< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Towards Rational Deployment of Multiple Heuristics in A*

David Tolpin Tal Beja Solomon Eyal Shimony Ariel Felner Erez Karpas

ICAPS 2013 Workshop on Heuristic Search for Domain-Independent Planning

Outline

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- We want to find an optimal solution, and we have admissible heuristics
- Use A*

MOTIVATION				• • •	
	IVI	•)(K	var	IOI	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- We want to find an optimal solution, and we have admissible heuristics
- Use A*

$$f = g + h$$

Motivation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- We want to find an optimal solution, and we have admissible heuristics
- Use A*

Motivation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- We want to find an optimal solution, and we have admissible heuristics
- Use A*

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Why Settle for One?

• There is no single best heuristic, so why settle only for one?

 We can use the maximum of several heuristics to get a more informative heuristic

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
openstacks-opt11	10	11	9
freecell	54	10	36

Number of problems solved in 5 minutes

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
openstacks-opt11	10	11	9
freecell	54	10	36

Number of problems solved in 5 minutes

A more informed heuristic — max_h— solves less problems

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The Accuracy / Computation Time Tradeoff

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The Accuracy / Computation Time Tradeoff

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The Accuracy / Computation Time Tradeoff

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Related Work

- Selective Max (Domshlak, Karpas and Markovitch 2012)
 - Uses a classifier which tries to predict which heuristic to use for each state
 - Classifier is learned online, during search
- Lazy A* (Zhang and Bacchus, 2012)
 - Calculates heuristics only "as needed" to push a state further back in the open list

Contributions

- Theoretical analysis of lazy A*
- Enhancements for lazy A*
- Rational lazy A* applies rational meta-reasoning to decide whether or not to push a state back in the open list

Outline

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

▲□▶▲□▶▲□▶▲□▶ □ のQで

Notation and Assumptions

- Two heuristics: *h*₁ and *h*₂
- *h*₁ is cheaper to compute than *h*₂
- *h*₂ is more informative than *h*₁ on average
- *h*₁ computation time is *t*₁, *h*₂ computation time is *t*₂
- Open list insertion/removal takes *t_o* time


```
Apply all heuristics to initial state s_0
Insert so into OPEN
while OPEN not empty do
    n \leftarrow \text{best node from OPEN}
    if Goal(n) then
        return trace(n)
    foreach child c of n do
        Apply h_1 to c
        insert c into OPEN
    Insert n into CLOSED
return FAILURE
```

Lazy A*

```
Apply all heuristics to initial state s_0
Insert so into OPEN
while OPEN not empty do
    n \leftarrow \text{best node from OPEN}
   if Goal(n) then
       return trace(n)
   if h_2 was not applied to n then
        Apply h_2 to n
        insert n into OPEN
        continue //next node in OPEN
   foreach child c of n do
        Apply h_1 to c
        insert c into OPEN
    Insert n into CLOSED
return FAILURE
```

Analysis of Lazy A*

- As informative as A^* using max (h_1, h_2) (up to tie-breaking)
- The surplus states are those that were generated but not expanded (i.e., on the open list) when A^{*}_{MAX} terminates
- Out of the surplus states, lazy A* skips h₂ computation for some — denote them as *good*

	Expanded	Surplus		
Alg		Non good	Good	
A^*_{MAX}	$t_1 + t_2 + 2t_o$	$t_1 + \mathbf{t_2} + t_o$	$t_1 + \mathbf{t_2} + t_o$	
LA*	$t_1 + t_2 + 4t_o$	$t_1 + t_2 + 3t_o$	$t_1 + t_o$	

• If $g(s) + h_1(s) > C^*$ then s will be good (if it is generated)

Enhancements for Lazy A^*

Open bypassing

- When state s is generated and h₁(s) computed, if f(s) is smaller than the lowest f-value on OPEN, compute h₂(s) right away
- When computing *h*₂(*s*), if the new *f*(*s*) is smaller than the lowest *f*-value on *OPEN*, expand *s* right away
- Reduces the overhead on OPEN operations
- Heuristic bypassing
 - Suppose we can derive upper and lower bounds for $h_1(s)$ and $h_2(s)$, e.g., when the heuristics are consistent
 - With lazy A^* , if we can prove that $\overline{h_1(s)} < \underline{h_2(s)}$, we use $\underline{h_2(s)}$ instead of computing h_1
 - We can also skip computing $h_2(s)$ when $\overline{h_2(s)} \leq h_1(s)$

Outline

|▲□▶▲圖▶▲圖▶▲圖▶ | 圖||||の��

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Lazy A*

- Sometimes, it's better to expand more states in less time
- Lazy A* does not consider this option
- We introduce Rational Lazy A*, which differs from lazy A* by deciding whether or not to compute h₂
- The decision is based on rational meta-reasoning

Rational Decision

When should we decide to compute h₂?

