Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

Non-classical Heuristics for Classical Planning

Erez Karpas

Advisors: Carmel Domshlak Shaul Markovitch

Faculty of Industrial Engineering and Management, Technion — Israel Institute of Technology

April 17, 2012

▲□▶▲□▶▲□▶▲□▶ □ のQで

ñ

э.

ヘロト 人間 とくほ とくほとう

Outline

2 Heuristics

3 Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

4 Learning

Selective Max

5 Conclusion

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

"Planning is the art and practice of thinking before acting"

Patrik Haslum

"Planning is the model based approach to autonomous behavior"

Hector Geffner

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

"Planning is the art and practice of thinking before acting"

Patrik Haslum

"Planning is the model based approach to autonomous behavior"

Hector Geffner

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

"Planning is the art and practice of thinking before acting"

Patrik Haslum

"Planning is the model based approach to autonomous behavior"

Hector Geffner

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000		

"Planning is the art and practice of thinking before acting"

Patrik Haslum

"Planning is the model based approach to autonomous behavior"

Hector Geffner

"Planning is just a way of avoiding figuring out what to do next"

Rodney Brooks

イロト 不得 とうほう 不良 とう

э

Domain Independent Planning Problems

- A domain independent planning problem contains:
 - Initial world state
 - Desired goal condition
 - Set of deterministic actions
- A solution is a sequence of actions:
 - Transforms the initial world state into a goal state

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- We are interested in optimal planning:
 - Find (one of) the cheapest possible plans

Background	Heuristics	Landmarks	Learning	Conclusion
отріре				

- A STRIPS planning problem with action costs is a 5-tuple
 - $\mathsf{\Pi} = \langle \mathsf{P}, \mathsf{s}_0, \mathsf{G}, \mathsf{A}, \mathsf{C} \rangle$
 - P is a set of boolean propositions
 - $s_0 \subseteq P$ is the initial state
 - $G \subseteq P$ is the goal
 - A is a set of actions.
 - Each action is a triple $a = \langle pre(a), add(a), del(a) \rangle$
 - $C: A \to \mathbb{R}^{0+}$ assigns a cost to each action
- Applying action sequence $\overline{\rho} = \langle a_0, a_1, \dots, a_n \rangle$ at state *s* leads to $s[[\overline{\rho}]]$

(日)

• The cost of action sequence $\overline{\rho}$ is $\sum_{i=0}^{n} C(a_i)$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

Solving Planning Problems

- Several methods for solving planning problems exist:
 - Compilation into SAT or CP
 - Symbolic search
 - Bidirectional search
 - Heuristic forward search
- We focus on heuristic forward search
- We need heuristics, because the state space of a planning problem is huge

Search Problems

- A search problem contains:
 - Initial world state
 - Set of goal states
 - Set of deterministic actions
- A solution is a sequence of actions:
 - Transforms the initial world state into a goal state

ヘロト 人間 とくほ とくほとう

3

- We are interested in optimal search:
 - Find (one of) the cheapest possible plans

イロン 不得 とくほ とくほ とうほう

Conclusion

Heuristic Forward Search

- It is easy to see that planning \Rightarrow search
- Heuristic forward search:
 - Maintains a list of candidate states (open list)
 - At each iteration, a state is removed from the list
 - If it is not a goal state, all of its successors are added to the list
- The choice of which state to remove usually involves a heuristic evaluation function
 - Evaluates the merit of each state

ñ

æ

ヘロト 人間 とく ヨン く ヨン

Outline

Background

2 Heuristics

Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

4 Learnin

Selective Max

5 Conclusion

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

Heuristic Evaluation Functions

- A heuristic evaluation function estimates the distance from states to the goal
- Heuristics are sometimes defined as functions from states to non-negative numbers

Background	Heuristics	Landmarks	Learning	Conclusion
			0.0000000000000000000000000000000000000	

Heuristic Evaluation Functions

- A heuristic evaluation function estimates the distance from states to the goal
- Heuristics are sometimes defined as functions from states to non-negative numbers. This is not general enough!

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

Heuristic Evaluation Functions

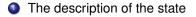
- A heuristic evaluation function estimates the distance from states to the goal
- Heuristics are sometimes defined as functions from states to non-negative numbers. This is not general enough!

"the promise of a node is estimated numerically by a **heuristic** evaluation function f(n) which, in general, may depend on the description of *n*, the description of the goal, the information gathered by the search up to that point, and most important, on any extra knowledge about the problem domain."

Judea Pearl, Heuristics, 1984

- ロト・ 御 ト・ 道 ト・ 道 ト 三 道

Information Sources for Heuristics



The description of the goal and any extra knowledge about the problem domain

The information gathered by the search up to that point

Information Sources for Heuristics

The description of the state

- The description of the goal and any extra knowledge about the problem domain
 - In domain independent planning, this is the problem description in STRIPS

The information gathered by the search up to that point

Information Sources for Heuristics

The description of the state

- The description of the goal and any extra knowledge about the problem domain
 - In domain independent planning, this is the problem description in STRIPS

(日)(御)(王)(王)(王)

- The information gathered by the search up to that point
 - This is where the "usual" definition fails
 - We will focus on heuristics which exploit this information

