
Non-classical Heuristics for Classical Planning

Erez Karpas

Non-classical Heuristics for Classical Planning

Research Thesis

In Partial Fulfillment of the

Requirements for the

Degree of Doctor of Philosophy

Erez Karpas

Submitted to the Senate of
the Technion - Israel Institute of Technology

Adar, 5772 Haifa March 2012

I

The Research Thesis Was Done Under The Supervision of Prof. Carmel
Domshlak and Prof. Shaul Markovitch in the Faculty of Industrial Engi-
neering and Management.

First and foremost, I would like to thank my advisors, Carmel Domshlak
and Shaul Markovitch. Without their guidance, this thesis would not exist,
and I would be a different person. I would also like to thank the other
members of my thesis committee, Malte Helmert and Moshe Tennenholtz,
for providing invaluable advice.

I have collaborated with many peple during this time, and have learned
something from each of them — they all deserve my thanks: Roei Bahumi,
Ziv Even-Zur, Chris Fawcett, Yannai Golany, Malte Helmert, Holger Hoos,
Michael Katz, Emil Keyder, Yevegni Nus, Silvia Richter, Gabriele Röger,
and Jendrik Seipp. I have also had many an interesting discussion (and a
few beers) during the ICAPS conferences. I am honored to belong to such
a great community, and look forward to many more meetings.

Last, but not least, Dikla and my family deserve special thanks — I
could not have not this without you.

The Generous Financial Help Of Technion Is Gratefully Acknowledged.

II

PUBLICATIONS

Refereed Papers in Journals

1. E. Karpas, S.E. Shimony and A. Beimel, Approximate belief updating
in max-2-connected Bayes networks is NP-hard, in Artificial Intelli-
gence 173 (2009) 1150-1153

Refereed Papers in Conference Proceedings

1. E. Karpas, M. Katz and S. Markovitch, When Optimal is Just Not
Good Enough: Fast Near-Optimal Action Cost-Partitioning, in ICAPS
2011, 21st International Conference on Automated Planning
and Scheduling, Freiburg, Germany, June 2011

2. E. Karpas, C. Domshlak and S. Markovitch, To Max or not to Max:
Online Learning for Speeding Up Optimal Planning, in AAAI 2010,
24th AAAI Conference on Artificial Intelligence, Atlanta, Georgia,
USA, July 2010

3. E. Karpas and C. Domshlak, Cost-optimal Planning with Landmarks,
in IJCAI 2009, 21st International Joint Conference on Artificial Intel-
ligence, Pasadena, CA, USA, July 2009

Papers in Conference Workshop Proceedings

1. E. Karpas and C. Domshlak, Optimal Planning with Inadmissible
Heuristics, ICAPS 2012, 22nd International Conference on Automated
Planning and Scheduling, Atibaia, Sao Paulo, Brazil, June 2012 (to
appear)

2. E. Karpas and C. Domshlak, Living on the Edge: Safe Search with
Unsafe Heuristics, in Workshop on Heuristics for Domain Independent
Planning, ICAPS 2011, 21st International Conference on Automated
Planning and Scheduling, Freiburg, Germany, June 2011

3. C. Domshlak, Z. Even-Zur, Y. Golany, E. Karpas and Y. Nus, Com-
mand and Control Training Centers: Computer Generated Forces Meet
Classical Planning, in Workshop on Scheduling and Planning Appli-
cations, ICAPS 2011, 21st International Conference on Automated
Planning and Scheduling, Freiburg, Germany, June 2011

III

4. C. Fawcett, M. Helmert, H. Hoos, E. Karpas, G. Röger and J. Seipp,
FD-Autotune: Domain-Specific Configuration using Fast Downward,
in Workshop on Learning and Planning, ICAPS 2011, 21st Interna-
tional Conference on Automated Planning and Scheduling, Freiburg,
Germany, June 2011

5. M. Helmert, G. Röger and E. Karpas, Fast Downward Stone Soup:
A Baseline for Building Planner Portfolios, in Workshop on Learning
and Planning, ICAPS 2011, 21st International Conference on Auto-
mated Planning and Scheduling, Freiburg, Germany, June 2011

6. E. Karpas, C. Domshlak and S. Markovitch, Learning to Combine
Admissible Heuristics Under Bounded Time, in Workshop on Plan-
ning and Learning, ICAPS 2009, 19th International Conference on
Automated Planning and Scheduling, Thessaloniki, Greece, Septem-
ber 2009

Working Papers

1. R. Bahumi, C. Domshlak and E. Karpas Deeply Preferred Operators:
Lazy Search Meets Lookahead, submitted to ICAPS 2012 Workshop on
Heuristics and Search for Domain-Independent Planning

2. C. Domshlak, S. Markovitch and E. Karpas Online Speedup Learning
for Optimal Planning, Under preparation

3. C. Domshlak, M. Helmert, E. Karpas, E. Keyder and S. Richter Land-
marks in Optimal Planning, Under preparation

IV

Contents

1 Introduction 3

2 Background 5
2.1 Domain Independent Planning 5
2.2 Search Problems . 6

3 Non-classical Heuristic Search 9
3.1 Mathematical Framework . 10
3.2 A Taxonomy of Heuristics . 12

3.2.1 Information Dependence 12
3.2.2 Admissibility . 14

3.3 Search Algorithms . 16
3.3.1 Exploiting Path and Multi-Path Dependence 19
3.3.2 Exploiting χ-Admissible Heuristics 23

4 Landmark Based Heuristics 29
4.1 Landmarks . 29
4.2 Heuristics based on Landmark Graphs 31

4.2.1 Admissible Landmark-Based Heuristics 32
4.2.2 Cost-Partitioning Schemes 35

4.3 Search with Landmark-Based Heuristics 37
4.3.1 Multi-path Dependence 37
4.3.2 Consistency of Landmark Heuristics 39

4.4 Existential Optimal Landmarks 41
4.4.1 Intended Effects . 42
4.4.2 Approximating Intended Effects 47
4.4.3 From PIEL(π | {ρ}) to Existential Optimal Landmarks 49
4.4.4 Obtaining a Shortcut Library 50
4.4.5 Search with ∃-opt Landmark Heuristics 52

V

VI CONTENTS

4.5 Future Work . 53

5 Machine-Learning Based Heuristics 55
5.1 High-Level Overview . 56
5.2 A Model for Heuristic Selection 58

5.2.1 Idealized Model . 58
5.2.2 Dealing with Model Assumptions 60

5.3 Online Learning of the Selection Rule 61
5.3.1 State Space Sampling 63
5.3.2 Features . 63
5.3.3 Classifier . 64
5.3.4 Handling Non-Uniform Action Costs 65
5.3.5 Extension to Multiple Heuristics 66

5.4 Related Work . 66

6 Empirical Evaluation 69
6.1 Search Algorithm Evaluation 69
6.2 Evaluation of Existential Optimal Landmarks 73
6.3 Selective Max Evaluation . 77

7 Conclusion 79

A hLA Inconsistency Example 81

B Selective Max Empirical Evaluation 87
B.1 IPC 1998–2008 . 88
B.2 Impact of Parameter Settings 95

List of Figures

3.1 Illustration of state space for MPD-A∗ example 22
3.2 Illustration of state spaces . 24

4.1 Illustration of state space for hLA example 41
4.2 Example logistics task . 42
4.3 Causal structure of example 52

5.1 An illustration of the idealized search space model and the
f -contours of two admissible heuristics. 58

5.2 The selective max state evaluation procedure. 62

6.1 IPC-2011: Anytime performance in terms of coverage. 77

A.1 Important part of search space 82
A.2 Search space of example task 83
A.3 Landmarks and orderings of example task 84

B.1 hLA / hLM-CUT / h+
LM-CUT: Anytime performance in terms of

coverage. 95

VII

VIII LIST OF FIGURES

List of Tables

3.1 Information dependence of some heuristics 13

6.1 Number of problems solved from each domain, using different
search algorithms with hLA 70

6.2 Total number of expansions in each domain, for the problems
solved by all configurations (in parentheses) 71

6.3 Geometric mean of total solution time in seconds, over the
problems solved by all configurations (in parentheses) 72

6.4 Number of problems solved from each domain, using different
landmarks . 74

6.5 Total number of expansions in each domain, for the problems
solved by all configurations (in parentheses) 75

6.6 Geometric mean of total solution time in seconds, over the
problems solved by all configurations (in parentheses) 76

6.7 Number of planning tasks solved at IPC 2011. 77

7.1 Summary of heuristics and their properties 80

B.1 Parameters for selh. 88
B.2 Individual performance of hLA, hLM-CUT, h+

LM-CUT in terms
of coverage. 89

B.3 hLA / hLM-CUT: Performance summary in terms of coverage
(top) and expanded nodes measure, relative to maxh (bottom). 91

B.4 hLA / h+
LM-CUT: Performance summary in terms of coverage

(top) and expanded nodes measure, relative to maxh (bottom). 92
B.5 hLM-CUT / h+

LM-CUT: Performance summary in terms of cov-
erage (top) and expanded nodes measure, relative to maxh
(bottom). 93

IX

X LIST OF TABLES

B.6 hLA / hLM-CUT / h+
LM-CUT: Performance summary in terms

of coverage (top) and expanded nodes measure, relative to
maxh (bottom). 94

B.7 Hyper-parameter α. 96
B.8 Confidence threshold ρ. 96
B.9 Initial Sample Size t . 96
B.10 Sampling method. 97
B.11 Classifier. 98

Abstract

Domain-independent planning is one of the foundational areas in the field
of Artificial Intelligence (AI). A planning task consists of an initial world
state, a goal, and a set of actions for modifying the world state, with the
objective of finding a plan that transforms the initial world state into a
goal state. In cost-optimal planning, we are interested in finding not just
any valid plan, but a cheapest such plan. One of the most prominent ap-
proaches to cost-optimal planning these days is heuristic state-space search,
guided by a heuristic which estimates the distance from each state to the
goal. Most heuristics for domain-independent planning are what we call
classical — they estimate the distance from some given state to the goal us-
ing only properties of the given state. In this work, we explore non-classical
heuristics — heuristics which exploit additional information gathered during
search. We propose a mathematical model which allows us to formally de-
fine non-classical heuristics, as well as a useful taxonomy of heuristics along
several dimensions. We then describe two different classes of non-classical
heuristics: landmark-based heuristics, and machine-learning based heuris-
tics. Our empirical evaluation shows that non-classical heuristics are not
just an interesting theoretical possibility, but rather state of the art tools in
heuristic search planning.

1

2 LIST OF TABLES

Chapter 1

Introduction

Automated domain-independent planning is the model based approach to
autonomous behavior (Geffner, 2010), and is one of the most important
and well-studied problems in the field of artificial intelligence. Automated
planning deals with achieving a certain goal from a specified initial state,
using a set of given operators. Several different types of models exist, with
the most complex featuring partial observability of the world states, non-
deterministic transitions, temporal processes, and more. Classical planning
is perhaps the simplest possible model — featuring full observability, fully
deterministic actions, and sequential actions. Yet even in this simple model,
determining whether a given planning task has a solution is computationally
hard (Bylander, 1994).

In cost-optimal planning, the objective is not just to find any plan, but
rather to find one of the best (that is, cheapest) possible plans. On the other
hand, in satisficing planning, sub-optimal plans are valid solutions. In gen-
eral, both satisficing and cost-optimal planning are equally computationally
difficult. However, in many planning benchmarks, cost-optimal planning
is computationally hard, while satisficing planning is tractable (Helmert,
2008).

Our focus is on cost-optimal planning. In recent years, great progress
in cost-optimal planning has been made, due to new methods for auto-
matic derivation of admissible heuristics for domain-independent planning:
hmax (Bonet and Geffner, 2001), hm (Haslum and Geffner, 2000), Pattern
databases (Edelkamp, 2001), Merge and shrink abstractions (Helmert et al.,
2007), Implicit abstractions (Katz and Domshlak, 2010b), and hLM-CUT

(Helmert and Domshlak, 2009). The above heuristics, although being a
partial list, cover a wide range of heuristics, representing different families

3

4 CHAPTER 1. INTRODUCTION

of heuristics. Nevertheless, they all share a common attribute — they are
all what we call classical heuristics, which estimate the distance from some
given state to the goal using only properties of the given state.

In this work, we explore non-classical heuristics — heuristics which ex-
ploit additional information gathered during search. To our surprise, the
heuristic search literature does not provide a formal mathematical defini-
tion which allows us to formally describe non-classical heuristics. Therefore,
after a brief presentation of the necessary background in Chapter 2, our first
contribution, in Chapter 3, is such a formal model, which allows us to define
non-classical heuristics and their properties with mathematical notation.
We also discuss a taxonomy of heuristic evaluation functions along several
dimensions, and present new search algorithms, which are better suited for
use with non-classical heuristics.

In order to show that non-classical heuristics are not just theoretically
possible, but also a natural way to exploit information gathered during
search, we present two different classes of non-classical heuristics. In Chapter
4 we present landmark based heuristics, which exploit information gathered
from the known path (or paths) to the state being evaluated. In Chapter
5 we present machine-learning based heuristics, which exploit information
gathered throughout the search, not just from paths leading to the state
being evaluated. In Chapter 6 we present an empirical evaluation, which
demonstrates that these two classes of heuristics are state of the art. Fi-
nally, we present our conclusions in Chapter 7.

Chapter 2

Background

In this chapter we will formally define the problem we attempt to solve —
domain independent planning, as well as give background on search prob-
lems.

2.1 Domain Independent Planning

A domain independent planning task (planning task or simply task for short)
consists of a description of an initial state, a goal, and a set of available
operators. In this work, we will use the strips formalism (Fikes and Nilsson,
1971) extended with action costs. Most of this work applies to other well
known formalisms, such as adl (Pednault, 1989) and sas+ (Bäckström and
Klein, 1991; Bäckström and Nebel, 1995) with minor modifications. Our
notations mostly follow Helmert and Domshlak (2009).

A strips with action costs planning task is a 5-tuple Π = 〈P, I,G,A, C〉,
where P is a set of propositions (boolean atoms). A state s ⊆ P is a subset
of propositions, with the interpretation that the propositions in s are true
and all other propositions are false. I is a state, called the initial state, and
G ⊆ P is called the goal. For ease of notation and without loss of generality,
we assume that there is a single goal proposition (G = {pg}), which can only
be achieved by a single action, end.

A is a set of actions, each of which is a triple a = 〈pre(a), add(a), del(a)〉,
with pre(a) ⊆ P , add(a) ⊆ P , and del(a) ⊆ P . An action a is applicable in
state s if pre(a) ⊆ s. If action a is applied in state s, it results in the new
state s′ = (s \ del(a)) ∪ add(a). C : A → R0+ is a cost function on actions,
which assigns each action a non-negative cost.

A sequence of actions π = 〈a0, a1, . . . , an〉 is an s-path if a0 is applicable

5

6 CHAPTER 2. BACKGROUND

in state s and results in state s1, a1 is applicable in s1 and results in s2,
and so on. The state resulting from applying action sequence π in state s
is denoted by sJπK. If π1 and π2 are action sequences, by π1 · π2 we denote
the concatenation of π1 and π2. The cost of action sequence 〈a0, a1, . . . , an〉
is
∑n

i=0 C(ai). An s-path π is an s-plan for Π if G ⊆ sJπK. An optimal plan
is a cheapest such I-plan.

A useful notion in domain-independent planning is that of a causal link.
Let π = 〈a0, a1, . . . an〉 be an s-path. The triple 〈ai, p, aj〉 forms a causal
link in π if i < j, p ∈ add(ai), p ∈ pre(aj), p 6∈ sJ〈a0, a1, . . . ai−1〉K, and for
i < k < j, p 6∈ del(ak) ∪ add(ak). In other words, ai is the actual provider
of precondition p for aj . In such a causal link, ai is called the provider, and
aj is called the consumer. In Section 4.4, we will show one possible use for
causal links.

There are several approaches to solving domain independent planning
tasks. The most prominent approach, with which this work is concerned,
is heuristic forward search. Before we describe this approach in detail, it is
important to mention that other methods of solving planning tasks exist.
For example, it is possible to compile a planning task into an instance (or
series of instances) of another problem, such as boolean satisfiability testing
(SAT) (Kautz and Selman, 1992) or constraint programming (CP) (Vidal
and Geffner, 2006). Other approaches exploit symbolic search (Edelkamp
and Helmert, 2001) and/or bidirectional search (Kissmann and Edelkamp,
2011). However, as evidenced by both the results and the participating plan-
ners in the last several international planning competitions (IPC), heuristic
forward search is the state of the art in cost-optimal planning.

2.2 Search Problems

A planning task can be easily seen as a search problem. We will first formally
describe search problems, and then show how one can view a planning task
as a search problem. A search problem is a 6-tuple P = 〈S, I,G,A, f, C〉,
where S is a set of states (also known as the state space or search space),
I ∈ S is called the initial state, and G ⊆ S is a set of goal states. A is a set
of actions and f : S × A→ S is the transition function, such that applying
action a in state s leads to state f(s, a). C : A→ R0+ is a cost function on
actions, which assigns each action a non-negative cost.

The outgoing transitions from s, denoted by succa(s), are defined as
succa(s) := {〈a, s′〉 | a ∈ A, f(s, a) = s′}, and the successors of s, de-
noted succ(s), are simply the states for which there is an outgoing transition

2.2. SEARCH PROBLEMS 7

succ(s) := {s′ | ∃a : 〈a, s′〉 ∈ succa(s)}.
Let s be some state. A sequence of actions 〈a0, . . . , an〉 is an s-path

if f(. . . f(f(s, a0), a1), . . . , an) is well defined. We denote by Γ the set
of all valid I-paths. A sequence of actions 〈a0, . . . , an〉 is an s-plan if
f(. . . f(f(I, a0), a1), . . . , an) ∈ G. An I-plan is a solution for our search
problem. The cost of such a sequence of actions is

∑n
i=0 C(ai), and a solu-

tion is said to be optimal if no lower-cost solution exists.
Given a planning task Π = 〈P, I,G,A, C〉 it is very easy to see how to

create a corresponding search problem P = 〈S, I ′, G′, A′, f, C′〉. The states
of the search problem are simply subsets of the propositions of the planning
task, so S = 2P . The initial state of the search problem is the initial state
of the planning task, so I ′ = I. The goal states of the search problem are
those in which the goal of the planning task holds, so G′ = {s ∈ S|G ⊆ s}.
The actions of the search problem are the same as those of the planning
task, so A′ = A, and the transition function f is uniquely determined by
the actions’ preconditions, add and delete effects (for ease of presentation
we will assume that inapplicable actions lead to the same state), so that

f(s, a) =

{
(s \ del(a)) ∪ add(a) pre(a) ⊆ s
s otherwise,

and the cost of an action in the search problem is the same as the cost of the
corresponding action in the planning task, so C′ = C. Clearly, any solution
of the search problem is a solution for the planning task with the same cost,
and so any optimal solution of the search problem is an optimal solution of
the planning task.

Of course, if we want to solve a domain independent planning task as a
search problem, we still need to know how to solve search problems. Fortu-
nately, search is one of the fundamental topics of artificial intelligence, and
it is fairly well understood. While it is possible to use uninformed search
techniques, such as breadth first search or iterative deepening depth first
search (Korf, 1985), the size of the state space grows exponentially with the
number of propositions, and these methods quickly become infeasible.

Let us denote the cost of an optimal path going from state s to state
s′ by k(s, s′). Consider what we could do if we knew for each state s the
true cheapest cost from s to the goal (denoted by h∗(s) := mins′∈G k(s, s′),
which is also called the perfect heuristic). First, note that c∗ := h∗(I) is the
cost of the optimal solution. At least one of the successors of I is on the
optimal path to the closest goal state. In general, by going from each state
s to a successor s′ with the lowest value of h∗(s′), we would find an optimal

8 CHAPTER 2. BACKGROUND

solution.
Unfortunately, it is usually not feasible to compute h∗. For example,

strips planning is PSPACE-complete (Bylander, 1994), implying that it is
PSPACE-hard to compute the perfect heuristic. However, it is still possible
to guide the search towards a solution more quickly using a heuristic eval-
uation function (or heuristic for short), which attempts to approximate h∗.
A heuristic evaluation function associates with each state s in the search
space an estimate of h∗(s) — the distance from s to the nearest goal. Many
well known search algorithms can exploit such a heuristic, such as greedy
best first search and A∗ (Hart et al., 1968). In the next chapter, we formally
define heuristic evaluation functions, and discuss some well known search
algorithms.

Chapter 3

Non-classical Heuristic
Search

“Heuristic search has been one of the important ideas to grow out
of artificial intelligence research. It is an ill-defined concept. . . ”
(Pohl, 1970)

Generally speaking, heuristics are easy to compute methods which can
help choose among alternate courses of action. However, in the context
of heuristic search, heuristics are typically used to estimate the distance
from search states to the goal. Many papers about heuristic search, and
A∗ in particular, either neglect to give a formal mathematical definition of
heuristics, or state that heuristics are functions which map search states
into non-negative numbers (Pohl, 1970; Harris, 1974; Martelli, 1977; Korf,
1985; Russell and Norvig, 2010; Edelkamp and Schrödl, 2011). Others note
that heuristic estimates might also depend on some information gathered
during the search, rather than only on the description of the evaluated state
(Gelperin, 1977; Bagchi and Mahanti, 1983; Mérő, 1984; Dechter and Pearl,
1985). However, we are not familiar with any previous work which gives a
formal mathematical definition of heuristics that takes into account the fact
that heuristics can exploit information other than the state description1.
In this chapter, we will provide such a formal mathematical definition of
heuristic evaluation functions, discuss a new taxonomy of heuristic evalu-

1Some previous work refers to search nodes, which contain a description of the state as
well as some additional information. However, what additional information is contained in
the search node is not clear, and varies between different works. Even so, we are not aware
of any definition of search node which allows what we will later call history dependent
heuristics.

9

10 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

ation functions which results from our definition, and present appropriate
search algorithms for dealing with these new types of heuristics. We re-
mark that while the rest of this work is concerned specifically with domain-
independent planning, this chapter is more general, and applies to heuristic
search in general.

3.1 Mathematical Framework

Our mathematical formulation is based on the following informal verbal
definition:

“the promise of a node is estimated numerically by a heuristic
evaluation function f(n) which, in general, may depend on
the description of n, the description of the goal, the information
gathered by the search up to that point, and most important, on
any extra knowledge about the problem domain.” (Pearl, 1984)

Following the above definition, the list of which types of information
heuristics might be based upon can be divided into three parts:

1. The description of the goal and any extra knowledge about the problem
domain

2. The description of n

3. The information gathered by the search up to that point

For a fixed search problem, the first part can be seen as constant, since the
goal and problem domain do not change. For domain independent planning
in particular, this is simply the problem description (that is, the initial state,
the goal, and descriptions of the actions), since it is assumed that there is
no external knowledge about the problem except its description.

The second part (the description of the state) is what is usually consid-
ered to be the main source of information for a heuristic. Most heuristics
for domain independent planning are based only upon the description of
the state and of the problem (Bonet et al., 1997; Hoffmann and Nebel,
2001; Haslum and Geffner, 2000; Helmert, 2004; Helmert and Geffner, 2008;
Helmert et al., 2007; Katz and Domshlak, 2010b).

The third part (the information gathered by the search up to that point)
referring to the point in time when the heuristic estimate for a certain state
was computed, is often overlooked. In fact, most heuristics described in
the domain independent planning literature do not use any information

3.1. MATHEMATICAL FRAMEWORK 11

gathered by the search, and can be seen simply as functions mapping states
to non-negative numbers. We refer to these heuristics as classical heuristics.
In this work, we focus on heuristics which do use information gathered by
the search — non-classical heuristics.

Before we can discuss classical vs. non-classical heuristics, we must first
give a formal definition of heuristics, and specifically define the information
gathered by the search at a certain point. We begin by defining the history
of a search (which we will refer to as search history):

Definition 1 (Search History)
Let P = 〈S, I,G,A, f, C〉 be a search problem. A sequence of states ω =
〈s0, s1, . . . sn〉 is a possible history of P iff:

1. s0 = I

2. For i = 1 . . . n, ∃j < i such that si ∈ succ(sj) or si = sj

Definition 1 captures possible sequences of states which might be ex-
panded by a forward search — every such sequence must begin with the
initial state, and in order to expand some state, it must either have al-
ready been expanded (and is thus known to the search) or one of its parents
must have already been expanded. We denote the set of all possible search
histories of search problem P by HP.

Based upon the notion of possible search history, we can now give a
formal definition of heuristic evaluation functions. We take the view that a
heuristic evaluation function evaluates a path rather than a state. This is
the view taken by Dechter and Pearl (1985) for generalized best first search,
and it allows us, for example, to define “the distance from the initial state”
as a heuristic. Thus, a heuristic evaluation function is a function which
maps a search history and a path to the set of non-negative real numbers.
Formally:

Definition 2 (Heuristic Evaluation Function)
Let P = 〈S, I,G,A, f, C〉 be a search problem. A heuristic evaluation func-
tion is a function h : HP × Γ→ R0+.

In other words, a heuristic evaluates a path given a search history, and
might produce two different evaluations for the same state given different
paths to the same state, or even given the same path but with different
histories. Using Definition 2, we can now return to our discussion of the
information gathered during search. First, we define the sets of expanded
and generated states, based upon the search history. Given a search history

12 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

ω = 〈s0, s1, . . . sn〉, we denote by Expω := {s0, . . . , sn} the states expanded
so far, and by Genω := Expω ∪

⋃
s∈Expω

succ(s) the states generated so far
— the expanded states and their successors.

One type of information that could be gathered by forward search is the
structure of the explored part of the search space. We denote the structure
explored by search history ω by Gω — a directed graph, whose nodes consist
of all generated states, and with edges consisting of all transitions outgoing
from the expanded states. Formally Gω = 〈Genω, {〈s, s′〉 |s ∈ Expω, s

′ ∈
succ(s)}〉.

Additionally, there could be more information associated with each state.
One common example of this is storing the heuristic value computed for
previously encountered states. We formalize this by a function Iω which
assigns some bit sequence for each state. Formally, Iω : Genω → B, where
B is the set of all possible bit sequences.

3.2 A Taxonomy of Heuristics

With a formal definition of heuristic evaluation functions at hand, we are
ready to describe a taxonomy of heuristics along several dimensions. The
first dimension we discuss is what type of information is used by the heuristic
— what we call the information dependence.

3.2.1 Information Dependence

Recall that according to Definition 2, a heuristic takes two input parameters:
a search history and a path. We first explore the dependency of a heuristic
on the path being evaluated.

Definition 3 (Path Independent Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, and let h : HP × Γ → R0+

be a heuristic evaluation function. h is called path independent iff for any
two I-paths π1, π2 ∈ Γ such that IJπ1K = IJπ2K, and for any search history
ω ∈ HP, h(ω, π1) = h(ω, π2).

In other words, a heuristic is said to be path independent if the heuristic
estimate does not depend on the path being evaluated, but only on the state
the path reaches (and possibly on the search history). If the heuristic value
does depend on the path being evaluated, we call h path dependent. We now
turn our attention to the dependence of a heuristic evaluation function on
its other input parameters — the search history.

3.2. A TAXONOMY OF HEURISTICS 13

History
Independent Dependent

Path
Independent Classical

hLA (Chapter 4),
Selective Max (Chapter 5)

Dependent
landmark count

Future work (Chapter 4)
(Richter et al., 2008)

Table 3.1: Information dependence of some heuristics

Definition 4 (History Independent Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, and let h : HP × Γ→ R0+ be
a heuristic evaluation function. h is called history independent iff for any
two histories ω1, ω2 ∈ HP, and for any I-path π ∈ Γ, h(ω1, π) = h(ω2, π).

History independent heuristics do not depend at all on the search history,
only on the path they evaluate. With such heuristics we will sometimes
abuse notation, and write h(π) instead of h(ω, π). If a heuristic is both
history independent and path independent, and thus depends only on the
state being evaluated, we call it a classical heuristic. With classical heuristics
we will sometimes abuse notation and write h(s) instead of h(ω, π) for some
path π reaching state s. If a heuristic is not history independent, we call it
history dependent.

Table 3.1 gives some examples of heuristics, and which types of depen-
dence they exhibit. One special class of path independent, history depen-
dent heuristics are what we call multi-path dependent heuristics. To define
multi-path dependent heuristics, we must first define the restriction of the
structure Gω explored by history ω to state s, denoted by Gω|s, which is the
subgraph of Gω containing only edges which lie upon some path from I to s,
and their adjacent nodes. Using this concept, we can now define multi-path
dependent heuristics:

Definition 5 (Multi-Path Dependent Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, and let h : HP × Γ → R0+

be a path independent heuristic evaluation function. h is called multi-path
dependent iff for any two histories ω1, ω2 ∈ HP, and for any I-path π ∈ Γ
such that IJπK = s, if Gω1 |s = Gω2 |s then h(ω1, π) = h(ω2, π).

In other words, the estimate of a multi-path dependent heuristic for state
s only depends on the explored part of the state-space that can reach s —
that is, on the discovered paths to s.

14 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

3.2.2 Admissibility

The second dimension we consider in our taxonomy is admissibility. A
heuristic evaluation function is said to be admissible if it never overestimates
the distance from any state to the closest goal to it. Admissible heuristics
are important, as there are several heuristic search algorithms which can
guarantee that an optimal solution will be found, when using an admissible
heuristic.

When the heuristic in question is a classical heuristic, the above verbal
definition is the same as the well known inequality: h(s) ≤ h∗(s). However,
when heuristics can depend on something other than the state they evaluate,
things become slightly more complicated. The following definition describes
a heuristic which never overestimates the goal distance:

Definition 6 (Admissible Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, and let h : HP × Γ → R0+

be a heuristic evaluation function. h is called admissible iff for any I-path
π ∈ Γ, and for any search history ω ∈ HP, h(ω, π) ≤ h∗(IJπK).

Another well known notion is consistency. Consistency is typically stated
by the following inequality: h(s) ≤ k(s, s′) + h(s′). Adapting this to our
formal mathematical framework, we get the following definition:

Definition 7 (Consistent Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, and let h : HP × Γ → R0+

be a heuristic evaluation function. h is called consistent iff for any two I-
paths π, π′ ∈ Γ, and for any two search histories ω, ω′ ∈ HP, h(ω, π) ≤
k(IJπK, IJπ′K) + h(ω′, π′).

While consistency is a stronger property than admissibility (Pearl, 1984),
even admissibility is a very strong requirement in itself — it requires that
the heuristic does not overestimate the goal distance for all states. Recall
that there are several heuristic search algorithms which guarantee that an
optimal solution will be found when using an admissible heuristic. This does
not mean that using an admissible heuristic is a necessary condition – in fact,
it has already been noted that heuristics which sometime overestimate the
goal distance can still guarantee an optimal solution (Dechter and Pearl,
1985). However, the following definitions, which capture weaker notions
than admissibility, have not appeared as properties of heuristic evaluation
functions in the literature:

3.2. A TAXONOMY OF HEURISTICS 15

Definition 8 (Ŝ-Admissible Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, let Ŝ ⊆ S be a set of states of
P, and let h : HP × Γ→ R0+ be a heuristic evaluation function. h is called
Ŝ-admissible iff for any I-path π such that IJπK ∈ Ŝ, and for any search
history ω ∈ HP, h(ω, π) ≤ h∗(IJπK).

Definition 8 requires that h never overestimate the goal distance only of
states in Ŝ. Thus, S-admissibility is equivalent to admissibility, and when
Ŝ ⊂ S, Ŝ-admissibility is a weaker requirement than admissibility. The
following definition captures a special case of Ŝ-admissible heuristics, whose
importance we will discuss later:

Definition 9 (Globally Admissible Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a search problem, let h : HP × Γ → R0+ be a
Ŝ-admissible heuristic evaluation function. h is called globally admissible
iff there exists some optimal solution ρ = 〈a0, . . . , an〉 of P, such that I ∈ Ŝ
and {IJ〈a0, . . . , ai〉K|0 ≤ i ≤ n} ⊆ Ŝ.

In other words, a heuristic is globally admissible if there exists some
optimal path ρ, such that h never overestimates the goal distance from any
state along ρ. In fact, some optimality-preserving techniques for search
space pruning, such as symmetry breaking and state-space reductions (Fox
and Long, 2002; Rintanen, 2003; Coles and Smith, 2008; Chen and Yao, 2009;
Pochter et al., 2011), can be seen as using a globally admissible heuristic,
assigning a heuristic value of ∞ to some states, despite the fact that the
goal is achievable from these states.

In the next section, we discuss how one can use globally admissible
heuristics to guarantee that an optimal solution will be found. However,
we first present an even weaker notion, which can still be enough to guar-
antee an optimal solution will be found.

Definition 10 (χ-Admissible Heuristic)
Let P = 〈S, I,G,A, f, C〉 be search problem, let χ ⊆ Γ be a set of I-paths,
and let h : HP × Γ → R0+ be a heuristic evaluation function. h is called
χ-admissible if for any prefix π of any path ρ ∈ χ, and for any search history
ω ∈ HP, h(ω, π) ≤ h∗(IJπK).

In other words, a χ-admissible heuristic assigns admissible estimates to
prefixes of any path in χ. We now present two special cases of χ-admissible
heuristics:

16 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

Definition 11 (Path and Globally Path Admissible Heuristic)
Let P = 〈S, I,G,A, f, C〉 be a solvable search problem, and let h : HP×Γ→
R0+ be a χ-admissible heuristic evaluation function.

• h is called path admissible iff χ contains all optimal solutions of P.

• h is called globally path admissible iff χ contains at least one optimal
solution of P.

While path admissibility is a requirement over all prefixes of all optimal
solutions, global path admissibility is limited to prefixes of some optimal
solution. The requirement that P is solvable is necessary here, as otherwise
it is not possible to discuss optimal solutions of P. Note that overestimation
in unsolvable problems is meaningless, as the goal distance from any state is
∞. As we will see in Section 3.3 it is possible to guarantee that an optimal
solution will be found using a globally path admissible heuristic.

3.3 Search Algorithms

While heuristics are interesting in and of themselves, their purpose is to
guide a search algorithm. In this work we are concerned with forward search
for optimal solutions, which immediately brings to mind the classic A∗ search
algorithm (Hart et al., 1968). A∗ is known to find an optimal solution, when
using an admissible heuristic. However, admissibility is a strong require-
ment, making demands of the heuristic estimates of all states. In fact, as
we will prove later, the weaker notion of a globally admissible heuristic is
enough to guarantee that A∗ will find an optimal solution.

However, A∗ is adapted to classical heuristics, and does not exploit non-
classical heuristics to their full extent. In this section, we introduce some
search algorithms which are better suited to non-classical heuristics than A∗.
For completeness of presentation, we first present the A∗ search algorithm,
in terms of our mathematical framework. Algorithm 1 presents the pseudo-
code of A∗, with the search history ω and the paths to generated states made
explicit. In order to avoid confusion with the heuristic evaluation function
h, we use the notation h(s) to denote the heuristic value currently associated
with state s, as well as g(s) to denote the cost of the currently best known
path to s, and f(s) := g(s) + h(s). Pa(s) stores the current parent of state
s. We also use the function trace(s), which returns the I-path to s along
the current parent pointers. It is easy to see that trace(s) is well-defined for
any generated state.

3.3. SEARCH ALGORITHMS 17

Algorithm 1 A∗

1 Closed← ∅, Open← ∅
2 ω ← 〈〉
3 g(I)← 0, h(I)← h(ω, trace(I)), f(I)← g(I) + h(I)
4 Open.insert(I)
5 while Open 6= ∅ do
6 remove s with minimum f(s) from Open, break ties in favor of low h(s)
7 if IS GOAL(s) then
8 return trace(s)
9 end if
10 Closed.insert(s)
11 ω.append(s)
12 for 〈a, s′〉 ∈ succa(s) do
13 if s′ 6∈ Closed ∪Open then
14 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
15 h(s′)← h(ω, trace(s′))
16 f(s′)← g(s′) + h(s′)
17 Open.insert(s′)
18 else if g(s) + C(a) < g(s′) then
19 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
20 f(s′)← g(s′) + h(s′)
21 Open.insert(s′)
22 end if
23 end for
24 end while
25 return NO SOLUTION

18 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

We will not go over the entire pseudo-code of A∗, but simply point out
where the search history and the paths are made explicit here. Note that
it is not necessary to explicitly keep track of the search history, nor to
use the trace function whenever a state is evaluated, when implementing
A∗. Rather, we use the variable ω to illustrate where the search history is
modified and used in A∗, and call trace in heuristic computation to illustrate
that the estimate depends on the current path. Line 2 initializes the search
history ω to an empty list. In line 11 the state that is currently being
expanded is added to the history. The history and the trace function are
both used in the heuristic computation in lines 3 and 15.

To show that A∗ is guaranteed to find an optimal solution given a globally
admissible heuristic, we follow the same proof by Pearl (1984). While this
proof is not new, it was originally used to show that A∗ with an admissible
heuristic is guaranteed to find an optimal solution. Furthermore, we will
use almost the exact same proof to show that the new search algorithms we
propose are also guaranteed to find optimal solutions. We begin by proving
the “A∗ Lemma”:

Lemma 1
At any time before A∗ terminates, there exists on the open list a state s
which lies on some optimal solution ρ, with f(s) ≤ c∗

Proof: Assume the states which lie along ρ are 〈I, s1, . . . , s, . . . , sn〉, and let
s be the shallowest state on ρ which is open (there is at least one, because
the goal state sn is only closed when A∗ terminates). Since all ancestors of
s along ρ are closed, and the path 〈I, s1, . . . , s〉 is optimal, it must be that
g(s) = g∗(s). h is globally admissible, and so it returns admissible estimates
for any state along an optimal path. Because s lies on an optimal solution:

f(s) = g(s) + h(s) = g∗(s) + h(s) ≤ g∗(s) + h∗(s) = c∗

The following Theorem shows why Lemma 1 implies that A∗ is guaran-
teed to find an optimal solution:

Theorem 1 A∗ with a globally admissible heuristic returns an optimal so-
lution

Proof: Suppose to the contrary that A∗ terminates with a goal state t
for which f(t) = g(t) > c∗. A∗ inspects states for compliance with the

3.3. SEARCH ALGORITHMS 19

termination condition only after it selects them for expansion. Hence, when
t was selected for expansion, it satisfied:

∀s ∈ Open : f(t) ≤ f(s)

This means that, immediately prior to termination, every state s′ in the
open list satisfied f(s′) > c∗. This, however, contradicts Lemma 1 which
guarantees the existence of at least one state in the open list with f(s) ≤ c∗.
Therefore, the terminating t must have g(t) = c∗, which means that A∗

found an optimal solution.

While A∗ has been shown to be efficient when using admissible classical
heuristics (Dechter and Pearl, 1985), it does not do so well with non-classical
heuristics. The main reason that A∗ is not suited to non-classical heuristics,
is that it computes the heuristic estimate for state s only the first time s
is generated (line 15). Whenever a state is generated again, A∗ simply uses
h(s) (line 20), which contains the heuristic value which was computed for
s previously. When the heuristic h is non-classical, its heuristic estimate
can change. If h is history dependent, the heuristic estimate for state s can
change any time. However, if h is path dependent or multi-path dependent,
we know when these changes can occur — when a new path to state s is
discovered. We therefore propose a modified version of A∗ which better
exploits path dependent and multi-path dependent heuristics.

3.3.1 Exploiting Path and Multi-Path Dependence

The first observation we make here is that any admissible path dependent
heuristic h can induce a better informed admissible multi-path dependent
heuristic h′, by taking h′ as the maximum over all known paths. Abusing
notation as before, we can write h′(ω, s) := maxπ∈Gω |s h(ω, π), where π ∈
Gω|s means that π is an I-path reaching state s in Gω|s. Therefore, we focus
on the case of multi-path dependent heuristics, and show how to better
exploit them.

Recall that A∗ evaluates each state only once, the first time it is gen-
erated. Thus, if we want our new search algorithm to behave differently
from, and hopefully outperform, A∗, it is clear we must recompute heuristic
estimates for the same state. However, the question of when to perform this
reevaluation requires some discussion. There’s no point in reevaluating some
state s unless its heuristic estimate might change. For multi-path dependent
heuristics, this can happen only if Gω|s has changed, which can only happen
when some state s′ is expanded, and s′ has a successor in Gω|s.

20 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

Assume we have expanded some state s′, and generated state s, which
has already been generated. This means we have discovered at least one
new path to s, as well as to all descendants of s. The question now is,
which states do we reevaluate. One option, which we will call the eager
option, is to immediately reevaluate the heuristic value of s, and also all of
the descendants of s. A slightly less eager option is to update only those
descendants that are within a limited distance from s. A similar question
has been explored in the context of bidirectional pathmax (BPMX) updates
(Zhang et al., 2009), where distance-limited updates were proposed and
empirically examined. These experiments showed there is no clear-cut best
choice about how to propagate this information.

However, typically in domain-independent planning, heuristic compu-
tation is much more expensive than state expansion. We therefore try to
reduce the number of heuristic reevaluations, and only perform them when
this is deemed necessary. Thus, the approach we take in the MPD-A∗ search
algorithm (Karpas and Domshlak, 2009), originally called LM-A∗, is to be
as lazy as possible. MPD-A∗ exploits the fact that it is possible that many
different paths to s will be discovered while s is in the open list. Thus,
reevaluating the heuristic for s every time a new path is discovered is rather
wasteful. Instead, it is enough to check whether the heuristic estimate for
s increased only when it is really needed — when s is removed from the
open list. Only then is s reevaluated, and if its heuristic estimate increased,
another state is selected for expansion instead.

The pseudo-code for MPD-A∗ is given in Algorithm 2. To illustrate that
MPD-A∗ is meant for multi-path dependent heuristics, we write h(Gω|s)
instead of h(ω, π), as the heuristic estimate for state s with history ω only
depends on Gω|s. MPD-A∗ is based on the A∗ search algorithm, with a
few modifications: MPD-A∗ associates a dirty bit with each known state. A
state s is dirty when a new path to it has been discovered, but this new path
is not yet reflected in the stored heuristic estimate h(s) (line 21). Whenever
h(s) is updated, the dirty bit associated with s is cleared (lines 3, 11 and
24). Before a state s is removed from the open list, its dirty bit is first
checked (line 10). If s is dirty, then it is reevaluated using h (line 11), and
only if h(s) did not increase, is s really removed from the open list. If the
heuristic estimate of s did increase, then h(s) and f(s) are updated, s is put
back into the open list with these new values, and another state is chosen
from the open list (lines 13 – 15). To see that MPD-A∗ is guaranteed to
find an optimal solution, the same proof that A∗ finds an optimal solution,
given in Lemma 1 and Theorem 1, works.

