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“Planning is the model based approach to autonomous behavior”

Hector Geffner

“Planning is just a way of avoiding figuring out what to do next”

Rodney Brooks
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Domain Independent Planning Problems

A domain independent planning problem contains:
Initial world state
Desired goal condition
Set of deterministic actions

A solution is a sequence of actions:
Transforms the initial world state into a goal state

We are interested in optimal planning:
Find (one of) the cheapest possible plans
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STRIPS

A STRIPS planning problem with action costs is a 5-tuple
Π = 〈P,s0,G,A,C〉

P is a set of boolean propositions
s0 ⊆ P is the initial state
G ⊆ P is the goal
A is a set of actions.
Each action is a triple a = 〈pre(a),add(a),del(a)〉
C : A→ R0+ assigns a cost to each action

Applying action sequence ρ = 〈a0,a1, . . . ,an〉 at state s leads to
s [[ρ]]

The cost of action sequence ρ is ∑
n
i=0 C(ai)
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Solving Planning Problems

Several methods for solving planning problems exist:
Compilation into SAT or CP
Symbolic search
Bidirectional search
Heuristic forward search

We focus on heuristic forward search

We need heuristics, because the state space of a planning
problem is huge
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Search Problems

A search problem contains:
Initial world state
Set of goal states
Set of deterministic actions

A solution is a sequence of actions:
Transforms the initial world state into a goal state

We are interested in optimal search:
Find (one of) the cheapest possible plans
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Heuristic Forward Search

It is easy to see that planning⇒ search
Heuristic forward search:

1 Maintains a list of candidate states (open list)
2 At each iteration, a state is removed from the list
3 If it is not a goal state, all of its successors are added to the list

The choice of which state to remove usually involves a heuristic
evaluation function

Evaluates the merit of each state
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Heuristic Evaluation Functions

A heuristic evaluation function estimates the distance from states
to the goal

Heuristics are sometimes defined as functions from states to
non-negative numbers

. This is not general enough!

“the promise of a node is estimated numerically by a heuristic
evaluation function f (n) which, in general, may depend on the
description of n, the description of the goal, the information gathered
by the search up to that point, and most important, on any extra
knowledge about the problem domain.”

Judea Pearl, Heuristics, 1984
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Information Sources for Heuristics

1 The description of the state

2 The description of the goal and any extra knowledge about the
problem domain

In domain independent planning, this is the problem description in
STRIPS

3 The information gathered by the search up to that point

This is where the “usual” definition fails
We will focus on heuristics which exploit this information
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Formal Framework for Heuristics

Search History

A sequence of states ω = 〈s0,s1, . . .sn〉 is a possible search history of
search problem ρ iff:

1 s0 is the initial state of ρ

2 Every other state in the sequence is a successor of one of the
previous states

The set of all possible search histories of ρ is denoted by Hρ

The set of all possible paths from the initial state is denoted by Γ

Heuristic Evaluation Function
A heuristic evaluation function for search problem ρ is a function
h : Hρ ×Γ→ R0+
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Properties of Heuristics

Using our formal framework, we can discuss properties of heuristics:

1 Which information gathered by the search they use?
2 Are they admissible?
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Taxonomy of Heuristics: Information Dependence

sg

s0

s

History Independent

A heuristic is history independent iff h(ω1,π) = h(ω2,π) for any two
search histories ω1,ω2 and any path π
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Taxonomy of Heuristics: Information Dependence

sg

s0

s

Path Independent

A heuristic is path independent iff h(ω,π1) = h(ω,π2) for any two
paths π1,π2 reaching the same state, and for any search history ω



Background Heuristics Landmarks Learning Conclusion

Taxonomy of Heuristics: Information Dependence

sg

s0

s

Path Independent

A heuristic is path independent iff h(ω,π1) = h(ω,π2) for any two
paths π1,π2 reaching the same state, and for any search history ω
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Taxonomy of Heuristics: Information Dependence

sg

s0

s

Special Case: Multi Path Dependent

A a path independent heuristic is multi path dependent iff
h(ω1,π) = h(ω2,π) for any two search histories ω1,ω2 such that the
set of explored paths leading to s0 [[π]] is the same in ω1 and ω2
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Information Dependence: Examples

History
Independent Dependent

Path
Independent Classical

Selective Max,
hLA (multi-path)

Dependent
∃-opt landmarks

Future work
hLM (Richter et al. 2008)
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Taxonomy of Heuristics: Admissibility

sg

s0

s

Admissible

A heuristic is admissible iff h(ω,π)≤ h∗(s0 [[π]]) for any search
history ω and any path π .
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Optimality and Admissibility

We know that A∗ search with an admissible heuristic guarantees
an optimal solution

Is this a necessary condition?