Formal Framework for Heuristics

Search History

A sequence of states $\omega = \langle s_0, s_1, \dots s_n \rangle$ is a possible search history of search problem ρ iff:

• s_0 is the initial state of ho

Every other state in the sequence is a successor of one of the previous states

The set of all possible search histories of ρ is denoted by \mathscr{H}_{ρ} The set of all possible paths from the initial state is denoted by Γ

Heuristic Evaluation Function

A heuristic evaluation function for search problem ρ is a function $h: \mathscr{H}_{\rho} \times \Gamma \to \mathbb{R}^{0+}$

・ロト・日本・山下・ 山下・ 日・ うくの・

Ñ

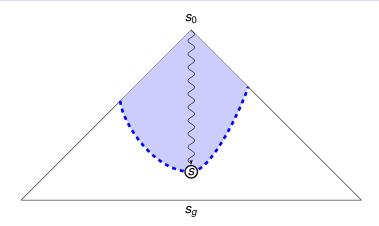
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Properties of Heuristics

Using our formal framework, we can discuss properties of heuristics:

- Which information gathered by the search they use?
- Are they admissible?

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000	

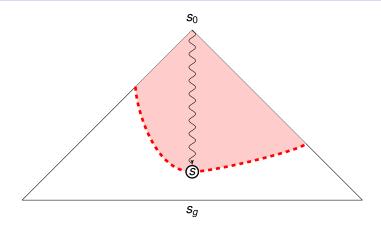


History Independent

A heuristic is history independent iff $h(\omega_1, \pi) = h(\omega_2, \pi)$ for any two search histories ω_1, ω_2 and any path π

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ト

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000		

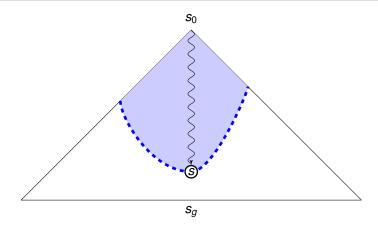


History Independent

A heuristic is history independent iff $h(\omega_1, \pi) = h(\omega_2, \pi)$ for any two search histories ω_1, ω_2 and any path π

▲ロト ▲聞 ト ▲ 国 ト ▲ 国 ト

Background	Heuristics	Landmarks	Learning	Conclusion
			000000000000000000000000000000000000000	

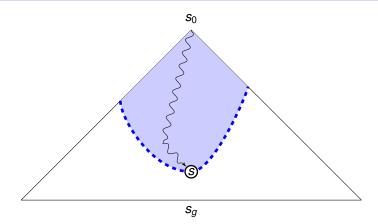


Path Independent

A heuristic is path independent iff $h(\omega, \pi_1) = h(\omega, \pi_2)$ for any two paths π_1, π_2 reaching the same state, and for any search history ω

・ロト ・ 戸 ・ ・ ヨ ・ ・

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000		

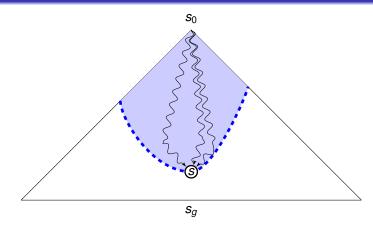


Path Independent

A heuristic is path independent iff $h(\omega, \pi_1) = h(\omega, \pi_2)$ for any two paths π_1, π_2 reaching the same state, and for any search history ω

Q

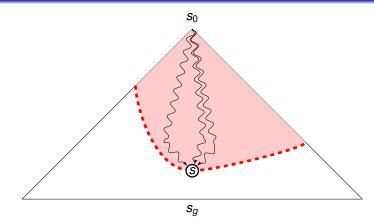
・ロト ・ 戸 ・ ・ ヨ ・ ・



Special Case: Multi Path Dependent

A a path independent heuristic is multi path dependent iff $h(\omega_1, \pi) = h(\omega_2, \pi)$ for any two search histories ω_1, ω_2 such that the set of explored paths leading to $s_0[[\pi]]$ is the same in ω_1 and ω_2

ð



Special Case: Multi Path Dependent

A a path independent heuristic is multi path dependent iff $h(\omega_1, \pi) = h(\omega_2, \pi)$ for any two search histories ω_1, ω_2 such that the set of explored paths leading to $s_0[[\pi]]$ is the same in ω_1 and ω_2

ð

Background

Landmarks Learning

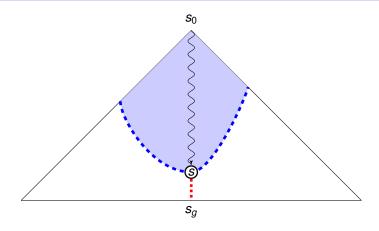
Conclusion

Information Dependence: Examples

		History		
		Independent	Dependent	
Independent Path Dependent	Indopondant	Classical	Selective Max,	
	Classical	h _{LA} (multi-path)		
	Dependent	∃-opt landmarks h^{LM} (Richter et al. 2008)	Future work	

Background Heuristics Landmarks Learning Conclusion

Taxonomy of Heuristics: Admissibility



Admissible

A heuristic is admissible iff $h(\omega, \pi) \le h^*(s_0[[\pi]])$ for any search history ω and any path π .

ヘロト 人間 とくほとく ほう

Optimality and Admissibility

Background

- We know that *A** search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition?