Finally, we remark that although MPD-A∗ is stated in terms of storing

3.3. SEARCH ALGORITHMS 21

Algorithm 2 MPD-A∗

1 Closed← ∅, Open← ∅
2 ω ← 〈〉
3 g(I)← 0, h(I)← h(Gω|I), f(I)← g(I) + h(I), dirty(I) ← FALSE
4 Open.insert(I)
5 while Open 6= ∅ do
6 remove s with minimum f(s) from Open, break ties in favor of low h(s)
7 if IS GOAL(s) then
8 return trace(s)
9 end if
10 if dirty(s) then
11 new h← h(Gω|s), dirty(s) ← FALSE
12 if new h > h(s) then
13 h(s)← new h, f(s)← g(s) + h(s)
14 Open.insert(s)
15 continue
16 end if
17 end if
18 Closed.insert(s)
19 ω.append(s)
20 for 〈a, s′〉 ∈ succa(s) do
21 dirty(s′) ← TRUE
22 if s′ 6∈ Closed ∪Open then
23 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
24 h(s′)← h(Gω|s′), dirty(s′) ← FALSE
25 f(s′)← g(s′) + h(s′)
26 Open.insert(s′)
27 else if g(s) + C(a) < g(s′) then
28 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
29 f(s′)← g(s′) + h(s′)
30 Open.insert(s′)
31 end if
32 end for
33 end while
34 return NO SOLUTION

22 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

s0

s1 s2 s3

s4

g

h = 90

h = 99 h = 95 h = 96

hs3 = 98hs2 = 97

hs2,s3 = 101

Figure 3.1: Illustration of state space for MPD-A∗ example

the search history ω, there is no need to keep track of it explicitly. Rather, it
is enough to store only the data which the heuristic h actually needs for the
heuristic computation, which could be much more compact in some cases.

The following example, depicted in Figure 3.1, illustrates the difference
between A∗ and MPD-A∗. The initial state s0 has three successors: s1,
s2, and s3, and a solution is only present under s1 (denoted by g). s2

and s3 share a successor, s4. The heuristic in this example, h, is multi-
path dependent. Since there is only a single path to s0, s1, s2, and s3,
we simply list their h values: h(s0) = 90, h(s1) = 99, h(s2) = 95, and
h(s3) = 96. There are two possible paths to state s4, and so we must list
three different heuristic values for s4 — one for each possible path, and one
for their combination. The heuristic value assigned to s4 when using the path
through s2 is hs2(s4) = 97, the heuristic value using the path through s3 is
hs3(s4) = 98, and the heuristic value using both paths is hs2,s3(s4) = 101.
All actions in this example are unit cost.

The A∗ algorithm will first expand s0, generating s1, s2, and s3. The next
state to be expanded is the state with the lowest f value, which is s2, with
f(s2) = 96. After expanding s2, s4 is generated, with h(s4) = 97. Because
A∗ evaluates each state only the first time it is reached, this estimate will
never change. The next state to be expanded will be s3, followed by s4, and
then the entire subtree under s4 could be exhausted before s1 is tried.

On the other hand, MPD-A∗ will start like A∗ by expanding s0 and then
s2, generating s4 with h(s4) = 97. s3 will be expanded next, and generate s4

again, marking s4 as dirty. The next state to be removed from the open list is

3.3. SEARCH ALGORITHMS 23

s4, as it was initially put into the open list with h(s4) = 97. However, when
it is removed from the open list, its dirty bit is checked, and because a new
path to s4 was found since the last heuristic evaluation, the new heuristic
value is computed, updating h(s4) to 101. Now s1 looks more promising, so
it will be expanded next, finding a solution without expanding the subtree
under s4.

The advantage of MPD-A∗ over A∗ in this example depends on the fact
that a new path to s4 was discovered, while s4 was in the open list. As
A∗ evaluates each state only before it is inserted into the open list, it can
not use the extra information that the new path to s4 provides. In the
empirical evaluation in Chapter 6, we will show that the above example is
not just some artificial example, and MPD-A∗ does perform better than A∗

on actual benchmarks from the International Planning Competition, using
a real multi-path dependent heuristic which we describe in Chapter 4.

While MPD-A∗ is suited for multi-path dependent admissible heuristics,
we have also introduced more relaxed versions of admissibility. As previously
stated A∗ search using a globally admissible heuristic will find an optimal
solution. The same is true for MPD-A∗— given a multi-path dependent
globally admissible heuristic, it will find an optimal solution. However, for
χ-admissible heuristics, we must use other search algorithms, which will be
discussed next.

3.3.2 Exploiting χ-Admissible Heuristics

While MPD-A∗ does a good job of exploiting admissible path and multi-path
dependent heuristics, we would also like to be able to exploit χ-admissible
heuristics. Unfortunately, even using a path admissible heuristic with A∗ (as
well as with MPD-A∗) search does not guarantee that an optimal solution
will be found. The reason for this is that both A∗ and MPD-A∗ assume
that any heuristic estimate which is generated by the heuristic h is admis-
sible, which is not the case with path admissible heuristics, when using a
suboptimal path to s to evaluate the distance from s to the goal.

Figure 3.2(a) illustrates the state-space for such an example. The initial
state s0 has two successors: s1 and s3. s1 has a single successor s2, and
s2 and s3 both share a common successor — s4. The heuristic h in this
example is history independent and path dependent. Since there is a single
path to s0, s1, s2 and s3, we simply list their heuristic values: h(s0) = 100,
h(s1) = 99, h(s2) = 98, and h(s3) = 101. There are two paths to s4: through
s1 and s2, or through s3. The heuristic estimate of the first path, denoted
hs1,s2(s4) is ∞ — a dead end. The heuristic estimate of the second path,

24 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

s0

s1

s2

s3

s4

g

h = 100

h = 99

h = 98

h = 101

hs3 = 101hs1,s2 =∞

s0

s1 s2

s3

s4

g

h = 100

h = 99 h = 99

hs2 = 98hs1 = 98

hs2,s3 = 97hs1,s3 =∞

(a) Path admissible (b) Globally path admissible

Figure 3.2: Illustration of state spaces

denoted hs3(s4) is 101. Note that as the only optimal solution goes through
s3, h is path admissible. However, A∗ would first expand s1 and s2, as they
have lower f -values than s3. Thus s4 would first be generated with the path
going through s1 and s2, and s4 would be declared a dead-end, rendering
the search incomplete.

The reason for this “problem” is that, with a χ-admissible heuristic,
when given two paths to the same state, it’s no longer possible to irrevocably
discard one of them, and still guarantee optimality. Although in the previous
example it was possible to distinguish between the two possible paths by
their cost, this is not always true, as illustrated by the example depicted
in Figure 3.2(b). There are two paths to state s4, the first going through
s1, s3, and the second going through s2, s3. The heuristic h in this example
is globally path admissible — it yields heuristic estimates only for the latter
path, and not for the former. Upon generating s3, both paths look the
same, both in terms of g and h values. Hence, there is no reason to prefer to
choose s2 over s1 as the parent of s3. However, if we choose s1 as the parent
of s3, then when generating s4, we would get a heuristic estimate of ∞ —
a dead end. Thus, if we want to guarantee that an optimal solution will

3.3. SEARCH ALGORITHMS 25

be found using a globally path admissible heuristic, we can not make what
Dechter and Pearl (1985) call irrevocable parent selection decisions. This
implies that we must be able to maintain several different paths to the same
state as candidates, which would suggest we must use a tree-based search
algorithm.

However, if the heuristic h is path admissible, providing us with admis-
sible estimates for all prefixes of all optimal solutions, we do not have to
resort to tree-based search. In this case, we can make an irrevocable parent
selection decision based on g alone — a cheaper path to state s will always
be better than a more expensive path. In case we have two paths reaching
the same state with the same cost, we know that either both paths will
yield admissible estimates (if they are both optimal), or that both paths are
not guaranteed to yield admissible estimates. In either case, we can choose
any of these paths without compromising the optimality of the solution that
will be returned. Thus, a simple modification of A∗, which recomputes the
heuristic estimate every time a state is reached via a cheaper path, will guar-
antee that an optimal solution is found. The pseudo code for this is found
in Algorithm 3.

The only difference between path-A∗ and A∗ is in line 20, which is exe-
cuted after a cheaper path to a known state s′ is found. A∗ simply uses the
previous heuristic estimate for s′. On the other hand, path-A∗ computes a
new heuristic estimate (based on the new path), and then, like A∗, computes
a new f -value according to the new path and the new heuristic estimate.

To see that path-A∗ using a path admissible heuristic is guaranteed to
find an optimal solution, we prove a variant of Lemma 1 for path-A∗:

Lemma 2
At any time before path-A∗ terminates, there exists on the open list a state
s which lies on some optimal plan ρ, with f(s) ≤ c∗

Proof: Assume the states which lie along ρ are 〈I, s1, . . . , s, . . . , sn〉, and let
s be the shallowest state on ρ which is open (there is at least one, because
the goal state sg is only closed when path-A∗ terminates). Since all ancestors
of s along ρ are closed, and the path 〈I, s1, . . . , s〉 is optimal, it must be that
g(s) = g∗(s). Using the admissibility of h along prefixes of any optimal
solution, including ρ, and the fact that s lies on an optimal solution, we
obtain:

f(s) = g(s) + h(s) = g∗(s) + h(s) ≤ g∗(s) + h∗(s) = c∗

26 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

Algorithm 3 path-A∗

1 Closed← ∅, Open← ∅
2 ω ← 〈〉
3 g(I)← 0, h(I)← h(ω, trace(I)), f(I)← g(I) + h(I)
4 Open.insert(I)
5 while Open 6= ∅ do
6 remove s with minimum f(s) from Open, break ties in favor of low h(s)
7 if IS GOAL(s) then
8 return trace(s)
9 end if
10 Closed.insert(s)
11 ω.append(s)
12 for 〈a, s′〉 ∈ succa(s) do
13 if s′ 6∈ Closed ∪Open then
14 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
15 h(s′)← h(ω, trace(s′))
16 f(s′)← g(s′) + h(s′)
17 Open.insert(s′)
18 else if g(s) + C(a) < g(s′) then
19 g(s′)← g(s) + C(a), Pa(s′)← 〈s, a〉
20 h(s′)← h(ω, trace(s′))
21 f(s′)← g(s′) + h(s′)
22 Open.insert(s′)
23 end if
24 end for
25 end while
26 return NO SOLUTION

3.3. SEARCH ALGORITHMS 27

Using this lemma, the proof of Theorem 1 also shows that path-A∗ with
a path admissible heuristic is guaranteed to find an optimal solution.

When using a globally path admissible heuristic, the above algorithm
is not enough to guarantee optimality. The example state space in Figure
3.2(b) already illustrates this — if we reach s3 via s1 first, we would not
recompute a new heuristic estimate for s3 after expanding s2. However,
given some more knowledge about a globally path admissible heuristic, it is
sometimes possible to use a similar algorithm to find an optimal solution.
We present an example of this in Section 4.4.

This chapter has been devoted to laying the mathematical framework
for non-classical heuristics. In the rest of this work, we will describe some
non-classical heuristics for domain-independent planning.

28 CHAPTER 3. NON-CLASSICAL HEURISTIC SEARCH

Chapter 4

Landmark Based Heuristics

We now turn our attention back to domain independent planning, and
present the concept of landmarks, and landmark based heuristics. We begin
by reviewing the definitions of landmarks and orderings. Then we briefly
discuss some landmark detection techniques. Finally we discuss how to
construct landmark based heuristics, and the search techniques which are
suitable for using them.

4.1 Landmarks

The definitions we use here follow Domshlak et al. (2012). The first definition
we need is that of a plan trace:

Definition 12 (Trace)
Let Π = 〈P, I,G,A, C〉 be a planning task, and let π be a plan for Π. The
trace tr(π) of π = 〈a1, . . . , an〉 is given by the sequence of propositional
formulas 〈tr1, . . . , trn, trn+1〉 over the set of boolean variables P ∪ A, con-
structed as follows, where states are interpreted as conjunctions of the facts
they contain:

• tr1 = I ∧ a1

• tri = IJ〈a1, . . . , ai−1〉K ∧ ai for i = 2, . . . , n

• trn+1 = IJ〈a1, . . . , an〉K

For simplicity, we write tr rather than tr(π) whenever π is clear from
the context. We further introduce the notion of occurrences of a formula
in a trace step: we denote by occ(tr(π), φ) (or occ(φ) when π is clear from

29

30 CHAPTER 4. LANDMARK BASED HEURISTICS

the context) the set of step indices in tr that entail the formula φ, i. e.
occ(φ) := {i | tri |= φ}. We use a special notation for the first time φ occurs:
first(φ) := min(occ(φ)). We also use shorthand notation for the indices of the
states where φ becomes true, i. e. bt(φ) := {i|i ∈ occ(φ), i− 1 /∈ occ(φ)}, with
special notation for the last time φ becomes true: last(φ) := max(bt(φ)). We
now define landmarks and orderings based on the occurrences of formulas
in plan traces.

Definition 13 (Landmark)
A landmark for a planning task Π is a propositional formula φ over the facts
and actions of Π such that for every plan π for Π, occ(φ) 6= ∅.

In other words, a landmark for Π is a logical formula that is entailed by at
least one step during the execution trace of every plan for Π. Restrictions on
the form of φ result in various types of landmarks, such as fact landmarks,
consisting of a single fact, action landmarks consisting of an action, and
disjunctive and conjunctive (action) landmarks, consisting of a disjunction
or conjunction of facts or actions, respectively.

An ordering between two landmarks is a statement about the indices
of the steps that satisfy these landmarks in the trace of all plans. Various
types of orderings can be defined (Hoffmann et al., 2004):

Definition 14 (Landmark Orderings) Let φ1 and φ2 be two landmarks
for a planning task Π.

Natural There is a natural ordering φ1 �n φ2 iff for all plans π of Π,
first(φ1) < first(φ2).

Necessary There is a necessary ordering φ1 �nec φ2 iff for all plans π of
Π, i ∈ bt(φ2)⇒ i− 1 ∈ occ(φ1).

Greedy Necessary There is a greedy-necessary ordering φ1 �gn φ2 iff
for all plans π of Π, (first(φ2)− 1) ∈ occ(φ1).

A natural ordering φ1 �n φ2 exists if every plan makes φ1 true before
it makes φ2 true for the first time. A necessary ordering φ1 �nec φ2 exists
if, for every plan π and every time π makes φ2 true, φ1 is always true in the
trace step immediately before φ2 becomes true. A greedy-necessary ordering
φ1 �gn φ2 exists if, for every plan, φ1 is true in the trace step immediately
before the plan makes φ2 true for the first time.

It is easy to see from the definitions that for any two landmarks φ1 and
φ2:

φ1 �nec φ2 =⇒ φ1 �gn φ2 =⇒ φ1 �n φ2

4.2. HEURISTICS BASED ON LANDMARK GRAPHS 31

We conclude the definitions of landmarks and orderings by remarking
that other types of orderings — namely, reasonable ordering — have been
proposed (Hoffmann et al., 2004). However, their definition is somewhat
involved, and we do not exploit them in this work, so we omit their exact
definition.

The definitions of landmarks and orderings refer to all solutions of a plan-
ning task. Thus, as can be expected, even determining whether a single fact
is a landmark or not is PSPACE-hard (Hoffmann et al., 2004). Nonetheless,
some sound polynomial-time methods for detecting landmarks and order-
ings have been proposed (Zhu and Givan, 2003; Richter et al., 2008; Keyder
et al., 2010).

While the details of these detection techniques are not relevant to the rest
of this work, it is important to note that landmark detection is more compu-
tationally expensive that most heuristics for domain-independent planning.
Therefore, landmark based heuristics typically discover landmarks and or-
derings in a pre-search phase, building a landmark graph. The landmark
graph is an edge-labeled graph, whose nodes are the discovered landmarks,
with edges corresponding to the discovered orderings, labeled according to
the ordering type. For the remainder of this chapter, we assume that a set
of landmarks LM and orderings� have been discovered during a pre-search
phase. In the next section, we will explain how to derive heuristics based
on this landmark graph.

4.2 Heuristics based on Landmark Graphs

Landmarks were first used as a source of heuristic information by Richter
et al. (2008), and later in the LAMA planner (Richter and Westphal, 2010).
The heuristic estimate of state s is “the number of landmarks that remain
to be achieved from state s onwards”. As all the landmarks of a task must
necessarily be achieved along any plan, we can judge the proximity of a
state to the goal by counting how many landmarks still need to be achieved.
Note that this heuristic is not admissible, as a single action may achieve
more than one landmark.

One option for calculating the landmarks that need to be achieved from
state s onwards is to use a landmark discovery procedure for s (treating s
as the initial state for the computation). However, as previously mentioned,
this would result in a computationally expensive heuristic. Another, less
computationally intensive option, is to compute the landmarks for the initial
state of the task once, and account for which landmarks from this set have

32 CHAPTER 4. LANDMARK BASED HEURISTICS

already been achieved on the way to s. Using this option means that the
landmark heuristic is no longer a classical, state dependent heuristic, but
rather a path dependent heuristic, as it depends on the path by which s was
reached. This is the method used in LAMA, where the set of landmarks
that need to be achieved after reaching state s via path π is defined as

LM(s, π) :=
(
LM \Accepted(s, π)

)
∪ReqAgain(s, π),

where LM is the set of prediscovered landmarks, Accepted(s, π) ⊆ LM is the
set of landmarks that have been achieved along path π (note that once a
landmark has been achieved, it remains accepted, even if it is made false
afterwards), and ReqAgain(s, π) ⊆ Accepted(s, π) is the set of landmarks
that are required again. A landmark φ is required again if it has previously
been achieved, but is not true in the current state and must be achieved
again.

Since it is computationally hard to determine if a landmark φ must be
achieved again, LAMA uses a sound approximation to determine whether
φ ∈ ReqAgain(s, π), captured by two rules: (i) φ does not hold in s, and (ii)
φ is a top-level goal, or there exists some other landmark φ′ 6∈ Accepted(s, π),
and φ �gn φ′. These rules capture the case where φ has been achieved
along path π, but has been made false, and we can prove that φ must be
true again at some point, either because it is a top-level goal (and thus
must hold at the end) or it is ordered greedy-necessarily before some other
landmark φ′ which has not been achieved (and thus φ must hold in the
state before φ′ is achieved). Other approximations for the required-again
landmarks have been proposed (Buffet and Hoffmann, 2010), but the exact
approximation of the required-again landmarks is orthogonal to their use. In
the next section, we will discuss the non-classical nature of landmark-based
heuristics. However, for the remainder of this section, we will simply assume
that the set of landmarks that need to be achieved, LM(s, π), is given.

4.2.1 Admissible Landmark-Based Heuristics

Recall that the number of landmarks that need to be achieved is not an
admissible estimate due to the fact that a single action may achieve more
than one landmark. However, it is possible to use the framework of addi-
tive composition of abstraction heuristics (Katz and Domshlak, 2010a), to
obtain an admissible heuristic estimate. This framework is described by the
following theorem from Katz and Domshlak (2010a):

4.2. HEURISTICS BASED ON LANDMARK GRAPHS 33

Theorem 2 (Action Cost Partitioning) Let Π,Π1, . . . ,Πk be planning
tasks, identical except for the operator costs C, C1, . . . , Ck. Let {hi}ki=1 be a
set of arbitrary admissible heuristic functions for {Πi}ki=1, respectively. If
C(a) ≥

∑k
i=1 Ci(a) for all operators a, then

∑k
i=1 hi is an admissible heuristic

for Π.

Applying this theorem to landmarks is straightforward — each landmark
defines a planning task with a heuristic indicating whether the landmark is
achieved or not (Helmert and Domshlak, 2009). For this purpose, it is best
to consider only action landmarks, where we represent a propositional land-
mark φ by a disjunctive action landmark consisting of the set of relevant
achievers (that is, the actions which might achieve φ). If φ has not been
achieved yet (that is, φ 6∈ Accepted(s, π)), these relevant actions are re-
stricted to the first achievers of φ, since they are the only actions that may
achieve φ for the first time. If φ has already been achieved but is required
again, the relevant achievers are all possible achievers of φ (that is, all ac-
tions which could make φ true). Note that although it is computationally
hard to find the first achievers of a landmark, it is possible to find an over-
approximation of the first achievers (Porteous and Cresswell, 2002), which
would still result in an admissible heuristic.

By ach(φ | s, π) we denote the relevant achievers of landmark φ, and by
L(a | s, π) := {φ | a ∈ ach(φ | s, π), φ ∈ LM(s, π)} the set of landmarks
that need to be achieved and are achieved by action a. It is easy to see that
if φ is a landmark, then ach(φ | s, π) forms a disjunctive action landmark
(because any plan which achieves φ must do so using one of its achievers —
ach(φ | s, π)). Formulating this explicitly gives us the following constraints:

∀a ∈ A : C(a) ≥
∑

φ∈L(a|s,π)

Cφ(a)

∀φ ∈ LM(s, π) : cost(φ) ≤ min
a∈ach(φ|s,π)

Cφ(a)
(4.1)

Where Cφ denotes the action costs in the abstraction corresponding to land-
mark φ. These constraints capture that (i) each action divides at most its
own cost between the landmarks it achieves — the condition from Theorem
2, and (ii) each landmark is assigned a cost which is at most the cheapest
cost assigned to it by any action — an admissible heuristic estimate for a
single landmark.

Following Katz and Domshlak (2010a), given costs which obey these con-
straints, and abusing notation since this heuristic is history independent,

34 CHAPTER 4. LANDMARK BASED HEURISTICS

hLA(π) :=
∑

φ∈LM(s,π) cost(φ) is an admissible heuristic estimate. Fur-
thermore, these constraints can be expressed as a Linear Program (LP),
which, together with the objective of maximizing the total heuristic esti-
mate hLA(π), yields an optimal cost partitioning. Recent work has shown
that a higher heuristic estimate can be gotten by solving a hitting set prob-
lem (Bonet and Helmert, 2010). However, as solving the hitting set problem
is NP-hard, this is not a feasible option in practice.