No
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Global Admissibility

sg

s0

s

Globally Admissible

A heuristic is globally admissible iff there exists some optimal solution
ρ such that for any state s along ρ any search history ω , and any path
π to s: h(ω,π)≤ h∗(s).
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Global Path Admissibility

sg

s0

Globally Path Admissible

A heuristic is {ρ}-admissible iff any search history ω and for any
prefix π of ρ : h(ω,π)≤ h∗(s0 [[π]])
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Search with Path-admissible Heuristics

Path-admissibility be generalized to a set of solutions χ

If χ is the set of all optimal solutions, we call h path-admissible

Using a path-admissible heuristic with A∗ does not guarantee
admissibility

However, other search algorithms can guarantee an optimal
solution is found with a path-admissible heuristic
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Landmarks

A landmark is a formula that must be true at some point in every
plan (Hoffmann, Porteous & Sebastia 2004)

Landmarks can be (partially) ordered according to the order in
which they must be achieved

Some landmarks and orderings can be discovered automatically
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Example Planning Problem - Logistics

A

B C

Do

t

E
p

o-at-B

o-in-t

o-at-E

t-at-B

t-at-C

o-at-Cp-at-C

o-in-p

Partial landmarks
graph

(Example due to Silvia Richter)
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Using Landmarks for Heuristic Estimates

The number of landmarks that still need to be achieved is an
(inadmissible) heuristic estimate (Richter, Helmert and Westphal
2008)

Used by LAMA - winner of the IPC-2008 and IPC-2011 sequential
satisficing track

We assume that landmarks and orderings are discovered in a
pre-processing phase, and the same landmark graph is used
throughout the planning phase
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Path-dependent Heuristics

Suppose we are in state s. Did we achieve landmark φ yet?

There is no way to tell just by looking at s

Achieved landmarks are a function of path, not state

The landmarks that still need to be achieved are path-dependent
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The Landmark Heuristic

The landmarks that still need to be achieved after reaching state
s via path π are

L(s,π) = (L\Accepted(s,π))∪ReqAgain(s,π)

L is the set of all (discovered) landmarks

Accepted(s,π)⊂ L is the set of accepted landmarks — the
landmarks which were achieved along π

ReqAgain(s,π)⊆ Accepted(s,π) is the set of required again
landmarks — landmarks that must be achieved again according
to a set of easy to check rules
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Admissible Landmark Heuristic

Suppose we have a set of landmarks that need to be achieved
L(s,π)

We get an admissible heuristic by performing an action cost
partitioning

1 Partition the cost of each action between the landmarks it
achieves

2 Assign an admissible estimate (cost) for each landmark
3 Sum over the costs of landmarks

Admissibility follows from Katz and Domshlak (2010)
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Multi-path Dependence

s0

s

g

π1π2

I achieved φI did not achieve φ

I need to achieve φ

Suppose state s was reached by paths π1,π2

Suppose π1 achieved landmark φ and π2 did not

Then φ needs to be achieved after state s

Proof: φ is a landmark, therefore it needs to be true in all valid
plans, including valid plans that start with π2
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Fusing Data from Multiple Paths

Suppose P is a set of paths from s0 to a state s. Define

L(s,P) = (L\Accepted(s,P))∪ReqAgain(s,P)

where
Accepted(s,P) =

⋂
π∈P Accepted(s,π)

ReqAgain(s,P)⊆ Accepted(s,P) is specified as before by s
and the various rules

L(s,P) is the set of landmarks that we know still needs to be
achieved after reaching state s via the paths in P (Karpas and
Domshlak, 2009)
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Intended Effects

Motivation
Why did the chicken cross the road?
To get to the other side

Observation
Every along action an optimal plan is there for a reason

Achieve a precondition for another action

Achieve a goal
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Intended Effects — Example

A B
o

t1

t2

A B

ot1

t2

load-o-t1

There must be a reason for applying load-o-t1
load-o-t1 achieves o-in-t1
Any continuation of this path to an optimal plan must use some
action which requires o-in-t1
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Intended Effects — Intuition

We formalize chicken logic using the notion of Intended Effects

A set of propositions X ⊆ s0 [[π]] is an intended effect of path π ,
if we can use X to continue π into an optimal plan

Using X refers to the presence of causal links in the optimal plan

Causal Link

Let π = 〈a0,a1, . . .an〉 be some path. The triple 〈ai ,p,aj〉 forms a
causal link in π if ai is the actual provider of precondition p for aj .
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Intended Effects — Formal Definition

Intended Effects

Let OPT be a set of optimal plans for planning task Π. Given a path
π = 〈a0,a1, . . .an〉 a set of propositions X ⊆ s0 [[π]] is an
OPT-intended effect of π iff there exists a path π ′ such that
π ·π ′ ∈ OPT and π ′ consumes exactly X (p ∈ X iff
there is a causal link 〈ai ,p,aj〉 in π ·π ′, with ai ∈ π and aj ∈ π ′).