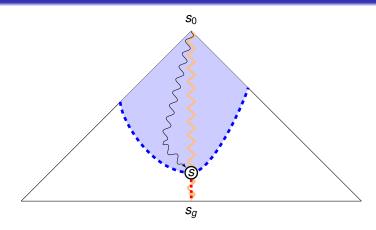
Optimality and Admissibility

- We know that *A** search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition?

Optimality and Admissibility

- We know that *A** search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition? No

Global Admissibility

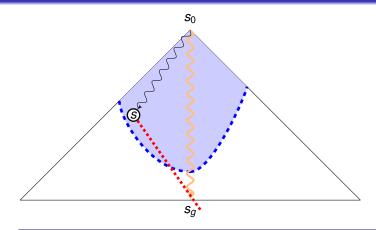


Globally Admissible

A heuristic is globally admissible iff there exists some optimal solution $\overline{\rho}$ such that for any state *s* along $\overline{\rho}$ any search history ω , and any path π to *s*: $h(\omega, \pi) \leq h^*(s)$.

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000		

Global Admissibility

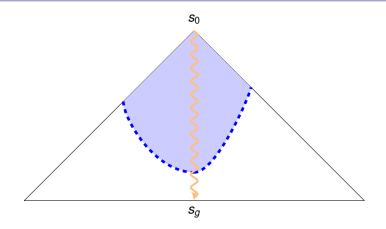


Globally Admissible

A heuristic is globally admissible iff there exists some optimal solution $\overline{\rho}$ such that for any state *s* along $\overline{\rho}$ any search history ω , and any path π to *s*: $h(\omega, \pi) \leq h^*(s)$.

Background	Heuristics	Landmarks	Learning	Conclusion
		000000000000000000000000000000000000000		

Global Path Admissibility



Globally Path Admissible

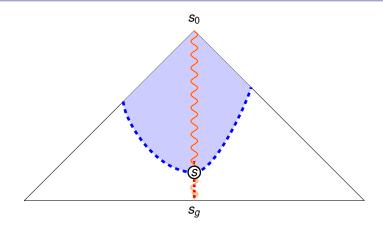
A heuristic is $\{\overline{\rho}\}$ -admissible iff any search history ω and for any prefix π of $\overline{\rho}$: $h(\omega, \pi) \leq h^*(s_0[[\pi]])$

▲□▶ ▲圖▶ ▲ 圖▶ .

3

Background Heuristics Landmarks Learning Conclusion

Global Path Admissibility



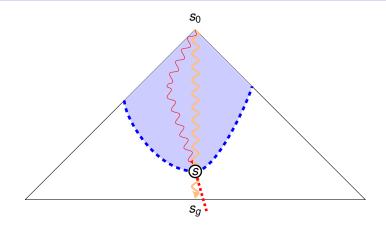
Globally Path Admissible

A heuristic is $\{\overline{\rho}\}$ -admissible iff any search history ω and for any prefix π of $\overline{\rho}$: $h(\omega, \pi) \leq h^*(s_0[[\pi]])$

・ロン・日本・ ・ ほと・ きょう

Background Heuristics Landmarks Learning Conclusion

Global Path Admissibility



Globally Path Admissible

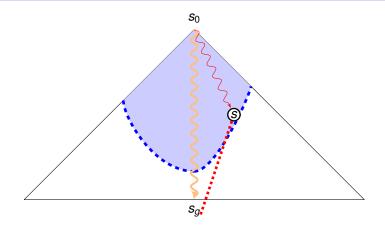
A heuristic is $\{\overline{\rho}\}$ -admissible iff any search history ω and for any prefix π of $\overline{\rho}$: $h(\omega, \pi) \leq h^*(s_0[[\pi]])$

(日)

3

Background Heuristics Landmarks Learning Conclusion

Global Path Admissibility



Globally Path Admissible

A heuristic is $\{\overline{\rho}\}$ -admissible iff any search history ω and for any prefix π of $\overline{\rho}$: $h(\omega, \pi) \leq h^*(s_0[[\pi]])$

(日)

3

Search with Path-admissible Heuristics

- Path-admissibility be generalized to a set of solutions χ
- If χ is the set of all optimal solutions, we call *h* path-admissible
- Using a path-admissible heuristic with A^{*} does not guarantee admissibility
- However, other search algorithms can guarantee an optimal solution is found with a path-admissible heuristic

Ñ

э.

イロト 不得 とうほう イヨン

Outline

2 Heuristics

3 Landmarks

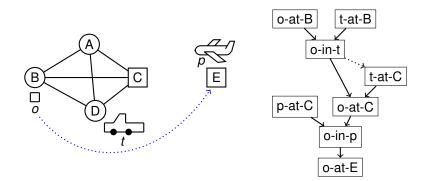
- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

4 Learning

Selective Max

- A landmark is a formula that must be true at some point in every plan (Hoffmann, Porteous & Sebastia 2004)
- Landmarks can be (partially) ordered according to the order in which they must be achieved
- Some landmarks and orderings can be discovered automatically

Example Planning Problem - Logistics



Partial landmarks graph

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

(Example due to Silvia Richter)

Ñ

э.