Although the formulation in Equation 4.1 is easy to explain in terms of
additive composition of abstractions, it is rather inefficient in terms of the
number of variables it requires. This is important if an LP solver is used
to find an optimal cost partitioning. The following formulation, which is
due to Helmert (2009a) and was used by Keyder et al. (2010), only uses the
cost(φ) variables:

∀a ∈ A :
∑

φ∈L(a|s,π)

cost(φ) ≤ C(a) (4.2)

In words, the sum of costs of the landmarks achieved by action a must not
exceed the cost of action a. As the following theorem demonstrates, the
formulations in Equations 4.1 and 4.2 are equivalent, in the sense that they
both define the same set of feasible solutions over the cost(φ) variables.

Theorem 3 (Constraint Equivalence) The following two claims hold:

1. Let cost(φ), Cφ(a) be costs that satisfy the constraints in Equation 4.1.
Then cost(φ) satisfy the constraints in Equation 4.2.

2. Let cost(φ) be costs that satisfy the constraints in Equation 4.2. Then
there exist costs Cφ(a) such that cost(φ), Cφ(a) satisfy the constraints
in Equation 4.1.

Proof:
To prove 1, let cost(φ), Cφ(a) be costs that satisfy the constraints in

Equation 4.1, and let a be some action. From Equation 4.1 we have that:∑
φ∈L(a|s,π)

cost(φ) ≤
∑

φ∈L(a|s,π)

min
a′∈ach(φ|s,π)

Cφ(a′)

By definition φ ∈ L(a | s, π)⇔ a ∈ ach(φ | s, π), therefore
mina′∈ach(φ|s,π) Cφ(a′) ≤ Cφ(a) (since a is part of the minimum), so:∑

φ∈L(a|s,π)

min
a′∈ach(φ|s,π)

Cφ(a′) ≤
∑

φ∈L(a|s,π)

Cφ(a)

4.2. HEURISTICS BASED ON LANDMARK GRAPHS 35

And from Equation 4.1: ∑
φ∈L(a|s,π)

Cφ(a) ≤ C(a)

thus proving 1.
To prove 2, let cost(φ) be costs that satisfy the constraints in Equation

4.2, and set Cφ(a) = cost(φ) for all actions a and landmarks φ. We will see
that these costs satisfy the constraints in Equation 4.1.

From Equation 4.2,

C(a) ≥
∑

φ∈L(a|s,π)

cost(φ) =
∑

φ∈L(a|s,π)

Cφ(a)

Because of the way we chose Cφ(a),

cost(φ) = min
a∈ach(φ|s,π)

Cφ(a)

So the constraints of Equation 4.1 are satisfied.

The equivalence shown in Theorem 3 shows that the two formulations
define the same set of feasible solution (when restricted to the cost(φ) vari-
ables). Since we know from Theorem 2 that any solution which obeys the
constraints in Equation 4.1 gives an admissible estimate, the same holds for
any solution for Equation 4.2. Furthermore, when trying to find an opti-
mal cost partitioning, the target function is the same for both — maximize∑

φ∈LM(s,π) cost(φ) — so both formulations will give the same value under
optimal cost partitioning.

4.2.2 Cost-Partitioning Schemes

As already stated, an optimal (as in, most informative) cost partitioning can
be found by solving the linear program defined by Equation 4.2. Unfortu-
nately, although linear programming is a polynomial problem, it is far from
being an easy one. In practice, solving an LP at every evaluated state is
very expensive. However, Equation 4.2 does not force us to find an optimal
cost partitioning, but rather allows us to choose any cost partitioning which
obeys the constraints.

One possible ad-hoc cost-partitioning scheme is uniform cost partition-
ing, which divides the cost of each action equally between all the (relevant)

36 CHAPTER 4. LANDMARK BASED HEURISTICS

landmarks it achieves (Karpas and Domshlak, 2009). This cost partitioning
is defined by

cost(φ) := min
a∈ach(φ|s,π)

C(a)
|L(a | s, π)|

The following example demonstrates that the uniform cost partition-
ing may indeed be suboptimal. Consider a planning task with landmarks
{p1, p2, . . . pn, q}. The possible actions in this task are a1 . . . an, with action
ai achieving pi and q. Then under uniform cost partitioning, cost(p1) =
cost(p2) = . . . = cost(pn) = cost(q) = 0.5, since each action achieves two
landmarks, and thus assigns a cost of 0.5 to each of them. This yields a
total heuristic estimate of (n+ 1)/2. However, the optimal cost partitioning
would assign cost(p1) = cost(p2) = . . . = cost(pn) = 1, cost(q) = 0, yielding
a total heuristic estimate of n, which is clearly much better.

Fortunately, with a little more inference, it is possible to come up with a
cost-partitioning scheme which is almost as fast as uniform cost partitioning,
but can be much more informative. This cost-partitioning scheme, which
we call the enhanced uniform cost-partitioning scheme, is based on action
landmarks. Originally, action landmarks were discovered in a preprocessing
phase (Karpas and Domshlak, 2009). However, here we present a method
for discovering action landmarks on the fly (Keyder et al., 2010), thus re-
ducing preprocessing time and memory overhead for keeping track of action
landmarks, and increasing informativeness (as it is possible to discover that
an action landmark that was already used is still needed).

The enhanced uniform cost-partitioning scheme consists of three parts.
First, action landmarks are identified during search. An action a is identified
as an action landmark after reaching state s via path π, if there exists some
landmark φ ∈ LM(s, π), such that a is the only relevant achiever of φ — that
is, ach(φ | s, π) = {a}. Second, for any such action landmark discovered, the
cost partitioning assigns the full cost of a to φ. This can only improve over
the uniform cost partitioning, since φ must be achieved by a, even though
it is possible that a achieves some other landmarks. Finally, uniform cost
partitioning is performed over the remaining landmarks and actions.

The benefits of the enhanced uniform cost-partitioning scheme can be
seen by considering the previous example. Since p1 . . . pn each have a sin-
gle achiever (a1 . . . an, respectively), the enhanced uniform cost partitioning
scheme would identify a1 . . . an as action landmarks, and assign their full
costs to p1 . . . pn, and a cost of 0 to q, thus yielding the optimal cost parti-
tioning (for this example).

4.3. SEARCH WITH LANDMARK-BASED HEURISTICS 37

4.3 Search with Landmark-Based Heuristics

Regardless of the cost-partitioning scheme used, LM(s, π)—the set of land-
marks that need to be achieved after reaching state s via path π—depends
not on the state s, but rather on the path π. Therefore, any heuristic which
is based on LM(s, π) must be path dependent. One option to get rid of this
path dependence is to discover the set of landmarks that need to be achieved
from each state being evaluated. However, this would be prohibitively ex-
pensive. Instead, we direct our attention to how one can best exploit such
heuristics.

4.3.1 Multi-path Dependence

Let us now consider what happens when a state s is reached by two dif-
ferent paths π1 and π2. If π1 and π2 achieve the same landmarks, then
LM(s, π1) = LM(s, π2), and the difference is irrelevant to landmark-based
heuristics. However, the case where π1 and π2 achieve different landmarks is
interesting. Without loss of generality assume that π1 achieves some land-
mark φ which π2 does not achieve. Let ρ be some path from s to a goal
state. Since φ is a landmark, it must be achieved along any plan, including
the plan π2 · ρ. However, π2 does not achieve φ, and so ρ must achieve φ.
In our case, where LM(s, π) :=

(
LM \Accepted(s, π)

)
∪ReqAgain(s, π), the

above observation can be formulated generally in the following thoerem:

Theorem 4 Let P = {π1 . . . πn} be a set of paths, all leading from the initial
state to some state s. Then any path from s to a goal state must achieve

LM(s,P) :=
(
LM \Accepted(s,P)

)
∪ReqAgain(s,P),

where
Accepted(s,P) :=

⋂
π∈P

Accepted(s, π)

and ReqAgain(s,P) ⊆ Accepted(s,P) is computed using the same rules as
before.

Proof: Assume by contradiction that there exists a path ρ from s to a
goal state that does not achieve some landmark φ ∈ LM(s,P). Then either
φ ∈ LM\Accepted(s,P) or φ ∈ ReqAgain(s,P). If φ ∈ LM\Accepted(s,P)
then there must exist some path πi ∈ P which does not achieve φ (be-
cause otherwise, all paths in P would achieve φ, and we would have φ ∈
Accepted(s,P) =

⋂
π∈P Accepted(s, π)). Therefore πi · ρ achieves φ, but πi

38 CHAPTER 4. LANDMARK BASED HEURISTICS

does not achieve φ and ρ does not achieve φ — a contradiction. Therefore
it must be the case that φ ∈ ReqAgain(s,P) ⊆ Accepted(s,P). But φ is
required again, which means that it does not hold in s, and is either a top-
level goal or there exists some other landmark φ′ 6∈ Accepted(s,P) such that
φ�gn φ

′. If φ is a top-level goal and does not hold in s, then clearly ρ must
achieve φ — a contradiction. So there exists φ′ 6∈ Accepted(s,P) such that
φ �gn φ

′. Then, as before, there must exist some path πj ∈ P which does
not achieve φ′. But then πj · ρ must achieve ρ′, and since φ�gn φ

′, φ must
hold in the state prior to the one where φ′ is first achieved. Since πj does
not achieve φ′, this must occur somewhere in ρ, which means that φ must
be achieved again somewhere along ρ — a contradiction.

Theorem 4 implies that the heuristic estimate of state s can be improved
by using information from multiple paths which reach s. Thus, it is possible
to use the information gathered by the search about the structure state-
space — Gω|s, to derive a more accurate landmark based heuristic, and
landmarks can be multi-path dependent (Karpas and Domshlak, 2009). It is
worth noting that exploiting multi-path dependence can make a large dif-
ference in the heuristic values that are computed. For example, consider a
planning task with landmarks p1 . . . pn, where all actions are unit-cost. As-
sume s is a state which can be reached via n different paths, π1 . . . πn, where
πi achieves all the landmarks except pi. Then, under any cost partitioning
scheme, hLA(π1) = . . . = hLA(πn) = 1, since according to each of these
paths, there is only one more landmark that needs to be achieved. How-
ever, combining all of these paths yields the multi-path dependent heuristic
estimate hLA({π1, . . . , πn}) = n, since the intersection of the achieved land-
marks along these paths is empty.

Recall that MPD-A∗ (Algorithm 2) is adapted to exploit multi-path de-
pendent heuristics. As mentioned in the description of MPD-A∗, we do
not need to explicitly keep track of the search history. Instead, as in the
implementation in LAMA, the only information we store for each state is
the set of accepted landmarks Accepted(s) := Accepted(s,P), where P con-
sists of all known paths to s. When expanding s, for any applicable ac-
tion a leading from s to s′, we simply propagate the accepted landmarks
from s to s′ and update them according to the landmarks achieved by a
— Accepted(s′) := Accepted(s) ∪ L(a|s′), where L(a|s′) are the landmarks
achieved by a. Since the set intersection operator is monotonic, when a new
path π /∈ P to a known state s is found, we simply perform the update by
intersecting the currently stored accepted landmarks Accepted(s) with the

4.3. SEARCH WITH LANDMARK-BASED HEURISTICS 39

landmarks that are accepted by the new path.

4.3.2 Consistency of Landmark Heuristics

Before we address the question of whether landmark based heuristics are
consistent (according to Definition 7), we will show that, using the optimal
cost partitioning scheme, landmark heuristics are monotone along single
paths. The exact formulation of this appears in the next theorem:

Theorem 5 Let s be a state reached via path π, and let s′ be some successor
of s that is reached by applying action a in s. Let hLA be an admissible
landmark heuristic as defined in Section 4.2 using optimal cost partitioning.
Then it holds that hLA(π) ≤ C(a) + hLA(π · 〈a〉).

Proof: We will prove this theorem by the following series of inequalities:

hLA(π) =
∑

φ∈LM(s,π)

costs(φ) =

∑
φ∈LM(s,π)\L(a|s,π)

costs(φ) +
∑

φ∈L(a|s,π)

costs(φ) ≤

∑
φ∈LM(s,π)\L(a|s,π)

costs(φ) + C(a) ≤

∑
φ∈LM(s′,π·a)

costs(φ) + C(a) ≤

∑
φ∈LM(s′,π·a)

costs′(φ) + C(a) =

hLA(π · a) + C(a)

We begin proving this series of inequalities by noting that, by definition:

hLA(π) =
∑

φ∈LM(s,π)

costs(φ)

Where costs(φ) is the cost assigned to φ under an optimal cost partitioning
for s. Clearly LM(s, π) = (LM(s, π) \ L(a | s, π)) ∪ L(a | s, π), and so:∑

φ∈LM(s,π)

costs(φ) =
∑

φ∈LM(s,π)\L(a|s,π)

costs(φ) +
∑

φ∈L(a|s,π)

costs(φ)

40 CHAPTER 4. LANDMARK BASED HEURISTICS

By the constraints of Equation 4.2,
∑

φ∈L(a|s,π) costs(φ) ≤ C(a), so we
have: ∑

φ∈LM(s,π)\L(a|s,π)

costs(φ) +
∑

φ∈L(a|s,π)

costs(φ) ≤

∑
φ∈LM(s,π)\L(a|s,π)

costs(φ) + C(a)

State s′ is obtained by applying action a at state s. Action a achieves
landmarks L(a | s, π), so Accepted(s′, π · a) = Accepted(s, π) ∪ L(a | s, π).
Since applying a might cause some more landmarks to become required
again, we have: LM(s, π) \ L(a | s, π) ⊆ LM(s′, π · a), and so∑

φ∈LM(s,π)\L(a|s,π)

costs(φ) + C(a) ≤
∑

φ∈LM(s′,π·a)

costs(φ) + C(a)

Since an optimal cost partitioning for s can not yield a higher heuristic
estimate for s′ than an optimal cost partitioning for s′, we have:∑
φ∈LM(s′,π·a)

costs(φ) +C(a) ≤
∑

φ∈LM(s′,π·a)

costs′(φ) +C(a) = hLA(π ·a) +C(a)

Theorem 5 shows that using optimal cost partitioning guarantees that
estimates along one path are consistent. However, this is not guaranteed
when using non-optimal cost partitioning. In fact, with non-optimal cost
partitioning adding more landmarks can decrease the heuristic value of a
state. Consider a planning task with propositions P = {p1 . . . pn, q}, initial
state I = {q}, goal G = {p1 . . . pn, q}, and actions a1 . . . an, aq, with ai
achieving pi and q (1 ≤ i ≤ n) and aq deleting q, with all actions being unit-
cost. The landmarks are p1 . . . pn and q. Consider state s where q holds.
Then the landmarks that need to be achieved are p1 . . . pn, and the uniform
cost partitioning would assign 1 to each of these, for a total estimate of
hLA(s) = n. Now consider the state s′, which is the result of applying aq
from s. q is identified as required again because it is a top-level goal. The
landmarks that need to be achieved are p1 . . . pn and q, and as seen in Section
4.2.2, this results in an estimate of hLA(s′) = (n+ 1)/2 under uniform cost
partitioning. For a large enough n it then holds that hLA(s) > 1 + hLA(s′).

Furthermore, Theorem 5 can easily be generalized to the case where we
calculate the heuristic value of s based on a set of paths P rather than a

4.4. EXISTENTIAL OPTIMAL LANDMARKS 41

I

s

s′

π
π′

a

Figure 4.1: Illustration of state space for hLA example

single path π. Then, the requirement to ensure monotonicity is that the
set of paths used to calculate the heuristic estimate of s′ must be the set of
paths used to calculate the heuristic estimate of s, with each path extended
by a. However, when different paths could be considered for different states,
as is the case when s′ can also be reached via a path through a parent state
s′′ 6= s, the heuristic values will not necessarily be consistent.

The state space of such an example is illustrated in Figure 4.1. There
are two paths leading to state s′: π · 〈a〉 and π′. If hLA(π) = hLA(π · 〈a〉)
and hLA(π · 〈a〉)− hLA(π′) > C(a), then the heuristic will not be consistent
between s and s′. To see this, note that

hLA(π) = hLA(π · 〈a〉) > hLA(π′) + C(a).

A detailed example demonstrating this behavior, as well as the fact that
A∗ and MPD-A∗ will need to reopen some nodes in this problem, is given
in Appendix A.

4.4 Existential Optimal Landmarks

We now turn our attention to a different type of landmark — existential op-
timal landmarks, or ∃-opt landmarks for short. While a “regular” landmark
must be achieved at some point along every plan, an existential optimal
landmark might only be achieved along some optimal plan. Using these
∃-opt landmarks, we show that the cost-partitioning schemes described pre-
viously result in a globally path-admissible heuristic, which can still be used
to find an optimal solution.

In this section, we introduce a concrete inference technique that yields
such ∃-opt landmarks. Our technique reasons about candidate plan pre-
fixes π generated by the search process, utilizing the well-known notion

42 CHAPTER 4. LANDMARK BASED HEURISTICS

A B
o

t1

t2

A B

o
t1

t2

load-o-t1

Figure 4.2: Example logistics task

of causal links (Tate, 1977). Causal links are widely exploited in partial-
order planning (Penberthy and Weld, 1992; Mcallester and Rosenblitt, 1991),
constraint-based planning (Vidal and Geffner, 2006), and recently also in sat-
isficing state space search (Lipovetzky and Geffner, 2011). Our use of causal
links here is novel: we use them to infer constraints that must be satisfied
by an optimal plan having π as its prefix, and then use these constraints to
enhance the heuristic evaluation of the end-state of π.

The technique is based on a simple observation that, for each action along
every optimal plan for the problem, if there is no justification for applying
that action, then it can be removed, yielding a shorter plan. Consider a
simple logistics problem, depicted in Figure 4.2, with two locations A and
B, two trucks t1 and t2, and a single package. In the initial state both trucks
and the package are at location A, and the goal is to have the package at
B. Clearly, any solution must load the package into one of the trucks. Now,
suppose we have already loaded the package onto truck t1. While it is still
possible to unload the package from t1, load it onto t2, and use t2 to deliver
the package to B, any optimal solution from the state in question will exploit
the fact that some effort has already been put into loading the package onto
t1, and will use t1 to deliver the package. This is precisely the type of
assertions our inference technique tries to deduce.

4.4.1 Intended Effects

Before we describe our inference technique in detail, we must first define
the notion of minimal preconditions after following path π. Intuitively, X
is a minimal precondition after following I-path π, if π achieves X and X
is “needed” to continue π to an optimal plan. However, the formal defini-
tion distinguishes between the minimal preconditions of an I-path π in the

4.4. EXISTENTIAL OPTIMAL LANDMARKS 43

context of different sets of optimal plans:

Definition 15 (Minimal Precondition)
Let Π = 〈P, I,G,A, C〉 be a planning task, and OPT be a set of optimal plans
for Π. Given an I-path π = 〈a0, a1, . . . an〉, a set of propositions X ⊆ IJπK
is an OPT-minimal precondition after π iff there exists an X-plan π′ such
that π · π′ ∈ OPT and for every X ′ ⊂ X, π′ is not applicable in X ′.

In other words, X is an OPT-minimal precondition after π if π achieves
X, and it is possible to continue after π into some plan in OPT, using
only facts in X. Furthermore, we require that X is minimal with regards
to set inclusion. While Definition 15 is fairly intuitive, for the purposes of
explaining our inference technique we use the following equivalent definition,
which is a bit more involved:

Definition 16 (Intended Effect)
Let Π = 〈P, I,G,A, C〉 be a planning task, and OPT be a set of optimal plans
for Π. Given an I-path π = 〈a0, a1, . . . an〉, a set of propositions X ⊆ IJπK
is an OPT-intended effect of π iff there exists an IJπK-plan π′ such that
π·π′ ∈ OPT and X = {p | 〈ai, p, aj〉 is a causal link in π·π′, ai ∈ π, aj ∈ π′}

In other words, X is an OPT-intended effect of π if π achieves X, and
it is possible to use π′ after π so that the full plan π · π′ ∈ OPT, and π′

consumes exactly X, that is, p ∈ X iff there is a causal link 〈ai, p, aj〉 in
π · π′, with ai ∈ π and aj ∈ π′.

The basic observation underlying the notion of intended effect is very
simple, if not to say trivial: every action along an optimal plan should be
there for a reason, that is, there should be some use of at least one of the
effects of each plan’s action. The following theorem shows that Definitions
15 and 16 are equivalent, under a simple compilation of the planning task
which adds a dummy start action:

Theorem 6 (Definition Equivalence)
Let Π = 〈P, I,G,A, C〉 be a planning task with I = ∅, and a unique start ac-
tion, let OPT be a set of optimal plans for Π, let π = 〈a0, a1, . . . an〉 be some
I-path, and let X ⊆ IJπK. Then X is an OPT-minimal precondition after
π iff X is an OPT-intended effect of π.

Proof: Let X be a OPT-minimal precondition after π. Then there exists
some path π′, such that π · π′ ∈ OPT, and π′ is applicable in X, but not in
any proper subset of X.

44 CHAPTER 4. LANDMARK BASED HEURISTICS

To show thatX is an OPT-intended effect of π, we must show that p ∈ X
iff there exists some causal link 〈ai, p, aj〉 in π · π′, with ai ∈ π and aj ∈ π′.
Denote the achiever of p ∈ IJπK by ach(p) := max{i|0≤i≤n,p∈add(ai)} i. Every
proposition must have an achiever, because I = ∅.

If p ∈ X, then it must be a precondition of some action in π′, because
otherwise π′ would be applicable in X \ {p}. Denote the first action in π′

which has p as a precondition by cons(p). Then clearly 〈ach(p), p, cons(p)〉
is a causal link as required.

If p /∈ X, then either (a) there is no action in π′ which has p as a pre-
condition, or (b) there is some action aj ∈ π′ which has p as a precondition,
and there is some action ai ∈ π′ with i < j which achieves p. Otherwise,
π′ would not be an X-plan. In case (a), there is clearly no causal link on
p with a consumer in π′, as there is no action in π′ which requires p. In
case (b) denote the first action in π′ which requires p by aj , and denote by
ai ∈ π′ the latest action to achieve p before aj . 〈ai, p, aj〉 is a causal link,
but the producer is in π′, and so there is no causal link with the producer
in π as required. Thus, p ∈ X iff there exists some causal link 〈ai, p, aj〉 in
π · π′, with ai ∈ π and aj ∈ π′, and X is an OPT-intended effect of π.