IE(π|OPT) — the set of all OPT-intended effect of π

IE(π) = IE(π|OPT) when OPT is the set of all optimal plans
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Intended Effects — Set Example

A B
o

t1

t2

A B

ot1

t2

load-o-t1

The Intended Effects of π = 〈load-o-t1〉 are {{o-in-t1}}
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Intended Effects — It’s Logical

Working directly with the set of subsets IE(π|OPT) is difficult

We can interpret IE(π|OPT) as a boolean formula φ

X ∈ IE(π|OPT)⇐⇒ X |= φ

We can also interpret any path π ′ from s0 [[π]] as a boolean
valuation over propositions P

p = TRUE⇐⇒ there is a causal link 〈ai ,p,aj〉 with ai ∈ π and aj ∈ π ′

Thus we can check if path π ′ |= φ
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Intended Effects — Formula Example

A B
o

t1

t2

A B

ot1

t2

load-o-t1

The Intended Effects of π = 〈load-o-t1〉 are described by the formula
φ = o-in-t1
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Intended Effects — What Are They Good For?

We can use a logical formula describing IE(π|OPT) to derive
constraints about what must happen in any continuation of π to a plan
in OPT.

Theorem 1

Let OPT be a set of optimal plans for a planning task Π, π be a path,
and φ be a propositional logic formula describing IE(π|OPT). Then, for
any s0 [[π]]-plan π ′, π ·π ′ ∈ OPT implies π ′ |= φ .
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Intended Effects — The Bad News

It’s P-SPACE Hard to find the intended effects of path π .

Theorem 2
Let INTENDED be the following decision problem: Given a planning
task Π, a path π , and a set of propositions X ⊆ P, is X ∈ IE(π)?
Deciding INTENDED is P-SPACE Complete.
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Approximate Intended Effects — The Good News

We can use supersets of IE(π|OPT) to derive constraints about any
continuation of π .

Theorem 3

Let OPT be a set of optimal plans for a planning task Π, π be a path,
PIE(π|OPT)⊇ IE(π|OPT) be a set of possible OPT-intended effects of
π , and φ be a logical formula describing PIE(π|OPT). Then, for any
path π ′ from s0 [[π]], π ·π ′ ∈ OPT implies π ′ |= φ .
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Finding Approximate Intended Effects — Shortcuts

Intuition: X can not be an intended effect of π if there is a
cheaper way to achieve X

Assume we have some library L of “shortcut” paths
X ⊆ s0 [[π]] can not be an intended effect of π if there exists
some π ′ ∈L such that:

1 C(π ′) < C(π)
2 X ⊆ s0 [[π ′]]



Background Heuristics Landmarks Learning Conclusion

Shortcuts Example

Causal Structure

A B

C

t1

t1

t1

t2

t2

drive-t1-A-B

drive-t1-B-C

drive-t1-C-A

drive-t2-A-B

π = 〈

drive-t1-A-B ,drive-t2-A-B ,drive-t1-B-C ,drive-t1-C-A

〉

π ′ = 〈drive-t2-A-B〉
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Shortcuts in Logic Form

For X ⊆ s0 [[π]] to be an intended effect of π , it must achieve
something that no shortcut does

Expressed as a CNF formula:

φL (π) =
∧

π ′∈L :C(π ′)<C(π)

∨p∈s0[[π]]\s0[[π ′]] p

Each clause of this formula stands for an existential optimal
disjunctive action landmark: There must exist some action in
some optimal continuation that consumes one of its propositions
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Finding Shortcuts

Where does the shortcut library L come from?