ヘロト 人間 とく ヨン く ヨン

Outline

2 Heuristics

3 Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

4 Learning

Selective Max

Using Landmarks for Heuristic Estimates

- The number of landmarks that still need to be achieved is an (inadmissible) heuristic estimate (Richter, Helmert and Westphal 2008)
- Used by LAMA winner of the IPC-2008 and IPC-2011 sequential satisficing track
- We assume that landmarks and orderings are discovered in a pre-processing phase, and the same landmark graph is used throughout the planning phase

▲□▶▲@▶▲≣▶▲≣▶ = 善 のへで

Path-dependent Heuristics

- Suppose we are in state s. Did we achieve landmark ϕ yet?
- There is no way to tell just by looking at s
- Achieved landmarks are a function of path, not state
- The landmarks that still need to be achieved are path-dependent

• The landmarks that still need to be achieved after reaching state s via path π are

$L(s,\pi) = (L \setminus \operatorname{Accepted}(s,\pi)) \cup \operatorname{ReqAgain}(s,\pi)$

- L is the set of all (discovered) landmarks
- Accepted $(s, \pi) \subset L$ is the set of *accepted* landmarks the landmarks which were achieved along π
- ReqAgain(s,π) ⊆ Accepted(s,π) is the set of *required again* landmarks — landmarks that must be achieved again according to a set of easy to check rules

• The landmarks that still need to be achieved after reaching state s via path π are

 $L(s,\pi) = (L \setminus \operatorname{Accepted}(s,\pi)) \cup \operatorname{ReqAgain}(s,\pi)$

- L is the set of all (discovered) landmarks
- Accepted $(s, \pi) \subset L$ is the set of *accepted* landmarks the landmarks which were achieved along π
- ReqAgain(s,π) ⊆ Accepted(s,π) is the set of *required again* landmarks — landmarks that must be achieved again according to a set of easy to check rules

• The landmarks that still need to be achieved after reaching state s via path π are

 $L(s,\pi) = (L \setminus \operatorname{Accepted}(s,\pi)) \cup \operatorname{ReqAgain}(s,\pi)$

- L is the set of all (discovered) landmarks
- Accepted(s, π) \subset *L* is the set of *accepted* landmarks the landmarks which were achieved along π
- ReqAgain(s, π) ⊆ Accepted(s, π) is the set of required again landmarks — landmarks that must be achieved again according to a set of easy to check rules

• The landmarks that still need to be achieved after reaching state s via path π are

 $L(s,\pi) = (L \setminus \operatorname{Accepted}(s,\pi)) \cup \operatorname{ReqAgain}(s,\pi)$

- L is the set of all (discovered) landmarks
- Accepted(s, π) \subset *L* is the set of *accepted* landmarks the landmarks which were achieved along π
- ReqAgain(s,π) ⊆ Accepted(s,π) is the set of required again landmarks — landmarks that must be achieved again according to a set of easy to check rules

(ロト (P) (E) (E) (O Q)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Admissible Landmark Heuristic

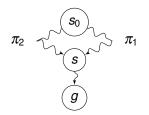
Background

- Suppose we have a set of landmarks that need to be achieved $L(s,\pi)$
- We get an admissible heuristic by performing an action cost partitioning
 - Partition the cost of each action between the landmarks it achieves
 - Assign an admissible estimate (cost) for each landmark
 - Sum over the costs of landmarks
- Admissibility follows from Katz and Domshlak (2010)

Landmarks Learning

Conclusion

Multi-path Dependence



Suppose state s was reached by paths π₁, π₂

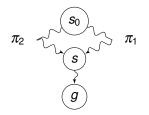
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: φ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π₂

Landmarks Learning

э

Conclusion

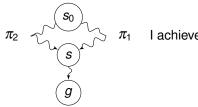
Multi-path Dependence



- Suppose state s was reached by paths π₁, π₂
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: φ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π₂

andmarks Learning

Multi-path Dependence

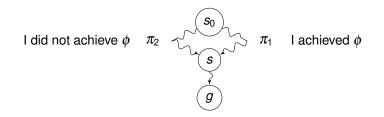


I achieved ϕ

ヘロト ヘアト ヘリト ヘリト

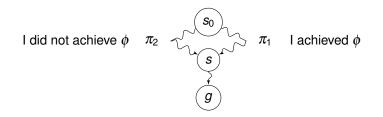
Conclusion

- Suppose state s was reached by paths π_1, π_2
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Proof: ϕ is a landmark, therefore it needs to be true in all valid



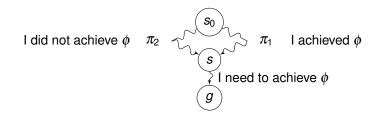
- Suppose state s was reached by paths π₁, π₂
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: φ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π₂

ヘロト ヘアト ヘリト ヘリト



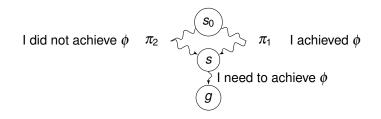
- Suppose state s was reached by paths π₁, π₂
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: ϕ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π_2

ヘロト ヘアト ヘリト ヘリト



- Suppose state s was reached by paths π₁, π₂
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: ϕ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π_2