- Assume we computed *h*₂ for state *s*. Then either:
 - s will be expanded later
 - s will not be expanded before the goal is found
- We should only compute *h*₂ if outcome 2 will occur call this *h*₂ being helpful

Rational Decision

- When should we decide to compute h₂?
- Assume we computed *h*₂ for state *s*. Then either:
 - s will be expanded later
 - s will not be expanded before the goal is found
- We should only compute *h*₂ if outcome 2 will occur call this *h*₂ being helpful

Rational Decision

- When should we decide to compute h₂?
- Assume we computed *h*₂ for state *s*. Then either:
 - s will be expanded later
 - s will not be expanded before the goal is found
- We should only compute h₂ if outcome 2 will occur call this h₂ being helpful

Rational Decision

- When should we decide to compute h₂?
- Assume we computed *h*₂ for state *s*. Then either:
 - s will be expanded later
 - s will not be expanded before the goal is found
- We should only compute *h*₂ if outcome 2 will occur call this *h*₂ being helpful

"It is difficult to make predictions, especially about the future"

— Yogi Berra / Neils Bohr

▲□▶▲□▶▲□▶▲□▶ □ のQで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Almost Rational Decision

- We look at an upper bound of the regret for each decision, under each possible future
- We assume rational lazy A* is better than lazy A*, so by assuming we continue with lazy A* we get an upper bound on regret

	Compute h ₂	Bypass h ₂
h ₂ helpful	0	$\sim b(s)t_1+(b(s)-1)t_2$
h ₂ not helpful	$\sim t_2$	0

b(s) denotes the number of successors of s

Disclaimer: for the exact analysis, see the paper

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

From Regret to Rational Decision

	Compute h ₂	Bypass h ₂
<i>h</i> ₂ helpful	0	$\sim b(s)t_1+(b(s)-1)t_2$
h ₂ not helpful	$\sim t_2$	0

- Assume the probability of *h*₂ being helpful is *p_h*
- Then the rational decision is to compute *h*₂ iff:

$$\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}$$

Approximating p_h

$$\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}$$

- We can directly measure t₁, t₂ and b(s), but we need to approximate p_h
- If s is a state at which h₂ was helpful, then we computed h₂ for s, but did not expand s. Denote the number of such states by B.
- Denote by A the number of states for which we computed h₂.
- We can use $\frac{A}{B}$ as an estimate for p_h
- To get an estimate which is more stable, we use a weighted average with k fictitious examples giving an estimate of p_{init}:

$$\frac{(A+p_{init}\cdot k)}{B+k}$$

• We use $p_{init} = 0.5$ and k = 1000

Outline

|▲□▶▲圖▶▲≧▶▲≧▶ 差 のへぐ

Planning Domains

		623 Commonly Solved					
Alg	Solved	Time (GM)	Expanded	Generated			
h _{LA}	698	1.18	183,320,267	1,184,443,684			
h _{LM-CUT}	697	0.98	23,797,219	114,315,382			
max	722	0.98	22,774,804	108,132,460			
selmax	747	0.89	54,557,689	193,980,693			
LA*	747	0.79	22,790,804	108,201,244			
RLA*	750	0.77	25,742,262	110,935,698			

- RLA* solves the most problems, and is fastest on average
- LA^* is as informative as A^*_{MAX}
- Caveat: per individual domain, LA*/ RLA* are not always best

Weighted 15 Puzzle Experiments

- *h*₁ weighted manhattan distance
- h₂ lookahead to depth I with h₁
- Uses a different derivation for the rational decision rule, which does not ignore t_o

	Generated				Time	
1	A *	LA*	RLA*	A*	LA*	RLA*
2	1,206,535	1,206,535	1,309,574	0.707	0.820	0.842
4	1,066,851	1,066,851	1,169,020	0.634	0.667	0.650
6	889,847	889,847	944,750	0.588	0.533	0.464
8	740,464	740,464	793,126	0.648	0.527	0.377
10	611,975	611,975	889,220	0.843	0.671	0.371
12	454,130	454,130	807,846	0.927	0.769	0.429

Limitations of LA*: 15 Puzzle Experiments

Alg.	Generated	HBP1	HBP2	OB	Bad	Good	time		
	$h1 = \Delta X$, $h2 = \Delta Y$, Depth = 26.66								
A*	1,085,156	0	0	0	0	0	415		
A*+HBP	1,085,156	216,689	346,335	0	0	0	417		
LA*	1,085,157	0	0	734,713	37,750	312,694	417		
LA*+HBP	1,085,157	140,746	342,178	589,893	37,725	115,361	416		
h1 = Manhattan distance, $h2 =$ 7-8 PDB, Depth 52.52									
A*	43,741	0	0	0	0	0	34.7		
A*+HBP	43,804	30,136	1,285	0	0	0	33.6		
LA*	43,743	0	0	42,679	47	1,017	34.2		
LA*+HBP	43,813	7,669	1,278	42,271	21	243	33.3		

- The A* / LA* enhancements described above work "too well"
- The heuristics are relatively cheap compared to open list operations
- Thus there is little room for improvement by LA*, while the overhead is significant

Summary

- LA^* is as informative as A^*_{MAX} , with less heuristic computation
- *RLA** applies rational meta-reasoning to *LA** and reduces search time
- *RLA** is much simpler to implement than selective max
- By making a decision when we already know that g(s) + h₁(s) < C*, RLA* can use a much simpler decision rule to greater benefit

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank You