201,244
RLA∗ 750 0.77 25,742,262 110,935,698

RLA∗ solves the most problems, and is fastest on average

LA∗ is as informative as A∗MAX

Caveat: per individual domain, LA∗/ RLA∗ are not always best



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Weighted 15 Puzzle Experiments

h1 — weighted manhattan distance

h2 — lookahead to depth l with h1

Uses a different derivation for the rational decision rule, which
does not ignore to

Generated Time
l A∗ LA∗ RLA∗ A∗ LA∗ RLA∗

2 1,206,535 1,206,535 1,309,574 0.707 0.820 0.842
4 1,066,851 1,066,851 1,169,020 0.634 0.667 0.650
6 889,847 889,847 944,750 0.588 0.533 0.464
8 740,464 740,464 793,126 0.648 0.527 0.377
10 611,975 611,975 889,220 0.843 0.671 0.371
12 454,130 454,130 807,846 0.927 0.769 0.429



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Limitations of LA∗: 15 Puzzle Experiments

Alg. Generated HBP1 HBP2 OB Bad Good time
h1 = ∆X , h2 = ∆Y , Depth = 26.66

A* 1,085,156 0 0 0 0 0 415
A*+HBP 1,085,156 216,689 346,335 0 0 0 417
LA* 1,085,157 0 0 734,713 37,750 312,694 417
LA*+HBP 1,085,157 140,746 342,178 589,893 37,725 115,361 416

h1 = Manhattan distance, h2 = 7-8 PDB, Depth 52.52
A* 43,741 0 0 0 0 0 34.7
A*+HBP 43,804 30,136 1,285 0 0 0 33.6
LA* 43,743 0 0 42,679 47 1,017 34.2
LA*+HBP 43,813 7,669 1,278 42,271 21 243 33.3

The A∗ / LA∗ enhancements described above work “too well”

The heuristics are relatively cheap compared to open list
operations

Thus there is little room for improvement by LA∗, while the
overhead is significant



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Summary

LA∗ is as informative as A∗MAX , with less heuristic computation

RLA∗ applies rational meta-reasoning to LA∗ and reduces search
time

RLA∗ is much simpler to implement than selective max

By making a decision when we already know that
g(s)+h1(s) < C∗, RLA∗ can use a much simpler decision rule to
greater benefit



Motivation Lazy A∗ Rational Lazy A∗ Empirical Evaluation

Thank You


	Motivation
	Lazy A
	Rational Lazy A
	Empirical Evaluation