ヘロト ヘアト ヘリト ヘリト



- Suppose state s was reached by paths π₁, π₂
- Suppose π_1 achieved landmark ϕ and π_2 did not
- Then ϕ needs to be achieved after state s
- Proof: φ is a landmark, therefore it needs to be true in all valid plans, including valid plans that start with π₂

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Fusing Data from Multiple Paths

• Suppose \mathscr{P} is a set of paths from s_0 to a state s. Define

$$L(s, \mathscr{P}) = (L \setminus \operatorname{Accepted}(s, \mathscr{P})) \cup \operatorname{ReqAgain}(s, \mathscr{P})$$

where

- Accepted $(s, \mathscr{P}) = \bigcap_{\pi \in \mathscr{P}} \operatorname{Accepted}(s, \pi)$
- ReqAgain(s, 𝒫) ⊆ Accepted(s, 𝒫) is specified as before by s and the various rules

 L(s, 𝒫) is the set of landmarks that we know still needs to be achieved after reaching state s via the paths in 𝒫 (Karpas and Domshlak, 2009)

Ñ

э.

イロト 不得 とうほう イヨン

2 Heuristics

Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

Selective Max

Motivation

Why did the chicken cross the road? To get to the other side

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Intended Effects

Motivation

Why did the chicken cross the road? To get to the other side

Observation

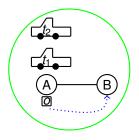
Every along action an optimal plan is there for a reason

- Achieve a precondition for another action
- Achieve a goal

ヘロト 人間 とく ヨン く ヨン

э

Intended Effects — Example

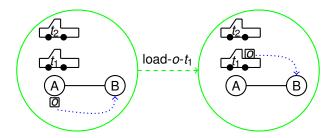


- There must be a reason for applying load-o-t1
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう イヨン

э

Intended Effects — Example

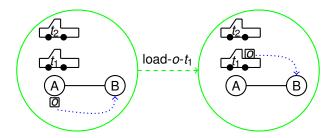


- There must be a reason for applying load-o-t1
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

イロト 不得 とうほう 不良 とう

э

Intended Effects — Example

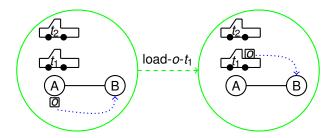


There must be a reason for applying load-o-t₁

- Ioad-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

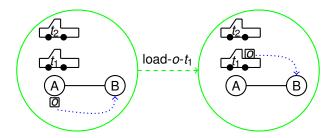
(日)

Intended Effects — Example



- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

Intended Effects — Example



- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires *o*-in-*t*₁

Intended Effects — Intuition

- We formalize chicken logic using the notion of Intended Effects
- A set of propositions X ⊆ s₀ [[π]] is an intended effect of path π, if we can use X to continue π into an optimal plan
- Using X refers to the presence of causal links in the optimal plan

Causal Link

Let $\pi = \langle a_0, a_1, \dots a_n \rangle$ be some path. The triple $\langle a_i, p, a_j \rangle$ forms a *causal link* in π if a_i is the actual provider of precondition p for a_j .

Landmarks Learning

Conclusion

(ロ)、(型)、(E)、(E)、(E)、(O)

Intended Effects — Formal Definition

Intended Effects

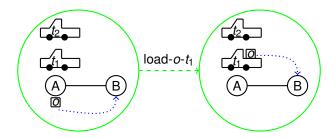
Let OPT be a set of optimal plans for planning task Π . Given a path $\pi = \langle a_0, a_1, \dots, a_n \rangle$ a set of propositions $X \subseteq s_0[[\pi]]$ is an OPT-intended effect of π iff there exists a path π' such that $\pi \cdot \pi' \in \text{OPT}$ and π' consumes exactly X ($p \in X$ iff there is a causal link $\langle a_i, p, a_i \rangle$ in $\pi \cdot \pi'$, with $a_i \in \pi$ and $a_i \in \pi'$).

- IE $(\pi|\text{OPT})$ the set of all OPT-intended effect of π
- $\mathsf{IE}(\pi) = \mathsf{IE}(\pi|\mathsf{OPT})$ when OPT is the set of all optimal plans

Landmarks Learning

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Intended Effects — Set Example



The Intended Effects of $\pi = \langle \text{load-}o-t_1 \rangle$ are $\{\{o-\text{in-}t_1\}\}$

(日)

Conclusion

Intended Effects — It's Logical

• Working directly with the set of subsets $IE(\pi|OPT)$ is difficult

• We can interpret IE(π |OPT) as a boolean formula ϕ

$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$

We can also interpret any path π' from s₀ [[π]] as a boolean valuation over propositions P

p= TRUE \iff there is a causal link $\langle a_i, p, a_j
angle$ with $a_i \in \pi$ and $a_j \in \pi'$

• Thus we can check if path $\pi' \models \phi$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

Intended Effects — It's Logical

- Working directly with the set of subsets $IE(\pi|OPT)$ is difficult
- We can interpret IE(π |OPT) as a boolean formula ϕ

$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$

We can also interpret any path π' from s₀ [[π]] as a boolean valuation over propositions P

p= TRUE \iff there is a causal link $\langle a_i, p, a_j
angle$ with $a_i \in \pi$ and $a_j \in \pi'$