Now assume X is an OPT-intended effect of π. Then there exists some
path π′, such that p ∈ X iff there exists some causal link 〈ai, p, aj〉 in
π · π′, with ai ∈ π and aj ∈ π′. We will show that X is an OPT-minimal
precondition after π (that is, that π′ is applicable in X, but not in any
proper subset of X).

Assume to the contrary that π′ is not applicable in X. Denote by aj the
first action in π′ which is not applicable, and denote by p ∈ pre(aj) some
proposition that does not hold before applying aj (after following π′ until
aj from state X). If p ∈ X, then there is some causal link 〈ai, p, aj〉 in
π · π′, with ai ∈ π and aj ∈ π′. But then p could not have been deleted
before aj , and p ∈ X, which means that p must hold before applying aj
— a contradiction. If p /∈ X, then there is no causal link between π and
π′ on p. Therefore, when applying π′ in IJπK, p must be achieved by some
action in π′. But then, when applying π′ in X, aj should be applicable — a
contradiction.

Therefore, π′ is applicable in X. We must now show that there is no
X ′ ⊂ X, such that π′ is applicable in X ′. Assume to the contrary that there
exists such X ′, and let p ∈ X \X ′. p ∈ X, so there must exist some causal
link 〈ai, p, aj〉 in π · π′, with ai ∈ π and aj ∈ π′. π′ is applicable in X ′, but
p /∈ X ′, implying that some action in π′ achieved p for aj . But 〈ai, p, aj〉
is a causal link in π · π′, with ai ∈ π, implying that there is no action that
achieves p before aj in π′ — a contradiction.

4.4. EXISTENTIAL OPTIMAL LANDMARKS 45

Having seen the OPT-intended effects and OPT-minimal preconditions
are the same, we denote the set of all OPT-intended effects of an I-path
π by IE(π | OPT); when OPT is the set of all optimal plans for Π, then
IE(π | OPT) is simply called “intended effects” and is denoted by IE(π).
Note that if π is not a cheapest path from I to IJπK then IE(π | OPT) = ∅
for all optimal plan sets OPT.

If provided to us, the intended effects of π can reveal valuable informa-
tion about what any continuation of π must do. For example, if for some
proposition p we have p ∈ X for all intended effects X ∈ IE(π), then clearly
any optimal continuation of π must contain some action consuming p. This
example suggests that intended effects of π can be used either for deriving
a heuristic estimate of IJπK, or for enhancing such an existing estimate. We
now suggest one such framework for exploiting intended effects. It is based
on what we call existential optimal-plan landmarks, or ∃-opt landmarks, for
short.

First, interpreting proposition subsets X ⊆ P as valuations of P , assume
that a set of intended effects IE(π | OPT) is given to us as a propositional
logic formula φ such that that X ∈ IE(π | OPT)⇔ X |= φ. By models

(
φ
)

we denote the set of φ’s models, that is, models
(
φ
)

= {X ⊆ P | X |= φ}.
For an I-path π, let us also treat any continuation π′ of π as a valuation
of P , assigning TRUE to the propositions produced by π and consumed
by π′, and FALSE to all other propositions. This way, the semantics of
statements “π′ satisfies φ”, π′ |= φ, is well defined.

Theorem 7 Let OPT be a set of optimal plans for a planning task Π, π be
an I-path, and φ be a propositional logic formula describing IE(π | OPT).
Then, for any IJπK-plan π′, π · π′ ∈ OPT implies π′ |= φ.

Theorem 7, proof of which is immediate from Definition 16, establishes
our interpretation of the formula φ as an ∃-opt landmark: φ is not a land-
mark in the standard sense of this term (Hoffmann et al., 2004), as not
every plan, and not even every optimal plan, must satisfy φ. However, some
optimal plan starting with π must satisfy φ after π.

In line with the recent work on regular landmarks, henceforth we as-
sume that φ is given in CNF. The CNF representation of φ is advantageous
mainly in that it has a natural interpretation as a set of disjunctive fact
landmarks, where each clause describes one such landmark. Note that un-
like the regular landmarks, where a fact landmark stands for a disjunctive
action landmark composed of its achievers, in our ∃-opt landmarks a fact
stands for a disjunctive action landmark composed of its consumers. How-

46 CHAPTER 4. LANDMARK BASED HEURISTICS

ever, it is possible, for instance, to combine the information captured by the
∃-opt landmark(s) φ and the information captured by the regular landmarks
of the hLA heuristic, by performing an action cost partition over the union
of their landmarks (Karpas and Domshlak, 2009). When cost partitioning is
optimized via, e.g., the linear programming technique (Karpas and Domsh-
lak, 2009; Katz and Domshlak, 2010a), the resulting estimate is guaranteed
to dominate hLA. In fact, if we could find just a single OPT-intended effect
X ∈ IE(π | OPT), we could then use X as a regular landmark, pruning
some parts of the search space without sacrificing the optimality: Since we
know there must exist some continuation π′ with π · π′ ∈ OPT, X by itself
constitutes an ∃-opt landmark.

So far, we have outlined the promise of ∃-opt landmarks induced by
intended effects, yet that promise is, of course, only potential since the
intended effects IE(π | OPT) were assumed to be somehow provided to us.
It is hardly surprising, however, that finding just a single intended effect of
an action sequence is as hard as strips planning itself.

Theorem 8 Let INTENDED be the following decision problem: Given a
planning task Π = 〈P, I,G,A, C〉, an I-path π, and a set of propositions
X ⊆ P , is X ∈ IE(π)?

Deciding INTENDED is PSPACE − hard.

Proof: The proof is by reduction from the complement of PLANSAT — the
problem of deciding whether a given planning task is solvable. For strips,
PLANSAT is known to be PSPACE − hard even when all actions are unit
cost (Bylander, 1994), and since pspace = co-pspace, so is its complement.

Given a planning task Π = 〈P, I,G,A, C〉 with unit cost actions and
|P | = n, we construct a new planning task Π′ = 〈P ′, I ′, G′, A′, C′〉 as follows:

• P ′ := P ∪ {di | 0 ≤ i ≤ n+ 1};

• I ′ := I;

• G′ := G ∨ (d0 ∧ d1 ∧ . . . ∧ dn+1).

• A′ := A ∪ {inc(i) | 0 ≤ i ≤ n + 1}, where inc(i) = 〈{dj | j <
i}, {di}, {dj | j < i}〉; and

• C′ assigns costs of 1 to all actions in A;

The goal G′ is disjunctive, but this disjunction can be straightforwardly
compiled away.

4.4. EXISTENTIAL OPTIMAL LANDMARKS 47

Note that Π′ is always solvable because there will always be a solution
of cost 2n+2 − 1, using the inc operators to increment a binary counter
composed of d0, . . . , dn+1. Now, if the original task Π is solvable, then it has
a solution of cost at most 2n − 1. Therefore, the inc operators and the di
propositions are part of an optimal solution iff Π is not solvable, and thus
{d0} is an optimal intended effect in Π′ after applying inc(0) iff Π is not
solvable.

Although Theorem 8 shows that computing IE(π | OPT) precisely is not
feasible, the promise of ∃-opt landmarks still remains: we can approximate
IE(π | OPT) while still guaranteeing optimality, and thus maintain the
correctness of the reasoning. In particular, below we show that any superset
of IE(π | OPT) induces possible intended effects and provides such a “safe”
approximation.

Theorem 9 Let OPT be a set of optimal plans for a planning task Π, π be
an I-path, PIE(π | OPT) ⊇ IE(π | OPT) be a set of possible OPT-intended
effects of π, and φ be a logical formula describing PIE(π | OPT). Then, for
any IJπK-plan π′, π · π′ ∈ OPT implies π′ |= φ.

Proof: Let π′ be an IJπK-plan such that π ·π′ ∈ OPT, and let X be the set
of all propositions produced by π and consumed by π′. From Definition 16,
X ∈ IE(π | OPT), and since IE(π | OPT) ⊆ PIE(π | OPT), X ∈ PIE(π |
OPT). Since φ describes PIE(π | OPT), it holds that X |= φ.

We now proceed with describing a concrete proposal for finding and
utilizing useful PIE approximations of this type in the context of OPT
containing either all optimal plans or just one optimal plan.

4.4.2 Approximating Intended Effects

One easy way of obtaining a set PIE(π) such that IE(π) ⊆ PIE(π) is to
take PIE(π) = 2P . Needless to say, however, it provides us with no useful
information whatsoever. A slightly tighter approximation of IE(π) would
be PIE(π) = 2IJπK. Clearly, no continuation of π can consume anything
that π achieved but does not hold in the state reached by π. However, this
approximation of IE(π) still does not provide us with any useful information.

We begin by showing that it is possible to obtain a much tighter approx-
imation of IE(π | OPT) for OPT consisting of a single optimal plan ρ, and
that this approximation can provide us with useful information about the
OPT-continuations of π. Obviously, the plan ρ will not actually be known

48 CHAPTER 4. LANDMARK BASED HEURISTICS

to us; or otherwise there would be no point in planning in the first place. In
itself, however, that will not be an obstacle.

This approximation is based on exploiting a library L of I-paths; later
we discuss how such a library can be obtained automatically, but for now
we assume we are simply provided with one. Given a planning task Π, let
≺ be a lexicographic order on its action sequences, based on an arbitrary
total order of the actions. Let ρ be the optimal plan for Π that is minimal
(lowest) with respect to ≺. That is the plan we focus on, and we can now
describe our approximation of IE(π | {ρ}). For that, we define an additional
ordering / on action sequences:

π′ / π ⇔ C(π′) < C(π) ∨ (C(π′) = C(π) ∧ π′ ≺ π).

Note that π′ / π implies C(π′) ≤ C(π). Using /, we approximate IE(π | {ρ})
with

PIEL(π | {ρ}) = {X ⊆ IJπK | @π′ ∈ L : π′ / π,X ⊆ IJπ′K}.

In other words, for any X ⊆ IJπK, L proves that X is not an intended effect
of π if it can offer a cheaper way of achieving X from I, or if it can offer
a way of achieving X from I at the same cost, but that alternative way is
“preferred” to π with respect to ≺.

Theorem 10 Let ≺ be a lexicographic order on action sequences, and let ρ
be an optimal solution of Π that is minimal in ≺. For any I-path π, it holds
that IE(π | {ρ}) ⊆ PIEL(π | {ρ}).

Proof: Assume to the contrary that there exists some X ∈ IE(π | {ρ}) \
PIEL(π | {ρ}). Since X ∈ IE(π | {ρ}), there exists some path π′ such that
π · π′ = ρ, and π′ consumes all propositions in X. X 6∈ PIEL(π | {ρ}), so
from the definition of PIEL(π | {ρ}) there exists some I-path π′′ ∈ L such
that π′′ is applicable at I, π′′ / π, and X ⊆ IJπ′′K.

π′ is applicable at IJπ′′K, since π′ consumes exactly the propositions in
X, and X ⊆ IJπ′′K. π · π′ = ρ is a valid plan, so the last action in π′ must
be the end action, which implies that π′′ · π′ is a valid plan.

π′′ / π, and so one of (I-II) below must be true:

I C(π′′) < C(π).

But then, C(π′′ ·π′) < C(π ·π′), contradicting the optimality of π ·π′ = ρ.

II C(π′′) = C(π) and π′′ ≺ π.

4.4. EXISTENTIAL OPTIMAL LANDMARKS 49

But then C(π′′ ·π′) = C(π ·π′), and thus π′′ ·π′ is an optimal plan. Since
≺ is a lexicographic order, π′′ · π′ ≺ π · π′, contradicting the minimality
of π · π′ = ρ in ≺.

We have seen that either case of π′′ /π leads to a contradiction, thus proving
the theorem.

We note that, very similarly, one can obtain an approximation of the
intended effects IE(π) of π with respect to all optimal plans, with no need
for the lexicographic order ≺ on the action sequences. Specifically, one can
use

PIEL(π) = {X ⊆ IJπK | @π′ ∈ L : C(π′) < C(π), X ⊆ IJπ′K},

and the proof that IE(π) ⊆ PIEL(π) is very similar to the proof of Theorem
10.

4.4.3 From PIEL(π | {ρ}) to Existential Optimal Landmarks

As mentioned, in order to use PIEL(π | {ρ}) as a set of disjunctive fact
landmarks, we have to derive a CNF formula that compactly represents it.
Recall that PIEL(π | {ρ}) consists of all sets of propositions in IJπK for
which there is no “shortcut” in L. Let π be an I-path, and let π′ ∈ L be
an I-path in the library such that π′ / π. If π is a prefix of our ≺-minimal
optimal plan ρ, then there must be some proposition p consumed by the
continuation of π along ρ which is achieved by π but not by π′, that is,
p ∈ IJπK \ IJπ′K. In CNF, this information, derived from π on the basis of
the library L, is encoded as

φL(π|{ρ}) =
∧

π′∈L:π′/π

∨
p∈IJπK\IJπ′K

p.

As a special case of φL(π|{ρ}), note that if there exists π′ ∈ L with
C(π′) < C(π) and IJπK ⊆ IJπ′K, then φL(π|{ρ}) contains an empty clause,
meaning that there is no optimal continuation of π. This is the case captured
by the definition of a dominating action sequence (Nedunuri et al., 2011),
and φL(π|{ρ}) generalizes their definition. The following theorem demon-
strates that φL(π|{ρ}) describes PIEL(π | {ρ}), and thus by Theorem 10
approximates IE(π | {ρ}):

Theorem 11 For any I-path π, PIEL(π | {ρ}) = models
(
φL(π|{ρ})

)
.

50 CHAPTER 4. LANDMARK BASED HEURISTICS

Proof: We first show that PIEL(π | {ρ}) ⊆ models
(
φL(π|{ρ})

)
. Assume

to the contrary that there exists X ∈ PIEL(π | {ρ}) \models
(
φL(π|{ρ})

)
.

X 6∈ models
(
φL(π|{ρ})

)
, so there exists some clause cπ′ = ∨p∈IJπK\IJπ′Kp in

φL(π|{ρ}), corresponding to path π′ ∈ L, which X does not satisfy. Since
the clause cπ′ contains the propositions IJπK \ IJπ′K, this implies that X ∩(
IJπK\IJπ′K

)
= ∅. We know that X ⊆ IJπK, and so we have that X ⊆ IJπ′K.

However, X ∈ PIEL(π | {ρ}), so there is no “shortcut” in L for achieving
X. Therefore, for any π′ ∈ L such that π′ / π, we have that X 6⊆ IJπ′K—a
contradiction.

We now show that models
(
φL(π|{ρ})

)
⊆ PIEL(π | {ρ}). Assume to

the contrary that there exists X ∈ models
(
φL(π|{ρ})

)
\ PIEL(π | {ρ}).

X 6∈ PIEL(π | {ρ}), so there exists some π′ ∈ L such that π′ / π and
X ⊆ IJπ′K. Let cπ′ = ∨p∈IJπK\IJπ′Kp be the clause corresponding to π′ in
φL(π|{ρ}). We know that X ⊆ models

(
φL(π|{ρ})

)
, thus X must satisfy

every clause of φL(π|{ρ}), and specifically, X must satisfy cπ′ . However,
X ⊆ IJπ′K, and cπ′ does not contain any of these propositions. Thus, X
cannot satisfy cπ′ — a contradiction.

Similarly, we can derive a CNF formula φL(π) which describes PIE(π)
(with a very similar proof of the equivalence):

φL(π) =
∧

π′∈L:C(π′)<C(π)

∨
p∈IJπK\IJπ′K

p.

4.4.4 Obtaining a Shortcut Library

So far we assumed our “shortcut” library L is given. We now describe a
concrete approach to obtaining it. Importantly, note that L does not have to
be a static list of action sequences, but rather can be generated dynamically
for each I-path π constructed by the search procedure. In particular, such
a path-specific library can be generated using a set of rules similar to plan
rewrite rules by Nedunuri et al. (2011). A plan rewrite rule is a rule of the
form π1 → π2, where π1 and π2 are some action sequences and the rule
means that whenever π1 is a subsequence of a plan, it can be replaced on
that plan with π2 without violating the plan’s validity. We do not require
such a strong connection between π1 and π2. First, instead of requiring that
π2 be applicable whenever π1 is applicable, we can simply check whether π2

is applicable for the current state. Second, we do not require π2 to achieve
everything that π1 does, since we can also obtain useful information from
the set difference of the end states of π1 and π2.

4.4. EXISTENTIAL OPTIMAL LANDMARKS 51

Given a path π and a set of plan rewrite rules, we construct a library
L(π) specifically for π. To construct L(π), we first need to define a digraph,
which we call the causal structure of π. The nodes of this graph are the
action instances in π, and there is an edge from ai to aj when there is a
causal link in π with ai as the provider and aj as the consumer. Given a
plan rewrite rule π1 → π2 with π2 / π1, we can check whether π1 appears as
a chain in the causal structure of π. We can then attempt to replace π1 with
π2, and check if the resulting action sequence is still applicable in I. Note
that π1 does not have to appear in π as a contiguous subsequence, making
this a more general strategy than simply looking for contiguous occurrences
of π1.

Our current implementation is a special case of this scheme that uses
plan rewrite rules of the form π → 〈〉, that is, the tail of each rule is the
empty sequence. We look for two types of chains in the causal structure of
π. The first type are isolated chains, that is, chains with no edges going out
from any node in the chain to any node outside the chain. This ensures that
removing every suffix of the causal chain still results in a valid I-path. As
a special case of this, removing the last operator in each causal chain will
yield the same landmarks as those from the “unjustified actions” (Karpas
and Domshlak, 2011), up to ordering of the action sequence. The second
type of chains we look for correspond to “action a supports its inverse action
a′”, where the notion of action invertibility is adopted from Hoffmann (2002).

To illustrate how this process works, we consider the following example
action sequence in a Logistics problem: π = 〈drive(t1, A,B), drive(t1, B,C),
drive(t2, A,B), drive(t1, C,A)〉. The causal structure of this action se-
quence is shown in Figure 4.3. Clearly, truck t1 drives in a loop here, with-
out doing anything useful on the way. Thus, the actions drive(t1, A,B),
drive(t1, B,C), and drive(t1, C,A) form an isolated causal chain. We can
replace this causal chain with the empty sequence, yielding the “shortcut”
π′ = 〈drive(t2, A,B)〉, which leads to the same state as π, allowing us to
prove that π cannot be the beginning of any optimal solution. Note that
while truck t1 drives in a loop, there is no loop in the state space (which
could be detected by the search algorithm), since truck t2 moved in between
the moves of t1. However, our shortcut library allows us to eliminate non-
contiguous subsequences of π, making this stronger than simple duplicate
state detection.

In terms of previous uses of causal links, the PROBE planner’s (Lipovet-
zky and Geffner, 2011) causal commitments bear similarity to our use of the
causal structure, with one major difference. While PROBE chooses the
causal commitments (that is, which proposition each action will be used

52 CHAPTER 4. LANDMARK BASED HEURISTICS

drive(t1, A,B)

drive(t1, B,C)

drive(t1, C,A)

drive(t2, A,B)

Figure 4.3: Causal structure of example

to achieve) as soon as the action is chosen, we look at all possible causal
commitments. This is why PROBE cannot guarantee optimality, while we
can.

4.4.5 Search with ∃-opt Landmark Heuristics

For a set of optimal plans OPT, it is fairly easy to see that given a CNF
formula φL(π|OPT), which describes some sound approximation of IE(π |
OPT), any admissible action cost partition over φL(π|OPT) yields an OPT-
admissible heuristic. Specifically, any admissible action cost partition over
φL(π|{ρ}) yields a {ρ}-admissible heuristic, and any admissible action cost
partition over φL(π) yields a path admissible heuristic.

As previously mentioned, path-A∗ using a path admissible heuristic is
guaranteed to find an optimal solution. Unfortunately, path-A∗ is not guar-
anteed to find an optimal solution with a globally path admissible heuristic,
and specifically with a {ρ}-admissible heuristic.

However, it is possible to make a small modification of path-A∗, that
will ensure that an optimal solution is found with a {ρ}-admissible, for
our specific ρ — the ≺-minimal lowest optimal plan. The modification is
very simple: instead of reopening a state only when a cheaper to it has
been found, we also reopen it when a new path of the same cost, but lower
according to ≺ is found. In terms of pseudo code, we only need to change
the condition for reopening a state in line 18 of path-A∗ (Algorithm 3), from:

g(s) + C(a) < g(s′)

to: (
trace(s) · 〈a〉

)
/ trace(s′)

Using this modification of path-A∗ with a heuristic derived from φL(π|{ρ}) is
guaranteed to find an optimal solution. To see this, we prove the A∗ Lemma
for this variant of path-A∗.

4.5. FUTURE WORK 53

Lemma 3
At any time before (the modified) path-A∗ terminates, there exists on the
open list a state s which lies on ρ (the ≺-minimal optimal plan), with f(s) ≤
c∗

Proof: Assume the states which lie along ρ are 〈I, s1, . . . , s, . . . , sn〉, and let
s be the shallowest state on ρ which is open (there is at least one, because the
goal state sg is only closed when path-A∗ terminates). Since all ancestors
of s along ρ are closed, and the new condition for reopening will always
reopen prefixes of ρ, it must be that the parent pointers assigned to s and
its ancestors are along ρ. Since ρ is optimal, we know that g(s) = g∗(s).
Using the {ρ}-admissibility of h, we obtain:

f(s) = g(s) + h(s) = g∗(s) + h(s) ≤ g∗(s) + h∗(s) = c∗

As is the case with the unmodified path-A∗, using this lemma with
the proof of Theorem 1 also shows that the modified path-A∗ with a {ρ}-
admissible heuristic is guaranteed to find an optimal solution.