It does not need to be static — it can be dynamically generated
for each path

We use the causal structure of the current path — a graph whose
nodes are actions, with an edge from ai to aj if there is a causal
link where ai provides some proposition for aj

We attempt to remove parts of the causal structure, to obtain a
“shortcut”
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Shortcuts as Landmarks

The formula φL (π) describes ∃-opt landmarks — landmarks
which occur in some optimal plan

We can incorporate those landmarks with “regular” landmarks,
and derive a heuristic using the cost partitioning method

The resulting heuristic is path admissible

To guarantee optimality, we modify A∗ to reevaluate h(s) every
time a cheaper path to s is found
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Motivation

We want to do domain independent optimal planning, in a
time-bounded setting

Use A∗

f = g+h

hLM-CUT

hLA

hm

PDB
M&S

hmax
SP

Which heuristic is the best?
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Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes

A more informed heuristic solves less problems — something is
rotten in the kingdom of A∗



Background Heuristics Landmarks Learning Conclusion

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes

A more informed heuristic solves less problems — something is
rotten in the kingdom of A∗



Background Heuristics Landmarks Learning Conclusion

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes

A more informed heuristic solves less problems — something is
rotten in the kingdom of A∗



Background Heuristics Landmarks Learning Conclusion

Why Settle for One?

There is no single best heuristic, so why settle only for one?

We can use the maximum of several heuristics to get a more
informative heuristic

Sample results:

Domain hLA hLM-CUT maxh

airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes

A more informed heuristic solves less problems — something is
rotten in the kingdom of A∗



Background Heuristics Landmarks Learning Conclusion

The Accuracy / Computation Time Tradeoff

More Informed Heuristic Less Search Effort

Less Search Effort
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More Time Per Statetmaxh = thLA + thLM-CUT

Conclusion
A more informed heuristic is not necessarily better
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A Simple Observation

So how can we benefit from multiple heuristics?

Simple observation: the maximum of several heuristics — is
simply the value of one of those heuristics

This leads to the following idea:
Given state s, and heuristics {h1, . . . ,hn}
Choose hi = ORACLE(s,{h1, . . . ,hn})
Compute only hi (s)
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The Oracle

How do we define ORACLE?
Naive answer: use the heuristic which gives the maximum value

ORACLE(s,{h1, . . . ,hn}) = argmax
i

hi (s)

Why is this naive?

Because sometimes the extra time to compute the most informed
heuristic is not worth it
Example: hLM-CUT is about 9.4 times slower than hLA
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Selective Max

Develop a theoretical model for determining which heuristic is
best to compute at each state, in order to minimize search time

Derive a decision rule from the model, which is used as a target
concept for a classifier

Describe an online learning scheme which uses this classifier
during search
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Theoretical Model

We will not go into the details

sg

s0

f1 = c∗f2 = c∗
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Decision Rule

From our theoretical model, we get the following decision rule:

Decision Rule

Compute h2 ⇐⇒ h2−h1 > α logb(t2/t1)

h1,h2 are the heuristics

t1, t2 are their respective computation times

WLOG t2 ≥ t1
b is the branching factor

α is a hyper parameter
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Learning

Pre-search:
Collecting training examples
Labeling training examples
Generating features
Building a classifier

During search:
Classification
Active learning



Background Heuristics Landmarks Learning Conclusion

Collecting Training Examples

State space is sampled by performing random walks

Several sampling procedures available

The exact details are not important

s0

Depth limit
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Labeling Training Examples

b, t1, t2 are estimated from the collected examples

h2−h1 is calculated for each state

Each example is labeled by h2 iff h2−h1 > α logb(t2/t1)
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Generating Features

We perform online learning, for a specific problem, so we do not
need to generalize across problems

This allows us to use features which fully describe each state

We use the simplest features — just values of state variables
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Building a Classifier

We use the Naive Bayes classifier
Very fast
Incremental — can be updated quickly on the fly
Provides probability distribution for classification
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Using the classifier

State Evaluation

state

classifier

features

Evaluate h2Evaluate h1

h1 h2

Pr(h1) > ρ Pr(h2) > ρ

Learn

Pr(h1),Pr(h2)≤ ρ
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Selective Max Conclusion

This is an active online learning scheme

This approach can be easily extended to multiple heuristics
Learn a classifier for each pair
Decide which heuristic to use by voting

The resulting heuristic is history dependent — the order in which
all previous states are encountered matters
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Conclusion

Presented a formal framework for defining
State–, path–, multi path–, and history-dependent heuristics
Consistent, admissible, globally admissible heuristics
Path-admissible heuristics

Presented path– and multi path-dependent landmark heuristics

Presented path-admissible ∃-opt landmark heuristic

Presented history-dependent heuristic combination selective max

Bottom Line
Even if you’re doing classical planning, you’re not limited to classical
heuristics
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