• Thus we can check if path $\pi' \models \phi$

Conclusion

Intended Effects — It's Logical

- Working directly with the set of subsets IE(π |OPT) is difficult
- We can interpret IE(π |OPT) as a boolean formula ϕ

 $X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$

We can also interpret any path π' from s₀ [[π]] as a boolean valuation over propositions P

 $p = \text{TRUE} \iff$ there is a causal link $\langle a_i, p, a_j \rangle$ with $a_i \in \pi$ and $a_j \in \pi'$

$$ullet$$
 Thus we can check if path $\pi' \models \phi$

イロト 不得 トイヨト イヨト 三日

Conclusion

Intended Effects — It's Logical

- Working directly with the set of subsets $IE(\pi|OPT)$ is difficult
- We can interpret IE(π |OPT) as a boolean formula ϕ

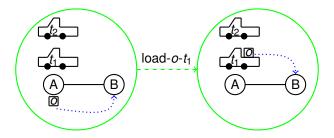
 $X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$

We can also interpret any path π' from s₀ [[π]] as a boolean valuation over propositions P

 $p = \text{TRUE} \iff$ there is a causal link $\langle a_i, p, a_j \rangle$ with $a_i \in \pi$ and $a_j \in \pi'$

• Thus we can check if path $\pi' \models \phi$

Intended Effects — Formula Example



The Intended Effects of $\pi = \langle \text{load-}o-t_1 \rangle$ are described by the formula $\phi = o\text{-in-}t_1$

※ うりで 言 く言とく言とく<u>思とく</u>ロト

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

Intended Effects — What Are They Good For?

We can use a logical formula describing $IE(\pi|OPT)$ to derive constraints about what must happen in any continuation of π to a plan in OPT.

Theorem 1

Let OPT be a set of optimal plans for a planning task Π , π be a path, and ϕ be a propositional logic formula describing IE(π |OPT). Then, for any $s_0[[\pi]]$ -plan $\pi', \pi \cdot \pi' \in \text{OPT}$ implies $\pi' \models \phi$.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

It's P-SPACE Hard to find the intended effects of path π .

Theorem 2

Let INTENDED be the following decision problem: Given a planning task Π , a path π , and a set of propositions $X \subseteq P$, is $X \in IE(\pi)$? Deciding INTENDED is P-SPACE Complete.

Approximate Intended Effects — The Good News

We can use supersets of IE(π |OPT) to derive constraints about any continuation of π .

Theorem 3

Let OPT be a set of optimal plans for a planning task Π , π be a path, $\mathsf{PIE}(\pi|\mathsf{OPT}) \supseteq \mathsf{IE}(\pi|\mathsf{OPT})$ be a set of possible OPT-intended effects of π , and ϕ be a logical formula describing $\mathsf{PIE}(\pi|\mathsf{OPT})$. Then, for any path π' from $s_0[[\pi]]$, $\pi \cdot \pi' \in \mathsf{OPT}$ implies $\pi' \models \phi$.

Conclusion

Conclusion

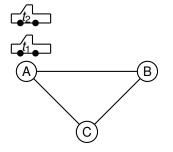
◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへの

Finding Approximate Intended Effects — Shortcuts

- Intuition: X can not be an intended effect of π if there is a cheaper way to achieve X
- Assume we have some library ${\mathscr L}$ of "shortcut" paths
- X ⊆ s₀ [[π]] can not be an intended effect of π if there exists some π' ∈ ℒ such that:

1 $C(\pi') < C(\pi)$ **2** $X \subseteq s_0[[\pi']]$ Landmarks Learning

Shortcuts Example



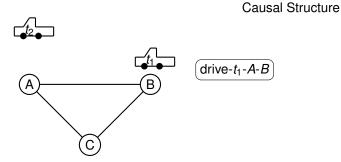
Causal Structure

Ñ

 $\pi = \langle$

Ñ

Shortcuts Example

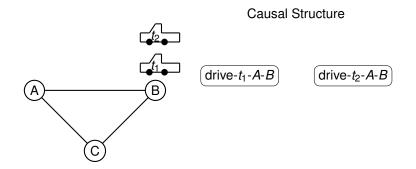


 $\pi = \langle \text{ drive-}t_1 - A - B \rangle$

ヘロト 人間 とくほとくほとう

э.

Shortcuts Example

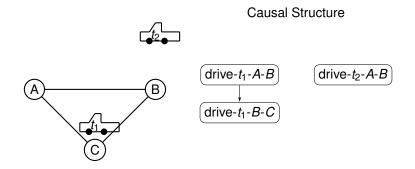


 $\pi=\langle$ drive- t_1 -A-B ,drive- t_2 -A-B

Landmarks Learning

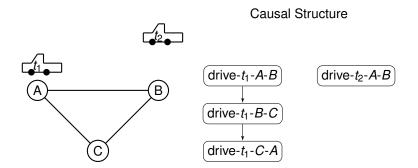
<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Shortcuts Example



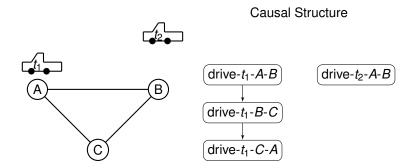
 $\pi = \langle \text{ drive-}t_1 - A - B, \text{drive-}t_2 - A - B, \text{drive-}t_1 - B - C \rangle$