4.5 Future Work

We believe this is not the end of the road for ∃-opt landmarks. First, the
dynamic shortcut library generation process can be improved by introducing
more general forms of plan rewrite rules — not just rules which attempt
to delete some action sequences from the current path, but rules which
attempt to replace some action sequences with other action sequences. There
are several possible sources for these rules, including learning them online,
during search. This would make ∃-opt landmarks history dependent, as
mentioned in Table 3.1.

Additionally, it is quite likely that other methods of deriving ∃-opt land-
marks could be found. In fact, the inference technique we present here could
be enhanced with additional reasoning, as demonstrated in the following sce-
nario. Assume that action a was applied, and achieved proposition p. Our
current inference technique can deduce that at some later point, some action
which consumes p must be applied. Still, the question is when a consumer
of p should be applied. One natural option is to apply it directly after a.
However, there are two possible reasons this might not be the best choice:
either the consumer requires some other preconditions which have not yet

54 CHAPTER 4. LANDMARK BASED HEURISTICS

been achieved, or the consumer threatens another action, which should be
applied before the consumer. Incorporating this type of reasoning into our
inference technique poses an interesting challenge.

Chapter 5

Machine-Learning Based
Heuristics

Another class of non-classical heuristics are those that are based on online
learning. The intractability of classical planning has led many researchers
to use speedup learning techniques in order to improve the performance
of planning systems; for a survey of many of these, see Minton (1994);
Zimmerman and Kambhampati (2003); Fern et al. (2011).

In general, speedup learning is concerned with improving the perfor-
mance of a problem solving system with experience. Speedup learning sys-
tems can be divided along several dimensions (Zimmerman and Kambham-
pati, 2003; Fern, 2010). Arguably the most important dimension is the
phase in which learning takes place. An offline, or inter-problem, speedup
learner analyzes the performance of the problem solver on different problem
instances, and attempts to formulate some rule which would improve perfor-
mance of the solver on the observed example instances, and would hopefully
generalize well to future problem instances. Offline learning has been ap-
plied to domain independent planning extensively, with varying degrees of
success (Fern et al., 2011). However, one major drawback of offline learning
is the need for training examples — in our case, planning tasks from the
domains of interest.

The other phase in which learning could take place is online, during prob-
lem solving. An online, or intra-problem, speedup learner is invoked by the
problem solver on a concrete problem instance the solver is working on, and
it attempts to learn online, with the objective of improving the performance
of the solver on the concrete problem instance in question. In general, online
learners are not assumed to be pre-trained on some other, previously seen

55

56 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

problem instances; all the information they can rely on has to be collected
during the process of solving the concrete problem instance they were called
for. Online learning has been shown to be extremely helpful in propositional
satisfiability (SAT) and general constraint satisfaction (CSP) solving, where
nogood learning and clause learning are now of the essential components of
any state of the art solver (Schiex and Verfaillie, 1993; Marques-Silva and
Sakallah, 1996; Bayardo Jr. and Schrag, 1997). Thus, indirectly, SAT- or
CSP-based domain-independent planners already benefit from these online
learning techniques (Kautz and Selman, 1992; Rintanen et al., 2006).

In this chapter, we present an online learning approach for speeding up
optimal heuristic-search planning. Our approach, selective max, is based on
combining the strengths of several heuristic evaluation functions. At a high
level, it can be seen as a hyper-heuristic (Burke et al., 2003) — a heuristic
for choosing between other heuristics. Specifically, selective max is based
on a seemingly useless observation that, for each state there is one heuristic
which is the “best” for that state. Although it is possible to compute several
heuristics for each state, and then choose one of them based on the values
they provide, computing several heuristic estimates for each state takes a
significant amount of time.

Selective max works by predicting for each state which heuristic will
yield the “best” heuristic estimate, and computes only that heuristic. As it
is not always clear how to decide what the “best” heuristic for each state is,
we first analyze an idealized model of a search space and describe how an
all-knowing oracle would choose the best heuristic for each state, when the
objective is to minimize the overall search time. Using the oracle’s decision
as a target concept, we then describe an online active learning procedure
for that concept, which constitutes the essence of selective max. Finally, it
is worth mentioning that the resulting heuristic is history-dependent — the
value assigned to some state s can depend on information that was learned
from a different state s′, which does not lie on any path to s.

5.1 High-Level Overview

In domain-independent planning, many admissible heuristics have been pro-
posed, varying from cheap to compute yet typically not very accurate, to
expensive to compute but much more accurate. As the accuracy of heuristic
functions varies for different planning tasks, and even for different states of
the same task, we can produce a more robust optimal planner by combining
several admissible heuristics. The simplest and best-known way for doing

5.1. HIGH-LEVEL OVERVIEW 57

that is using the point-wise maximum of the heuristics in use at each state.
Presumably, each heuristic is more accurate, that is, provides higher esti-
mates, in different regions of the search space, and thus point-wise maximum
is at least as accurate as each of the individual heuristics.

As mentioned previously, selective max can be seen as a type of hyper-
heuristic (Burke et al., 2003), which chooses which heuristic to compute at
each state. It may seem like the best heuristic to choose for each state is the
one which yields the more accurate estimate for that state. Choosing the
most accurate heuristic for each state yields a heuristic which is as accurate
as the point-wise maximum of the heuristics, while still computing only
one heuristic per state. As the maximum of several heuristics is at least
as accurate as any of these heuristics, using their maximum leads to less
expanded states (Pearl, 1984), and thus seemingly reduces overall search
time.

This analysis, however, does not take into account the fact that different
heuristics have different computation times. Consider the following example.
We have two heuristics, h1 and h2, and we know that h2 dominates h1. A
priori, it seems like using h2 should always be preferred to using h1 because
the former will provably cause A∗ to expand less states. However, suppose
that on a given planning task, A∗ expands 1000 states when guided by h1

and only 100 states when guided by h2. If computing h1 for each state takes
10 ms, and computing h2 for each state takes 1000 ms, then switching from
h1 to h2 increases the overall search time. Using the maximum of h1 and
h2 will only hurt, as h2 dominates h1, and thus computing the maximum
simply wastes the time spent on computing h1.

It is possible, however, that computing h2 for a few carefully chosen
states, and computing h1 for all other states would result in expanding 100
states, while reducing the overall search time when compared to running A∗

with only h2. To capture this intuition, we begin by analyzing an idealized
model of the search space, and describe how an all-knowing oracle would
choose the best heuristic to compute for each state, in order to reduce the
overall search time. Although we can not use such an all-knowing oracle in
practice, we use the oracle’s decision as a target concept for a classifier. At a
high level, selective max can be seen as an online active learning procedure
for such a classifier, as well as a procedure for choosing which heuristic to
compute at each state, based on the classifier’s predictions.

58 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

sg

I

f1 = c∗f2 = c∗

s

Figure 5.1: An illustration of the idealized search space model and the f -
contours of two admissible heuristics.

5.2 A Model for Heuristic Selection

Given a set of admissible heuristics and the objective of minimizing the
overall search time, we are interested in how an oracle, which has access to
all the information it requires, would choose which heuristic to compute at
each search state. It might seem that searching for an optimal solution when
such an all-knowing oracle exists is unnecessary, because the oracle already
knows the optimal solution. However, consider the problem of proving that
the solution such an oracle provides is optimal. Since A∗ is known to find
an optimal solution, we can use the oracle to guide an A∗ search, which will
consume as little computation time as possible.

In what follows, we describe the oracle decisions for a pair of classical
heuristics, with respect to an idealized search space model corresponding to
a tree-structured search space with a single goal state, constant branching
factor b, and uniform cost actions. Such an idealized search space model
was used in the past to analyze the behavior of A∗ (Pearl, 1984). Two
additional assumptions we make are that the heuristics are consistent, and
that the time ti required for computing heuristic hi is independent of the
state being evaluated; w.l.o.g. we assume t2 ≥ t1. Obviously, most of the
above assumptions do not hold in typical search problems, and later we
carefully examine their individual influence on our framework.

5.2.1 Idealized Model

Adopting the standard notation, let g(s) be the cost of the cheapest path
from I to s. Defining maxh(s) = max(h1(s), h2(s)), we then use the notation

5.2. A MODEL FOR HEURISTIC SELECTION 59

f1(s) = g(s) + h1(s), f2(s) = g(s) + h2(s), and maxf (s) = g(s) + maxh(s).
The A∗ algorithm with a consistent heuristic h expands states in increasing
order of f = g+h. Assuming the goal state is at depth c∗, let us consider the
states satisfying f1(s) = c∗ (the dotted line in Fig. 5.1) and those satisfying
f2(s) = c∗ (the solid line in Fig. 5.1). The states above the f1 = c∗ and
f2 = c∗ contours are those that are surely expanded by A∗ with h1 and h2,
respectively. The states above both these contours (the grid-marked region
in Fig. 5.1), that is, the states SE = {s | maxf (s) < c∗}, are those that are
surely expanded by A∗ using maxh (Pearl, 1984, Theorem 4, p. 79).

Under the objective of minimizing the search time, observe that the
optimal decision for any state s ∈ SE is not to compute any heuristic at
all, since all these states are surely expanded anyway. The optimal decision
for all other states is a bit more complicated. Without loss of generality,
consider the states where f1(s) < c∗ and f2(s) = c∗; in Fig. 5.1, these are
the states on the part of the f2 = c∗ contour that separates between the
grid-marked and lines-marked areas. Since f1(s) and f2(s) account for the
same g(s), we have h2(s) > h1(s), that is, h2 is more accurate in state s
than h1. If we were interested solely in reducing state expansions, then h2

would obviously be the right heuristic to compute at s. However, for our
objective of reducing the actual search time, h2 may actually be the wrong
choice because it might be much more expensive to compute than h1.

Let us consider the effects of each of our two alternatives. If we compute
h2(s), then s is no longer surely expanded, as f2(s) = c∗, and thus whether
A∗ expands s or not depends on tie-breaking. As the oracle has perfect
knowledge, we can assume that ties are broken favorably. In contrast, if we
compute h1(s), then s is surely expanded because f1(s) < c∗. Note that
not computing h2 for s and then computing h2 for one of the descendants
s′ of s is surely a sub-optimal strategy as we do pay the cost of computing
h2, yet the pruning of A∗ is limited only to the search sub-tree rooted in s′.
Therefore, our choices are really either computing h2 for s, or computing h1

for all the states in the sub-tree rooted in s that lie on the f1 = c∗ contour.
Suppose we need to expand l complete levels of the state space from s to
reach the f1 = c∗ contour. This means we need to generate order of bl states,
and then invest blt1 time in calculating h1 for all these states that lie on the
f1 = c∗ contour. In contrast, suppose we choose to compute h2(s). With
favorable tie-breaking, the time required to “explore” the sub-tree rooted in
s will be t2.

Putting things together, the optimal decision in state s is thus to com-

60 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

pute h2 iff t2 < blt1, or if we rewrite this, if

l > logb(
t2
t1

).

As a special case, if both heuristics take the same time to compute, this
decision rule boils down to l > 0, that is, the optimal choice is simply the
more accurate (for state s) heuristic.

The next step is to somehow estimate the “depth to go” l. For that, we
make another assumption about the rate at which f1 grows in the sub-tree
rooted at s. Although there are many possibilities here, we will look at two
estimates that appear to be quite reasonable. The first estimate assumes
that the h1 value remains constant in the subtree rooted at s, that is, the
additive error of h1 increases by 1 for each level below s. In this case, f1

increases by 1 for each expanded level of the sub-tree (because h1 remains the
same, and g increases by 1), and it will take expanding ∆h(s) = h2(s)−h1(s)
levels to reach the f1 = c∗ contour. The second estimate we examine assumes
that the absolute error of h1 remains constant, that is, h1 increases by 1 for
each level expanded, and so f1 increases by 2. In this case, we will need
to expand ∆h(s)/2 levels. This can be generalized to the case where the
estimate h1 increases by any constant additive factor c, which results in
∆h(s)/(c+ 1) levels being expanded. In either case, the dependence of l on
∆h(s) is linear, and thus our decision rule can be reformulated to compute
h2 if

∆h(s) > α logb(
t2
t1

),

where α is a hyper-parameter for our algorithm. Note that, given b, t1, and
t2, the quantity α logb(t2/t1) becomes fixed and in what follows we denote
it simply by threshold τ .

5.2.2 Dealing with Model Assumptions

The idealized model above makes several assumptions, some of which appear
to be very problematic to meet in practice. Here we examine these assump-
tions more closely, and when needed, suggest pragmatic compromises.

First, the model assumes that the search space forms a tree with a sin-
gle goal state, and that the heuristics in question are state-dependent and
consistent. Although the first assumption does not hold in most planning
tasks, and the second assumption is not satisfied by some state of the art
heuristics, they do not prevent us from using the decision rule suggested by
the model. Furthermore, there is some empirical evidence to support our

5.3. ONLINE LEARNING OF THE SELECTION RULE 61

conclusion about exponential growth of the search effort as a function of
heuristic error, even when the assumptions made by the model do not hold.
In particular, the experiments of Helmert and Röger (2008) on IPC bench-
marks with heuristics with small constant additive errors clearly show that
the number of expanded nodes typically grows exponentially as the (still
very small and additive) error increases. Another assumption of our model
is that all actions are unit cost. While this assumption does not prevent us
from using our decision rule as is, in Section 5.3.4 we explain how we deal
with planning tasks with non-uniform action costs.

The model also assumes that both the branching factor and the heuristic
computation times are constant across the search states. In our application
of the decision rule to planning in practice, we deal with this assumption
by adopting the average branching factor and heuristic computation times,
estimated from a random sample of search states. Finally, the model assumes
perfect knowledge about the surely expanded search states. In practice, this
information is obviously not available. We approach this issue conservatively
by treating all the examined search states as if they were on the decision
border, and thus apply the decision rule at all the search states. Note that
this does not hurt the correctness of our algorithm, but only costs us some
heuristic computation time on the surely expanded states.

5.3 Online Learning of the Selection Rule

Our decision rule for choosing a heuristic to compute at a given search state s
suggests to compute the more expensive heuristic h2 when h2(s)−h1(s) > τ .
However, computing h2(s) − h1(s) requires computing both heuristic esti-
mates for state s, defeating the whole purpose of reducing search time by
selectively evaluating only one heuristic at each state. To overcome this
pitfall, we take our decision rule as a target concept, and suggest an active
online learning procedure for that concept. Intuitively, our concept is the
set of states where the more expensive heuristic h2 is ”significantly” more
accurate than the cheaper heuristic h1. According to our model, this corre-
sponds to the states where the reduction in expanded states by computing
h2 outweighs the extra time needed to compute it.

In what follows, we begin by giving a general overview of our learning
procedure, and then describe several alternatives for each of its components.
First, note that the target concept h2(s)− h1(s) > τ is a binary predicate.
We simulate an oracle for the decision rule by training a binary classifier
on the target concept. To build a classifier, we first need to collect train-

62 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

evaluate(s)
〈h, confidence〉 := classify(s, model)
if (confidence > ρ) then

return h(s)
else

label := h1

if h2(s)− h1(s) > α logb(t2/t1) then label := h2

update model with 〈s, label〉
return max(h1(s), h2(s))

Figure 5.2: The selective max state evaluation procedure.

ing examples, which should be representative of the entire search space —
several state space sampling methods are discussed in Section 5.3.1. Af-
ter the training examples T are collected, they are first used to estimate
b, t1 and t2 by averaging the respective quantities over T . Once b, t1 and
t2 are estimated, we can compute the threshold τ = α logb(t2/t1) for our
decision rule. We generate a label for each training example by calculat-
ing ∆h(s) = h2(s) − h1(s), and comparing it to the decision threshold: If
∆h(s) > τ , we label s with h2, otherwise with h1. If t1 > t2 we simply
switch between the heuristics — our decision is always whether to compute
the more expensive heuristic or not; the default is to compute the cheaper
heuristic, unless the classifier says otherwise. Of course, to train a classifier
we need to extract a set of features for each training example. The features
we use are discussed in Section 5.3.2.

Once we have our training set and features to represent the examples,
we can build a binary classifier for our concept. This classifier can then play
the role of our hypothetical oracle, indicating which heuristic to compute
where. However, as our classifier is not likely to be a perfect oracle, we
further consult the confidence the classifier associates with its classification.
The resulting state evaluation procedure of selective max is depicted in Fig-
ure 5.2. When state s is to be evaluated, we use our classifier to decide
which heuristic to compute. If the classification confidence exceeds a con-
fidence threshold ρ, a parameter of selective max, then only the indicated
heuristic is computed for s. Otherwise, we conclude that there is not enough
information to make a selective decision for s, and compute the regular max-
imum over h1(s) and h2(s). However, we use this opportunity to improve
the quality of our prediction for states similar to s, and update our classifier,
by generating a label based on h2(s) − h1(s), and learning from the newly
labeled example. To avoid the problems associated with concept drift, we

5.3. ONLINE LEARNING OF THE SELECTION RULE 63

do not change the estimates for b, t1 and t2, so the threshold τ remains fixed.
In any case, these decisions to dedicate computation time to obtain a label
for a new example constitute the active part of our learning procedure. The
choice of a classifier for our approach is discussed in Section 5.3.3.

5.3.1 State Space Sampling

One option for collecting the training examples is to use the first t states
of the search where t is the desired number of training examples. However,
this method has a bias towards states that are closer to the initial state, and
therefore is not likely to represent the search space well. Hence, we instead
collect training examples by sending “probes” from the initial state. Each
such “probe” simulates a stochastic hill-climbing search, which terminates
after reaching some depth limit. All the states generated by such a probe
are used as training examples, and we stop probing after collecting t training
examples.

In our evaluation, the probing depth limit was set to twice the heuristic
estimate of the initial state, that is 2 · maxh(I), and the next state s for
an ongoing probe was chosen with a probability proportional to 1/maxh(s).
This “inverse heuristic” selection biases the sample towards states with lower
heuristic estimates, that is, to states that are more likely to be expanded
during the search. It is also possible not to use the “inverse heuristic”
selection bias, and simply use unbiased probes to perform a sample of the
state space.

Other, more sophisticated, procedures for search space sampling have
been proposed in the literature (Haslum et al., 2007). This sampling method,
which we call the PDB sampling method, uses unbiased random walks
(probes), but only adds the last state reached in each probe. The depth
of each probe is distributed binomially around the estimated goal depth.

5.3.2 Features

Having obtained a set of training examples, we must decide about the fea-
tures we use to characterize each example. Since our target concept is based
on heuristic values, the features should contain the information that heuris-
tics are derived from — typically the problem description and the current
state.

While numerous features for characterizing states of planning tasks have
been proposed in previous literature (Yoon et al., 2008; de la Rosa et al.,
2008), they were all designed for inter-problem learning, that is, for learning

64 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

from different planning tasks. However, in our approach, we are only con-
cerned with one problem, and our features should be suitable for learning
from different states of the same problem.

In our implementation, we use the simplest features possible, taking
each state variable as a feature. One important note is that although we
have described the strips formalism for planning tasks, our implementation
uses the sas+ formalism internally. The sas+ formalism uses finite domain
variables — each variable is not just a TRUE/FALSE binary proposition,
but has a finite domain of possible values.

A sas+ description of a planning task can be automatically generated
from a strips-like description (Helmert, 2009b). This is done by synthesiz-
ing invariants of the planning domain, in order to identify groups of mutually
exclusive binary propositions. A group of mutually exclusive propositions
can be represented as a single sas+ variable. Thus, we have a small number
of finite domain variables, rather than a large number of binary variables.

5.3.3 Classifier

The last decision to be made is the choice of classifier. Although many
classifiers can be used here, there are several requirements that need to
be met due to our particular setup. First, both training and classification
must be very fast, as both are performed during time-constrained problem
solving. Second, the classifier must be incremental to allow online update of
the learned model. Finally, the classifier should provide us with a meaningful
confidence for its predictions.

While several classifiers meet these requirements, we found the classical
Naive Bayes classifier to provide a good balance between speed and accuracy.
One note on the Naive Bayes classifier is that it assumes a very strong
conditional independence between the features. Although this is not a fully
realistic assumption for planning tasks, using a sas+ task formulation in
contrast to the classical strips formulations helps a lot: instead of many
binary variables which are highly dependent upon each other, we have a
much smaller set of variables which are less dependent upon each other.

While Naive Bayes is the most suitable classifier for use with selective
max, it is also possible to use other classifiers. The most obvious choice for
a replacement classifier is another Bayesian classifier. One such classifier is
AODE (Webb et al., 2005), an extension of the Naive Bayes classifier, which
somewhat relaxes the assumption of independence between the features, and
is typically more accurate than Naive Bayes. However, this added accuracy
comes at the cost of increased training and classification time.

5.3. ONLINE LEARNING OF THE SELECTION RULE 65

Decision trees are another popular type of classifier, which allows for even
faster classification. Although most decision tree induction algorithms are
not incremental, and thus are not suitable for our setting, the Incremental
Tree Inducer (ITI) algorithm (Utgoff et al., 1997) supports incremental up-
dating of decision trees by tree restructuring, and furthermore, has a freely
available implementation in C. In our evaluation, we used ITI in incremental
mode, and incorporated every example into the tree immediately, because
the tree will usually be used for many classifications between adding two
consecutive training examples. The classification confidence with the ITI
classifier is obtained by the frequency of examples at the leaf node from
which the classification came from.

A different family of classifiers which could be used is k-Nearest Neigh-
bors (kNN) (Cover and Hart, 1967). In order to use kNN, we need a distance
metric between examples, which, with the above features, are simply states.
As with our choice of features, we opt for simplicity, and use L2 as our
distance metric. kNN enjoys very fast learning time, but suffers from ex-
pensive classification time. The classification confidence is obtained by a
simple (unweighted) vote between the k nearest neighbors.