▲□▶▲□▶▲□▶▲□▶ □ のQで



 $\pi = \langle \text{ drive-}t_1 - A - B, \text{ drive-}t_2 - A - B, \text{ drive-}t_1 - B - C, \text{ drive-}t_1 - C - A \rangle$

Shortcuts Example



 $\pi = \langle \text{ drive-}t_1\text{-}A\text{-}B \text{ ,drive-}t_2\text{-}A\text{-}B \text{ ,drive-}t_1\text{-}B\text{-}C \text{ ,drive-}t_1\text{-}C\text{-}A \rangle$ $\pi' = \langle \text{drive-}t_2\text{-}A\text{-}B \rangle$

> Ø ∞ € 4≣ 4 € 5 4 € 5 4 ¶ 5 4 ¤ 5

Shortcuts in Logic Form

- For X ⊆ s₀ [[π]] to be an intended effect of π, it must achieve something that no shortcut does
- Expressed as a CNF formula:

$$\phi_{\mathscr{L}}(\pi) = igwedge_{\pi' \in \mathscr{L}: C(\pi') < C(\pi)} ee_{
ho \in s_0[[\pi]] \setminus s_0[[\pi']]}
ho$$

• Each clause of this formula stands for an existential optimal disjunctive action landmark: There must exist some action in some optimal continuation that consumes one of its propositions

Conclusion

Finding Shortcuts

- Where does the shortcut library $\mathscr L$ come from?
- It does not need to be static it can be dynamically generated for each path
- We use the causal structure of the current path a graph whose nodes are actions, with an edge from a_i to a_j if there is a causal link where a_i provides some proposition for a_j
- We attempt to remove parts of the causal structure, to obtain a "shortcut"

(日)

Conclusion

(日)

Shortcuts as Landmarks

- The formula φ_L(π) describes ∃-opt landmarks landmarks which occur in some optimal plan
- We can incorporate those landmarks with "regular" landmarks, and derive a heuristic using the cost partitioning method
- The resulting heuristic is path admissible
- To guarantee optimality, we modify A* to reevaluate h(s) every time a cheaper path to s is found

Ñ

э.

イロト 不得 とうほう イヨン

Outline

2 Heuristics

Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

Learning Selective Max

Background	Heuristics	Landmarks	Learning	Conclusion
Motivation				

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*

Background	Heuristics	Landmarks	Learning	Conclusion
Motivation				

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*

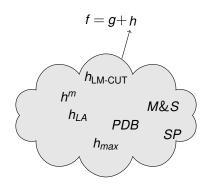
$$f = g + h$$

ñ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Background	Heuristics	Landmarks	Learning	Conclusion
Motivation				

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*



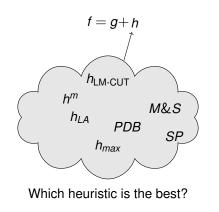
Ñ

æ

ヘロト 人間 とくほとくほとう

Background	Heuristics	Landmarks	Learning	Conclusion
Motivation				

- We want to do domain independent optimal planning, in a time-bounded setting
- Use A*



Ñ

æ

ヘロト 人間 とくほとく ほとう

Why Settle for One?

• There is no single best heuristic, so why settle only for one?

• We can use the maximum of several heuristics to get a more informative heuristic

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
airport	25	38	36
freecell	28	15	22

Number of problems solved in 30 minutes

Why Settle for One?

- There is no single best heuristic, so why settle only for one?
- We can use the maximum of several heuristics to get a more informative heuristic
- Sample results:

Domain	h _{LA}	h _{LM-CUT}	max _h
airport	25	38	36
freecell	28	15	22

Number of problems solved in 30 minutes

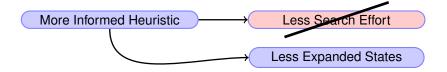
 A more informed heuristic solves less problems — something is rotten in the kingdom of A*

The Accuracy / Computation Time Tradeoff

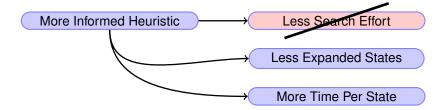
More Informed Heuristic

Less Search Effort

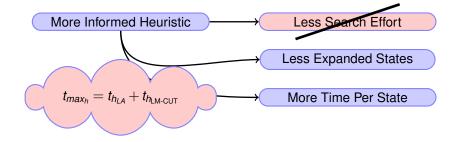
The Accuracy / Computation Time Tradeoff



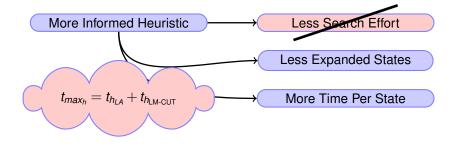
The Accuracy / Computation Time Tradeoff



The Accuracy / Computation Time Tradeoff



The Accuracy / Computation Time Tradeoff



э

Conclusion

A more informed heuristic is not necessarily better

イロン 不得 とくほ とくほ とうほう

A Simple Observation

• So how can we benefit from multiple heuristics?

• Simple observation: the maximum of several heuristics — is simply the value of one of those heuristics

• This leads to the following idea:

- Given state s, and heuristics $\{h_1, \ldots, h_n\}$
- Choose h_i = ORACLE(s, {h₁,..., h_n})
- Compute only h_i(s)

A Simple Observation

- So how can we benefit from multiple heuristics?
- Simple observation: the maximum of several heuristics is simply the value of one of those heuristics

イロン 不得 とくほ とくほ とうほう

- This leads to the following idea:
 - Given state *s*, and heuristics $\{h_1, \ldots, h_n\}$
 - Choose $h_i = \text{ORACLE}(s, \{h_1, \ldots, h_n\})$
 - Compute only h_i(s)

(日)

A Simple Observation

- So how can we benefit from multiple heuristics?
- Simple observation: the maximum of several heuristics is simply the value of one of those heuristics
- This leads to the following idea:
 - Given state *s*, and heuristics $\{h_1, \ldots, h_n\}$
 - Choose $h_i = \text{ORACLE}(s, \{h_1, \dots, h_n\})$
 - Compute only h_i(s)

• How do we define ORACLE?

• Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: *h*_{LM-CUT} is about 9.4 times slower than *h*_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname*{argmax}_i h_i(s)$$

- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

- How do we define ORACLE?
 - Naive answer: use the heuristic which gives the maximum value

$$ORACLE(s, \{h_1, \ldots, h_n\}) = \operatorname*{argmax}_i h_i(s)$$

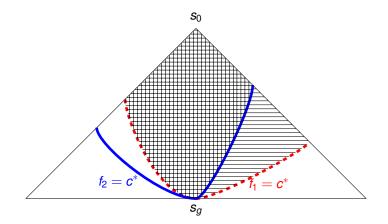
- Why is this naive?
- Because sometimes the extra time to compute the most informed heuristic is not worth it
- Example: h_{LM-CUT} is about 9.4 times slower than h_{LA}

Selective Max

- Develop a theoretical model for determining which heuristic is best to compute at each state, in order to minimize search time
- Derive a decision rule from the model, which is used as a target concept for a classifier
- Describe an online learning scheme which uses this classifier during search

Theoretical Model

• We will not go into the details



• From our theoretical model, we get the following decision rule:

Decision Rule

Compute
$$h_2 \iff h_2 - h_1 > \alpha \log_b(t_2/t_1)$$

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- h_1, h_2 are the heuristics
- t_1, t_2 are their respective computation times
- WLOG $t_2 \ge t_1$
- b is the branching factor
- α is a hyper parameter

Ñ

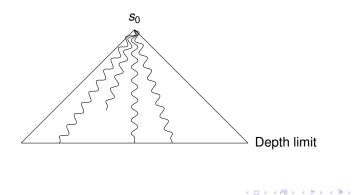
э

ヘロト 人間 とくほ とくほとう

- Pre-search:
 - Collecting training examples
 - Labeling training examples
 - Generating features
 - Building a classifier
- During search:
 - Classification
 - Active learning

Collecting Training Examples

- State space is sampled by performing random walks
- Several sampling procedures available
- The exact details are not important



э

Conclusion

Ñ

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Labeling Training Examples

- *b*, *t*₁, *t*₂ are estimated from the collected examples
- $h_2 h_1$ is calculated for each state
- Each example is labeled by h_2 iff $h_2 h_1 > \alpha \log_b(t_2/t_1)$

Conclusion

- We perform online learning, for a specific problem, so we do not need to generalize across problems
- This allows us to use features which fully describe each state

• We use the simplest features — just values of state variables

Ñ

3

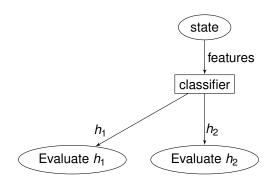
ヘロト 人間 とくほとく ほとう

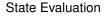
Building a Classifier

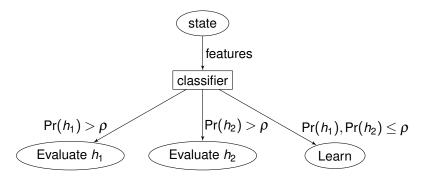
- We use the Naive Bayes classifier
 - Very fast
 - Incremental can be updated quickly on the fly
 - Provides probability distribution for classification

Background	Heuristics	Landmarks	Learning	Conclusion
Using the	classifier			

State Evaluation







ñ

æ

ヘロト 人間 とく ヨン く ヨン

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Conclusion

Selective Max Conclusion

- This is an active online learning scheme
- This approach can be easily extended to multiple heuristics
 - Learn a classifier for each pair
 - Decide which heuristic to use by voting
- The resulting heuristic is history dependent the order in which all previous states are encountered matters

Background	Heuristics	Landmarks	Learning	Conclusion
Outline				

Ñ

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨー

1 Background

2 Heuristics

3 Landmarks

- Definitions
- Landmark Based Heuristics
- Beyond Admissibility

Learning

Selective Max

5 Conclusion

Background	Heuristics	Landmarks	Conclusion
Conclusion			

Presented a formal framework for defining

- State-, path-, multi path-, and history-dependent heuristics
- Consistent, admissible, globally admissible heuristics
- Path-admissible heuristics
- Presented path
 – and multi path-dependent landmark heuristics
- Presented path-admissible ∃-opt landmark heuristic
- Presented history-dependent heuristic combination selective max

Bottom Line

Even if you're doing classical planning, you're not limited to classical heuristics