Another question, related to the choice of classifier is feature selection.
In some planning tasks, the number of variables (that is, features) can be
over 2000 (for example, task 35 of the airport domain has 2558 variables).
While it is likely that using feature selection will improve the performance of
Naive Bayes and kNN, doing so poses a problem when the initial sample is
considered. Since feature selection will have to be done right after the initial
sample is obtained, it will have to be based only on the initial sample. This
might cause a problem since some features might appear to be irrelevant
according to the initial sample, yet turn out to be very relevant when active
learning is used after some low-confidence states are encountered. Therefore,
we do not use feature selection in our implementation of selective max.

5.3.4 Handling Non-Uniform Action Costs

One of the assumptions of our theoretical model is that all actions are unit
cost. However, some planning tasks feature varying action costs. Notably,
all planning tasks from the 2008 International Planning Competition feature
non-unit action costs. Since our model assumes that the heuristic value is
the same as the depth to go, this could lead to some erroneous decisions.
Therefore, when dealing with non unit-cost tasks, we also estimate the cost of
the average action from our initial state space sample, and convert heuristic
estimates of cost-to-go into heuristic estimates of depth-to-go by dividing

66 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

the cost-to-go estimate by the average action cost. We do this by adapting
our threshold, so that if the average action cost is ĉ, our concept becomes
h2(s)−h1(s)

ĉ > τ .
Another place where varying action costs pose a problem is in the state

space sample. When faced with non unit-cost tasks, we can no longer use
2 ·maxh(I) as our goal depth estimate, because the heuristics estimate cost,
not depth. We, however, want to obtain an estimate of the depth of the
cheapest plan. Thus, computing a heuristic estimate for a modified task,
with all actions being unit-cost, is not the right thing to do, as this would
yield an estimate of the shallowest plan.

Therefore, we estimate the depth of the cheapest goal, by using a heuris-
tic on the original task, and then use the number of actions which the
heuristic accounts for as our goal depth estimate. While this is not possible
with any given heuristic, in our implementation we use the monotonically-
relaxed plan heuristic, also known as FF heuristic (Hoffmann and Nebel,
2001), in such a way. We first use the heuristic to find a relaxed plan from
the initial state, and then simply take the number of actions in the relaxed
plan as our goal depth estimate.

5.3.5 Extension to Multiple Heuristics

As a final note, extending selective max to use more than two heuristics
is rather straightforward — simply compare the heuristics in a pair-wise
manner, and choose the best heuristic by a vote, which can either be a
regular vote (i.e., 1 for the winner, 0 for the loser), or weighted according
to the classifier’s confidence. Although this requires a quadratic number of
classifiers, training and classification time (at least with Naive Bayes) appear
to be much lower than the overall time spent on heuristic computations, and
thus the overhead induced by learning and classification is likely to remain
relatively low for non-negligible ensembles of heuristics.

5.4 Related Work

Learning for planning has been a very active field starting the early days
of planning (Fikes et al., 1972), and is recently receiving growing attention
in the community. So far, however, relatively little work has dealt with
learning for heuristic search planning, one of the most prominent approaches
to planning these days. Most works in this direction have been devoted
to learning macro-actions (Finkelstein and Markovitch, 1998; Botea et al.,
2005; Coles and Smith, 2007). Among the other works, the one most closely

5.4. RELATED WORK 67

related to ours is probably the work by Yoon et al. (2008) that suggest
learning an (inadmissible) heuristic function based upon features extracted
from relaxed plans. In contrast, our focus is on optimal planning. Overall,
we are not aware of any previous work that deals with learning for optimal
heuristic search.

68 CHAPTER 5. MACHINE-LEARNING BASED HEURISTICS

Chapter 6

Empirical Evaluation

So far, we have discussed ideas which are of theoretical interest. In this
chapter, we present an empirical evaluation, which demonstrates that these
ideas also lead to state of the art performance in cost-optimal planning.

We conducted an empirical evaluation on problems from all 31 strips do-
mains from IPC 1998–2008. The evaluation was conducted on a single core
of an Intel E8400 3.0 Ghz CPU, with a memory limit of 6 GB, and a time
limit of 30 minutes, on a 64-bit Linux system.

6.1 Search Algorithm Evaluation

We have discussed three different search algorithms in this work: the well
known A∗ search algorithm, MPD-A∗, which we claim is better adapted to
using multi-path dependent heuristics, and path-A∗, which is suitable for
path admissible heuristics. In order to demonstrate our claim that MPD-
A∗ is better adapted to using multi-path dependent heuristics, we used the
same multi-path dependent heuristic — hLA with optimal cost partitioning,
varying the search algorithm. The landmarks the heuristic used were all
single fact landmarks of the delete relaxation, as discovered by the procedure
of Keyder et al. (2010).

Table 6.1 presents the number of problems solved in each domain, and
in total, using the different search algorithms. As the results show, MPD-
A∗ solved more problems overall than both A∗ and path-A∗, by quite a wide
margin. Tables 6.2 and 6.3 show the total number of expanded states, and
the geometric mean of total solution time, respectively. Both are only over
the problems solved by all three configurations. As these table show, MPD-
A∗ expands less states in total, and is faster on average, than both other

69

70 CHAPTER 6. EMPIRICAL EVALUATION

coverage MPD-A∗ A∗ path-A∗

airport (50) 28 28 28
blocks (35) 21 17 17
depot (22) 4 4 4
driverlog (20) 7 7 7
elevators-opt08-strips (30) 7 7 7
freecell (80) 51 52 51
grid (5) 2 2 2
gripper (20) 5 5 5
logistics00 (28) 20 10 10
logistics98 (35) 3 2 2
miconic (150) 141 141 141
mprime (35) 15 15 15
mystery (30) 12 12 12
openstacks-opt08-strips (30) 12 12 12
parcprinter-08-strips (30) 11 11 11
pathways (30) 4 4 4
pegsol-08-strips (30) 26 26 26
pipesworld-notankage (50) 15 14 14
pipesworld-tankage (50) 9 10 10
psr-small (50) 48 48 48
rovers (40) 5 5 5
satellite (36) 4 4 4
scanalyzer-08-strips (30) 13 13 13
sokoban-opt08-strips (30) 15 16 16
storage (30) 13 13 13
tpp (30) 5 5 5
transport-opt08-strips (30) 9 9 9
trucks-strips (30) 6 6 6
woodworking-opt08-strips (30) 11 11 11
zenotravel (20) 8 8 8
SUM 530 517 516

Table 6.1: Number of problems solved from each domain, using different
search algorithms with hLA

6.1. SEARCH ALGORITHM EVALUATION 71

expansions MPD-A∗ A∗ path-A∗

airport (28) 307635 313257 313257
blocks (17) 21026 256810 256810
depot (4) 401684 2028129 2028129
driverlog (7) 363541 363541 363541
elevators-opt08-strips (7) 483728 502436 502436
freecell (51) 511735 533939 533939
grid (2) 467076 467534 467534
gripper (5) 458498 458498 458498
logistics00 (10) 3472 1012746 1012746
logistics98 (2) 17021 315239 315239
miconic (141) 135213 135213 135213
mprime (15) 313576 313579 313579
mystery (14) 290133 290133 290133
openstacks-opt08-strips (12) 1579931 1579931 1579931
parcprinter-08-strips (11) 158090 158090 158090
pathways (4) 173593 173593 173593
pegsol-08-strips (26) 3949270 4163429 4163429
pipesworld-notankage (14) 1346551 1441610 1441610
pipesworld-tankage (9) 319465 430821 430821
psr-small (48) 698003 698003 698003
rovers (5) 231380 248852 248852
satellite (4) 10623 10987 10987
scanalyzer-08-strips (13) 23213 23213 23213
sokoban-opt08-strips (15) 3462312 3486061 3486061
storage (13) 474921 482364 482364
tpp (5) 12355 12355 12355
transport-opt08-strips (9) 929285 929285 929285
trucks-strips (6) 1261600 1351763 1351763
woodworking-opt08-strips (11) 151777 236626 236626
zenotravel (8) 186334 186334 186334
SUM 18743041 22604371 22604371

Table 6.2: Total number of expansions in each domain, for the problems
solved by all configurations (in parentheses)

72 CHAPTER 6. EMPIRICAL EVALUATION

total time MPD-A∗ A∗ path-A∗

airport (28) 0.8249 0.8136 0.8179
blocks (17) 0.2899 0.354 0.3651
depot (4) 7.102 9.2569 9.8935
driverlog (7) 5.2367 4.1963 4.3627
elevators-opt08-strips (7) 52.6276 45.7445 51.1003
freecell (51) 6.7982 6.4825 6.7045
grid (2) 18.8532 17.3217 17.3554
gripper (5) 2.5272 1.585 2.0326
logistics00 (10) 0.1651 1.0814 1.3887
logistics98 (2) 3.1769 17.1702 24.8938
miconic (141) 0.5529 0.5496 0.5494
mprime (15) 10.0974 8.9162 8.9257
mystery (14) 1.9163 1.7599 1.7712
openstacks-opt08-strips (12) 12.6003 9.0738 9.0629
parcprinter-08-strips (11) 0.5221 0.4546 0.4557
pathways (4) 2.1029 1.4368 1.4148
pegsol-08-strips (26) 5.0574 4.2123 4.4027
pipesworld-notankage (14) 1.8978 2.7356 2.7938
pipesworld-tankage (9) 3.1116 5.1286 5.2625
psr-small (48) 0.3559 0.329 0.3289
rovers (5) 0.4287 0.3935 0.3937
satellite (4) 0.5022 0.4395 0.5063
scanalyzer-08-strips (13) 1.8513 1.7838 1.9973
sokoban-opt08-strips (15) 5.929 5.2458 5.2709
storage (13) 0.8202 0.7919 0.7951
tpp (5) 0.1945 0.1838 0.1838
transport-opt08-strips (9) 3.3152 2.6075 2.7001
trucks-strips (6) 39.9974 31.3528 31.9196
woodworking-opt08-strips (11) 2.5245 2.5318 2.7453
zenotravel (8) 1.924 1.602 1.6296
GEOMETRIC MEAN 2.2357 2.3475 2.4808

Table 6.3: Geometric mean of total solution time in seconds, over the prob-
lems solved by all configurations (in parentheses)

6.2. EVALUATION OF EXISTENTIAL OPTIMAL LANDMARKS 73

search algorithms.

6.2 Evaluation of Existential Optimal Landmarks

We have seen that MPD-A∗ is indeed better when using the multi-path
dependent hLA heuristic than A∗ and path-A∗. However, we have also de-
scribed ∃-opt landmarks, which make the resulting heuristic path-admissible,
and thus unsuitable for use with MPD-A∗. Therefore, we have performed an
empirical evaluation to check whether the added information derived from
∃-opt landmarks is worth the need to switch to path-A∗.

We tested the two variants of ∃-opt landmark formulae discussed pre-
viously: φL(π) and φL(π|{ρ}). Recall that while φL(π) is path admissible,
φL(π|{ρ}) is {ρ}-path admissible. Consequently, with φL(π|{ρ}) we use the
modified version of path-A∗, discussed in Section 4.4. Thus, with φL(π) we
only compute a new heuristic estimate for state s when a cheaper path to s
has been found. With φL(π|{ρ}) we compute a new heuristic estimate also
when a new path π′ to s of the same cost as the current path π has been
found, and this if π′ is lexicographically lower than π. We also compare to
path-A∗ using the regular hLA heuristic.

Table 6.4 presents the number of problems solved in each domain, and
in total, using the different configurations. As the results show, using the
path admissible ∃-opt variant φL(π) solved more problems overall than both
the {ρ}-path admissible ∃-opt variant φL(π|{ρ}) and than regular hLA. We
believe this is because φL(π|{ρ}) prunes too many optimal solutions, while
hLA does not provide enough pruning power. We also list, for reference, the
number of problems solved by MPD-A∗ with the hLA heuristic. As the table
shows, path-A∗ with φL(π) solves more problems than MPD-A∗ with hLA,
allowing us to conclude that ∃-opt landmarks are indeed useful in practice.

Tables 6.2 and 6.3 show the total number of expanded states, and the
geometric mean of total solution time, respectively. Both are only over the
problems solved by all three configurations. As these table show, path-A∗

with φL(π) expands less states in total, and is faster on average, than path-A∗

with the other two heuristics.

74 CHAPTER 6. EMPIRICAL EVALUATION

coverage φL(π) φL(π|{ρ}) hLA MPD-A∗

airport (50) 28 27 28 28
blocks (35) 17 17 17 21
depot (22) 4 4 4 4
driverlog (20) 9 9 7 7
elevators (30) 6 0 7 7
freecell (80) 51 49 51 51
grid (5) 2 2 2 2
gripper (20) 5 5 5 5
logistics00 (28) 20 20 10 20
logistics98 (35) 3 3 2 3
miconic (150) 141 141 141 141
mprime (35) 19 17 15 15
mystery (30) 15 15 12 12
openstacks (30) 12 12 12 12
parcprinter (30) 12 12 11 11
pathways (30) 4 4 4 4
pegsol (30) 26 26 26 26
pipesworld-notankage (50) 14 14 14 15
pipesworld-tankage (50) 10 7 10 9
psr-small (50) 48 48 48 48
rovers (40) 5 5 5 5
satellite (36) 6 6 4 4
scanalyzer (30) 13 13 13 13
sokoban (30) 16 0 16 15
storage (30) 14 14 13 13
tpp (30) 6 6 5 5
transport (30) 9 9 9 9
trucks-strips (30) 7 7 6 6
woodworking (30) 11 11 11 11
zenotravel (20) 8 8 8 8
SUM 541 511 516 530

Table 6.4: Number of problems solved from each domain, using different
landmarks

6.2. EVALUATION OF EXISTENTIAL OPTIMAL LANDMARKS 75

expansions φL(π) φL(π|{ρ}) hLA

airport (27) 212128 423126 212786
blocks (17) 243021 259587 256810
depot (4) 406646 554578 2028129
driverlog (7) 160793 207027 363541
freecell (49) 425035 582345 425234
grid (2) 232425 240574 467534
gripper (5) 458498 594875 458498
logistics00 (10) 1655 2221 1012746
logistics98 (2) 5954 8714 315239
miconic (141) 135213 183319 135213
mprime (15) 32427 33004 313579
mystery (14) 37967 44219 290133
openstacks (12) 1579931 1756117 1579931
parcprinter (11) 101178 146959 158090
pathways (4) 32287 39634 173593
pegsol (26) 3670923 4001486 4163429
pipesworld-notankage (14) 1227678 1747983 1441610
pipesworld-tankage (7) 18658 34377 25881
psr-small (48) 361394 373886 698003
rovers (5) 104511 353604 248852
satellite (4) 6112 9488 10987
scanalyzer (13) 22157 26880 23213
storage (13) 320586 357176 482364
tpp (5) 4227 7355 12355
transport (9) 912637 1018792 929285
trucks-strips (6) 244408 323278 1351763
woodworking (11) 89434 151931 236626
zenotravel (8) 62681 73426 186334
SUM 11110564 13555961 18001758

Table 6.5: Total number of expansions in each domain, for the problems
solved by all configurations (in parentheses)

76 CHAPTER 6. EMPIRICAL EVALUATION

total time φL(π) φL(π|{ρ}) hLA

airport (27) 1.1419 1.3844 0.6647
blocks (17) 0.4095 0.4194 0.3651
depot (4) 7.188 9.9127 9.8935
driverlog (7) 4.0427 5.8268 4.3627
freecell (49) 7.4946 8.6938 5.497
grid (2) 16.4767 17.053 17.3554
gripper (5) 2.6924 3.9099 2.0326
logistics00 (10) 0.1332 0.1436 1.3887
logistics98 (2) 1.7126 3.4551 24.8938
miconic (141) 0.7473 0.7494 0.5494
mprime (15) 3.0758 4.5382 8.9257
mystery (14) 0.8707 0.9833 1.7712
openstacks-opt08-strips (12) 10.5737 15.1019 9.0629
parcprinter-08-strips (11) 0.4791 0.5605 0.4557
pathways (4) 0.8625 1.2494 1.4148
pegsol-08-strips (26) 4.5828 5.2247 4.4027
pipesworld-notankage (14) 2.775 3.5011 2.7938
pipesworld-tankage (7) 1.3249 1.8142 1.1401
psr-small (48) 0.3109 0.3371 0.3289
rovers (5) 0.3927 0.4832 0.3937
satellite (4) 0.5391 0.6481 0.5063
scanalyzer-08-strips (13) 2.1372 2.2772 1.9973
storage (13) 0.9239 1.0368 0.7951
tpp (5) 0.1754 0.1985 0.1838
transport-opt08-strips (9) 4.1689 5.1784 2.7001
trucks-strips (6) 11.0414 15.1125 31.9196
woodworking-opt08-strips (11) 2.7081 3.0248 2.7453
zenotravel (8) 1.5274 1.9756 1.6296
GEOMETRIC MEAN 1.6137 1.9982 2.0228

Table 6.6: Geometric mean of total solution time in seconds, over the prob-
lems solved by all configurations (in parentheses)

6.3. SELECTIVE MAX EVALUATION 77

6.3 Selective Max Evaluation

coverage hLA hLM-CUT selh
barman 4 4 4
elevators 14 18 18
floortile 2 7 7
nomystery 20 15 20
openstacks 14 16 14
parcprinter 11 13 13
parking 3 2 4
pegsol 17 18 17
scanalyzer 6 12 10
sokoban 20 20 20
tidybot 14 14 14
transport 7 6 6
visitall 10 10 10
woodworking 9 12 12
SUM 151 167 169

Table 6.7: Number of planning tasks solved at IPC 2011.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800

S
o
lv

e
d

 I
n

s
ta

n
c
e
s

Timeout (seconds)

hLA

hLM-CUT

selh

Figure 6.1: IPC-2011: Anytime performance in terms of coverage.

The last results we report are, in fact, results from the last International
Planning Competition — IPC-2011. The IPC is run by a third party
(Garćıa-Olaya et al., 2011), and is, arguably, the most impartial evaluation
method for planning systems. This edition of the IPC included 14 domains,
several of which were completely new — a fact which precludes any offline
learning approach.

A version of Fast Downward using MPD-A∗ with selective max over hLA

78 CHAPTER 6. EMPIRICAL EVALUATION

(using uniform cost partitioning) and hLM-CUT (Helmert and Domshlak,
2009), as well as independent versions of Fast Downward based on these two
heuristics individually, participated at the sequential optimal track of IPC-
2011. Selective max was the runner-up ex-aequo at IPC-2011, tying for 2nd
place with a version of Fast Downward using an abstraction “merge-and-
shrink” heuristic (Nissim et al., 2011), and losing to a sequential portfolio
combining the heuristics used in both runners-up (Helmert et al., 2011).

Table 6.7 shows the number of tasks solved in each domain of IPC-2011,
and Figure 6.1 shows the anytime profile of these 3 planners on IPC-2011
tasks, plotting the number of tasks solved under different timeouts. These
times do include the common preprocessing time, as the IPC measures over-
all planner performance. As the results indicate, selective max dominates
each of its component heuristics under any given timeout, not just under
the 30 minute timeout of the competition. In Appendix B we describe our
extended empirical evaluation of selective max, using three state of the art
heuristics.

Chapter 7

Conclusion

Heuristic search is one of the oldest techniques in AI. Most work on heuristic
search has only considered classical, state-dependent, heuristics. Thus, when
looking for an optimal solution, the combination of A∗ with an admissible
heuristic comes to mind almost automatically. However, this is not the
only method for finding an optimal solution, even in the context of forward
state-space search.

We have formally defined the notion of global admissibility, which is
weaker than admissibility, yet is enough to guarantee that A∗ finds an opti-
mal solution. We also introduced the even weaker notions of path admissi-
bility and global path admissibility, and presented appropriate search algo-
rithms which find an optimal solution given such heuristics. While our def-
inition of global admissibility is novel, the idea behind it has been proposed
before (Dechter and Pearl, 1985), and in fact, some optimality-preserving
techniques for search space pruning, such as symmetry breaking and state-
space reductions (Fox and Long, 2002; Rintanen, 2003; Coles and Smith,
2008; Chen and Yao, 2009; Pochter et al., 2011), can be seen as using a
globally admissible heuristic, assigning a heuristic value of∞ to some states,
despite the fact that the goal is achievable from these states.

In that respect, our work on ∃-opt landmarks can be seen as extending
the palette of techniques, as well as (and even more importantly) the sources
of information that can be used for relaxing admissibility: while the afore-
mentioned pruning techniques are typically based on syntactic properties
of the problem description (such as functional equivalence of two objects),
our ∃-opt landmarks inference technique performs a continuous semantic
analysis of information revealed by the search process. Furthermore, our
technique is not limited to “black or white”, prune or don’t prune reason-

79

80 CHAPTER 7. CONCLUSION

ing, but can distinguish between “shades of gray”, assigning different (not
necessarily admissilbe) heuristic estimates to different states. This type of
reasoning is not possible in classical, state-dependent heuristics, as the state
alone does not provide enough information.

Another way of exploiting information gather during search is selective
max, a history dependent heuristic, which is a more effective method for
combining arbitrary admissible heuristics than their regular point-wise max-
imization. Another advantage of the selective max approach is that it can
successfully exploit pairs of heuristics where one dominates the other — for
example, the hLA heuristic with uniform and optimal action cost partition-
ing schemes. The heuristic induced by the optimal action cost partitioning
dominates the one induced by the uniform action cost partitioning, but takes
much longer to compute. Selective max could be used to learn when it is
worth spending the extra time to compute the optimal cost partitioning, and
when it is not. In contrast, the max-based combination of these two heuris-
tics would simply waste the time spent on computing the uniform action
cost partitioning.

The development of non-classical heuristics was also the driving force be-
hind the development of new search algorithms, which better exploit these
new heuristics. In fact, the multi-path dependent nature of landmarks was
the trigger for the development of the MPD-A∗ search algorithm (Karpas
and Domshlak, 2009), and the ∃-opt landmarks were the trigger for devel-
oping path-A∗.

To conclude, Table 7.1 lists all of the heuristics presented in this work, as
well as what information they depend on, and their admissibility properties.

Heuristic Information Dependence Admissibility
hLA Multi-path Admissible
φL(π) Path Path admissible
φL(π|{ρ}) Path Globally path admissible
selective max History Admissible

Table 7.1: Summary of heuristics and their properties

The empirical evaluation demonstrates that these heuristics are not just
of theoretical interest, but state of the art tools for cost-optimal classi-
cal planning. In fact, a planner using selective max to combine hLA and
hLM-CUT (Helmert and Domshlak, 2009), another landmark based heuristic,
was runner-up ex-aequo in the sequential optimal track of the 2011 edition
of the International Planning Competition (Garćıa-Olaya et al., 2011).

Appendix A

hLA Inconsistency Example

Here we demonstrate an example task where the same state can be reached
via different paths, leading to inconsistency of hLA under optimal cost parti-
tioning, and demonstrating that A∗ and MPD-A∗ will need to reopen some
nodes.

Before we describe the example task in full, we highlight the most im-
portant part of this example. Our example task has 3 landmarks: p1, p2, p3.
It is possible to achieve p3 by either going through p1 and p2, or by going
through q (which is not a landmark). However, p1 and p2 must be achieved
after reaching p3 for the first time. Thus, by achieving p3 by going through
p1 and p2, these landmarks are marked as achieved, but by reaching the
same state through q, p1 and p2 are not achieved, which causes the inconsis-
tency. An illustration of this part of the search space can be seen in Figure
A.1.

A complete description of this task is given by

• Propositions: P = {i1, i2, p1, p2, p3, q, g
′, g},

• Initial state: I = {i1, i2}

• Goal: G = {g}, and

• Actions (given as a = 〈pre(a), add(a), del(a)〉):

– a1 = 〈{i1, i2}, {p1}, {i1}〉, C(a1) = 1

– a2 = 〈{p1, i2}, {p2}, {p1}〉, C(a2) = 1

– a3 = 〈{p2, i2}, {p3}, {p2}〉, C(a3) = 1

– aq = 〈{i1, i2}, {q}, {i1}〉, C(aq) = 1

81

82 APPENDIX A. HLA INCONSISTENCY EXAMPLE

i1, i2

p1, i2

p2, i2

q, i2

p3, i2

a1 aq

a′3

a2

a3

Figure A.1: Important part of search space

– a′q = 〈{p3, i2}, {q}, {}〉, C(a′q) = 1

– a′3 = 〈{q, i2}, {p3}, {q}〉, C(a′3) = 1

– a′2 = 〈{p3, q, i2}, {p2}, {}〉, C(a′2) = 1

– a′1 = 〈{p2, p3, q, i2}, {p1}, {}〉, C(a′1) = 1

– ag1 = 〈{p1, p2, p3, i2}, {g′}, {p1, p2, p3, q}〉, C(ag1) = 0

– ag2 = 〈{i1, i2}, {p1, p2, p3, g
′}, {i1, i2}〉, C(ag2) = 1000

– ag = 〈{g′}, {g}, {p1, p2, p3, q, g
′, i1, i2}〉, C(ag) = 0

The full search space is illustrated in Figure A.2, and a complete run-
through of this example follows next. The trivial (that is, initial state and
goal) landmarks are i1, i2, g. Since the only achiever of g is ag, and pre(ag) =
{g′}, g′ is a landmark, and g′ �gn g. Since the path 〈ag2 , ag〉 is a solution
which does not achieve q, q is not a landmark. All other possible solutions
must achieve g′ by applying ag1 , and {p1, p2, p3} ⊆ pre(ag1). Note that
the solution 〈ag2 , ag〉 achieves p1, p2, p3 at the same time as g′, so p1, p2, p3

are landmarks, and there is no ordering between them and g′. The other
orderings are the obvious natural orderings: the initial state landmarks i1
and i2 are ordered before p1, p2, p3, g

′, and p1, p2, p3 are ordered before the
goal landmark g. The landmarks and orderings are illustrated in Figure A.3.

83

p1, i2

p2, p3, q, i2

p1, p3, i2

g

p2, i2

p1, p2, p3, i2

g′, i2

p2, p3, i2

p3, q, i2

p3, i2

i1, i2

p1, p3, q, i2

p1, p2, p3, g
′q, i2

p1, p2, p3, q, i2

a′2

a3

a′q

a′q

a2

a3

a′1

a′3

a′2, a
′
q

a′2

ag

a3

a′3 a2

a′q

a′1, a
′
2, a
′
q

a′q

a′q

a′3

a′q

ag

ag2

a2

ag1

a3

a3

a′3

aqa1

a′3

a2

a2 ag1

Figure A.2: Search space of example task

84 APPENDIX A. HLA INCONSISTENCY EXAMPLE

g

p3 g′p2

i2i1

p1

gn

Figure A.3: Landmarks and orderings of example task

Let us now examine how A∗ behaves on this example task. At the ini-
tial state {i1, i2}, the landmarks that need to be achieved are p1, p2, p3, g

′, g.
Both g and g′ have a 0-cost achiever (ag1 and ag, respectively), and thus
cost(g) = cost(g′) = 0. The other landmarks p1, p2, p3 all have separate
achievers with unit costs, as well as ag2 which achieves them together at
a cost of 1000. Under optimal cost partitioning, cost(p1) = cost(p2) =
cost(p3) = 1, for a total heuristic estimate of 3. The successors of {i1, i2}
are {p1, i2}, {q, i2} and {p1, p2, p3, g

′}, with g({p1, i2}) = g({q, i2}) = 1 and
g({p1, p2, p3, g

′}) = 1000. Moving to {p1, i2} achieves landmark p1, and it
is easy to verify that hLA(〈a1〉) = 2, so f({p1, i2}) = 3. Moving to {q, i2}
does not achieve any landmarks, so the heuristic estimate stays the same,
and f({q, i2}) = 4. It is also easy to see that f({p1, p2, p3, g

′}) = 1000.
So the next state that will be expanded is {p1, i2}, which only has one
successor, {p2, i2}. This action achieves p2, and p1 is still accepted, so
hLA(〈a1, a2〉) = 1, and f({p2, i2}) = 3. Note that although it is possi-
ble to prove that p1 is a landmark when starting from {p2, i2}, this is not
captured by the required again rules, and so the heuristic can not use this
information. At this point, {p2, i2} is expanded, and generates the only suc-
cessor {p3, i2}. Since following this path p1, p2 and p3 have been achieved,
hLA(〈a1, a2, a3〉) = 0, and f({p3, i2}) = 3. Search then continues, and ex-
pands {p3, q, i2} with f({p3, q, i2}) = 4, and then generates {p2, p3, q, i2}
with f({p2, p3, q, i2}) = 5. Finally, {q, i2}, which has been on the open list

85

all this time is expanded, generating {p3, i2} again, but this time via the path
〈aq, a′3〉. Since this path is cheaper than the previous path to {p3, i2}, {p3, i2}
must be reopened. Note that the only landmark path 〈aq, a′3〉 achieves is p3,
and so hLA(〈aq, a′3〉) = 2, which is different from hLA(〈a1, a2, a3〉) = 0. Also
note that multi-path dependence could not have been used up to this point,
so using MPD-A∗ instead of A∗ would not make any difference.

86 APPENDIX A. HLA INCONSISTENCY EXAMPLE

Appendix B

Selective Max Empirical
Evaluation

In Section 6.3 we presented the results pertinent to selective max from IPC-
2011, where selective max was a runner-up ex-aequo in the sequential op-
timal track. While the IPC-2011 results are an impartial evaluation of the
planner that was submitted, we have also conducted our own extended em-
pirical evaluation of selective max. In our evaluation of selective max we
used three state of the art admissible heuristics: hLA with uniform cost
partitioning (Karpas and Domshlak, 2009), hLM-CUT (Helmert and Domsh-
lak, 2009), and h+

LM-CUT (Bonet and Helmert, 2010). None of these base
heuristics yields better search performance than the others across all plan-
ning domains. Of these heuristics, hLA is typically the fastest to compute
and the least informative, hLM-CUT is more expensive to compute and more
informative, and h+

LM-CUT is the most expensive to compute and the most
informative.1 While there are other admissible heuristics for sas+ planning
that are competitive with the three heuristics above (for example, Helmert
et al. (2007); Nissim et al. (2011); Katz and Domshlak (2010b)), these heuris-
tics are based on expensive offline preprocessing, and then very fast online
per-state computation. On the other hand, hLA, hLM-CUT and h+

LM-CUT

perform most of their computation online, and thus can be better exploited
by selective max.

Our empirical evaluation is divided into two parts. First, we explore the
performance of selective max on all benchmarks from the International Plan-
ning Competitions (IPC) 1998–2008 which the heuristics we use supported,

1Of course, from the least expensive to the most expensive, all three heuristics are
computable in polynomial time.

87

88 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

Parameter Default value Meaning

α 1 heuristic difference bias

ρ 0.6 confidence threshold

t 100 initial sample size

Sampling Method PDB (Haslum et al., 2007) state space sampling method

Classifier Naive Bayes classifier type

Table B.1: Parameters for selh.

and examine the anytime performance profile of selective max. Second, we
focus on a few interesting domains, and explore the effect of various param-
eter settings on the performance of selective max.

In the first two parts of our evaluation, the search for each planning task
instance was limited to 30 minutes2 and to 3 GB of memory. The search
times do not include some preprocessing which is common to all planners,
and is tangential to the issues considered in our study. The search times do
include learning and classification time for selective max.

B.1 IPC 1998–2008

We begin by comparing selective max to other methods of heuristic combina-
tion on every possible choice of two or more heuristics out of hLA, hLM-CUT

and h+
LM-CUT. We compare selective max (selh) to the regular maximum

(maxh), as well as to a planner which chooses which heuristic to compute
at each state randomly (rndh). We performed this comparison on all 31
domains without conditional effects or axioms (which none of the heuristics
we used support) from the International Planning Competitions 1998–2008.

The configuration of selective max used in all of these experiments is the
default configuration described in Table B.1. In Section B.2 we explore the
impact of each of these parameters on the runtime performance.

Empirical Performance

We first compare the performance of each combination method (maxh, rndh,
selh) on every combination of two or more heuristics out of hLA, hLM-CUT,
h+

LM-CUT. However, before we present the data for combinations of heuris-
tics, we first present the data for individual heuristics in Table B.2. The
results show that indeed, the most informed heuristic (h+

LM-CUT) does not

2Each search was given a single core of a 3GHz Intel E8400 CPU machine.

B.1. IPC 1998–2008 89

coverage hLA hLM-CUT h+
LM-CUT

airport (50) 30 28 31
blocks (35) 27 28 27
depot (22) 7 7 7
driverlog (20) 14 13 14
elevators-opt08-strips (30) 17 22 18
freecell (80) 58 15 13
grid (5) 3 2 2
gripper (20) 7 7 6
logistics00 (28) 21 20 17
logistics98 (35) 6 6 6
miconic (150) 142 141 140
mprime (35) 21 24 24
mystery (30) 15 17 17
openstacks-opt08-strips (30) 18 20 17
parcprinter-08-strips (30) 15 18 21
pathways (30) 4 5 5
pegsol-08-strips (30) 27 28 27
pipesworld-notankage (50) 18 17 17
pipesworld-tankage (50) 13 12 9
psr-small (50) 49 49 48
rovers (40) 8 7 7
satellite (36) 7 7 9
scanalyzer-08-strips (30) 9 15 13
schedule (150) 30 30 27
sokoban-opt08-strips (30) 25 30 25
storage (30) 15 15 15
tpp (30) 6 6 6
transport-opt08-strips (30) 12 11 11
trucks-strips (30) 9 10 9
woodworking-opt08-strips (30) 13 16 14
zenotravel (20) 10 13 12
SUM 656 639 614

Table B.2: Individual performance of hLA, hLM-CUT, h+
LM-CUT in terms of

coverage.

do well overall, while the least informed heuristic (hLA) solved the most
tasks in total. However, when looking at the results for individual domains,
the best heuristic to use varies, indicating that indeed, combining different
heuristics could be of practical use.

We now turn our attention to the empirical results for the combination
of every possible subset of two or more heuristics. For each such subset, we
will present two tables. The tables marked as (a) list the number of tasks
solved in each domain by selective max (selh), regular maximum (maxh), and
random choice of heuristic at each state (rndh) after 30 minutes. This is the
accepted measure for performance of optimal planners in the International
Planning Competition. The tables marked as (b) measure how informative
each combination method is. Since maxh is the most informative heuristic
possible (when combining the given base heuristics), we look at informa-
tiveness relative to maxh. We evaluate each planner’s informativeness on
each task as the number of states expanded by that planner, divided by the
number of states expanded by maxh. The table gives the average of this

90 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

ratio for each domain, where the average is over the tasks solved by all three
combination methods. The number of tasks solved by all planners is listed
in parentheses next to each domain. The final row gives the average expan-
sion ratio over all tasks. Table B.3 presents this data for the combination
of hLA and hLM-CUT, Table B.4 for the combination of hLA and h+

LM-CUT,
Table B.5 for the combination of hLM-CUT and h+

LM-CUT, and Table B.6 for
the combination of all three heuristics.

The results in Tables B.3, B.4, B.5, B.6 clearly demonstrate that when
more than one heuristic is in use, selective max is always better than reg-
ular maximum or random choice. Furthermore, the poor performance of
rndh (both in terms of coverage and informativeness) demonstrates that the
decision rule and the classifier used in selective max are an important part
of its success, and that just computing one heuristic at each state randomly
is not enough, to say the least.

Compared to individual heuristics, the selective max combination of hLA
and hLM-CUT solves more tasks than each of the individual heuristics (and
every other combination of every other subset of heuristics). However, when
h+

LM-CUT is one of the heuristics used, selective max does not fare as well.
The most likely reason for this is that h+

LM-CUT is very expensive to compute,
and even the time spent computing it during the initial sampling period is
significant.

Anytime Profile

The time limit of 30 minutes, while commonly used in the IPC, is an arbi-
trary one, and the number of tasks solved after 30 minutes does not tell the
complete tale. Here, we examine the anytime profile of the different heuristic
combination methods, by plotting the number of tasks solved under different
timeouts, up to a timeout of 30 minutes.

Figure B.1 shows this plot for the three combination methods when all
three heuristics are used. As the figure shows, the advantage of selh over
the other two combination methods is even bigger under shorter timeouts.
This indicates that the advantage of selh over maxh is even greater than is
evident from the results after 30 minutes, and that selh is indeed a better
way to minimize search time. As the anytime plots for the combinations of
two heuristics are very similar, we omit them for the sake of brevity.

B.1. IPC 1998–2008 91

coverage maxh rndh selh
airport (50) 30 28 30
blocks (35) 28 28 28
depot (22) 7 7 7
driverlog (20) 14 13 14
elevators-opt08-strips (30) 22 17 22
freecell (80) 41 16 49
grid (5) 2 2 2
gripper (20) 7 7 7
logistics00 (28) 20 20 21
logistics98 (35) 6 6 6
miconic (150) 141 141 142
mprime (35) 24 18 24
mystery (30) 17 13 17
openstacks-opt08-strips (30) 18 18 18
parcprinter-08-strips (30) 18 15 18
pathways (30) 5 4 5
pegsol-08-strips (30) 27 27 27
pipesworld-notankage (50) 17 17 17
pipesworld-tankage (50) 12 11 12
psr-small (50) 49 49 49
rovers (40) 8 8 8
satellite (36) 7 7 8
scanalyzer-08-strips (30) 15 7 15
schedule (150) 30 30 30
sokoban-opt08-strips (30) 29 30 29
storage (30) 15 15 15
tpp (30) 6 6 6
transport-opt08-strips (30) 11 11 11
trucks-strips (30) 10 9 10
woodworking-opt08-strips (30) 16 13 17
zenotravel (20) 13 10 13
SUM 665 603 677

expansions maxh rndh selh
airport (28) 1.0 3.2533 21.5966
blocks (28) 1.0 2.5867 1.7004
depot (7) 1.0 1.9616 1.3431
driverlog (13) 1.0 3.3321 1.2695
elevators-opt08-strips (17) 1.0 6.6517 1.5185
freecell (16) 1.0 896.0264 2.5223
grid (2) 1.0 1.5814 1.8562
gripper (7) 1.0 1.0211 1.0
logistics00 (20) 1.0 1.0002 1.0008
logistics98 (6) 1.0 3.4584 1.0825
miconic (141) 1.0 1.0 1.0
mprime (18) 1.0 56.4453 2.66
mystery (15) 1.0 43.6834 1.5684
openstacks-opt08-strips (18) 1.0 1.0357 1.1641
parcprinter-08-strips (15) 1.0 132.6402 1.0002
pathways (4) 1.0 37.3146 1.0
pegsol-08-strips (27) 1.0 1.8465 1.0055
pipesworld-notankage (17) 1.0 2.3422 1.4337
pipesworld-tankage (11) 1.0 1.998 1.1322
psr-small (49) 1.0 1.1339 1.1689
rovers (8) 1.0 1.9858 1.1093
satellite (7) 1.0 2.8051 1.0964
scanalyzer-08-strips (7) 1.0 14302.4949 1.1521
schedule (30) 1.0 1.0531 1.2054
sokoban-opt08-strips (29) 1.0 1.3773 1.0372
storage (15) 1.0 1.4903 1.6358
tpp (6) 1.0 1.6193 1.0
transport-opt08-strips (11) 1.0 4.8823 1.6152
trucks-strips (9) 1.0 16.6175 1.0119
woodworking-opt08-strips (13) 1.0 21.9804 1.4952
zenotravel (10) 1.0 7.8704 3.7306
AVERAGE 1.0 502.0803 2.0681

Table B.3: hLA / hLM-CUT: Performance summary in terms of coverage
(top) and expanded nodes measure, relative to maxh (bottom).

92 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

coverage maxh rndh selh
airport (50) 31 28 30
blocks (35) 27 26 26
depot (22) 7 6 7
driverlog (20) 14 13 13
elevators-opt08-strips (30) 18 13 16
freecell (80) 31 15 41
grid (5) 2 2 2
gripper (20) 5 6 7
logistics00 (28) 16 20 21
logistics98 (35) 6 5 6
miconic (150) 140 140 142
mprime (35) 24 16 24
mystery (30) 17 12 17
openstacks-opt08-strips (30) 16 17 17
parcprinter-08-strips (30) 21 12 22
pathways (30) 5 4 5
pegsol-08-strips (30) 27 27 27
pipesworld-notankage (50) 17 15 17
pipesworld-tankage (50) 9 8 9
psr-small (50) 48 48 49
rovers (40) 7 7 8
satellite (36) 9 7 10
scanalyzer-08-strips (30) 13 6 13
schedule (150) 27 27 30
sokoban-opt08-strips (30) 23 25 24
storage (30) 15 15 15
tpp (30) 6 6 6
transport-opt08-strips (30) 11 11 11
trucks-strips (30) 9 7 9
woodworking-opt08-strips (30) 15 11 15
zenotravel (20) 12 9 12
SUM 628 564 651

expansions maxh rndh selh
airport (28) 1.0 2.0602 26.2917
blocks (26) 1.0 2.4566 5.9109
depot (6) 1.0 6.3466 10.005
driverlog (13) 1.0 4.3793 3.0043
elevators-opt08-strips (13) 1.0 7.6231 11.0712
freecell (15) 1.0 192.2481 2.4737
grid (2) 1.0 2.1541 5.4812
gripper (5) 1.0 1.0 1.0
logistics00 (16) 1.0 1.0 1.0
logistics98 (5) 1.0 2.3065 4.4865
miconic (140) 1.0 1.0 1.0
mprime (16) 1.0 22.6245 3.0882
mystery (13) 1.0 56.5774 11.1731
openstacks-opt08-strips (16) 1.0 1.0338 1.098
parcprinter-08-strips (12) 1.0 437.3136 1.2846
pathways (4) 1.0 37.545 1.0
pegsol-08-strips (27) 1.0 2.2176 1.0039
pipesworld-notankage (15) 1.0 2.8387 8.8182
pipesworld-tankage (8) 1.0 1.6285 2.0812
psr-small (48) 1.0 1.1726 1.4059
rovers (7) 1.0 2.5532 1.6267
satellite (7) 1.0 24.956 7.4651
scanalyzer-08-strips (6) 1.0 104.7363 1.4776
schedule (27) 1.0 1.0219 1.1224
sokoban-opt08-strips (23) 1.0 1.3792 1.0137
storage (15) 1.0 1.5795 2.4133
tpp (6) 1.0 3.1446 1.2398
transport-opt08-strips (11) 1.0 6.0627 3.4795
trucks-strips (7) 1.0 17.3822 1.014
woodworking-opt08-strips (11) 1.0 14.291 4.4421
zenotravel (9) 1.0 7.1326 7.5156
AVERAGE 1.0 31.2828 4.3706

Table B.4: hLA / h+
LM-CUT: Performance summary in terms of coverage

(top) and expanded nodes measure, relative to maxh (bottom).

B.1. IPC 1998–2008 93

coverage maxh rndh selh
airport (50) 31 27 28
blocks (35) 27 28 28
depot (22) 7 7 7
driverlog (20) 14 13 14
elevators-opt08-strips (30) 18 18 21
freecell (80) 13 12 13
grid (5) 2 2 2
gripper (20) 6 6 7
logistics00 (28) 16 20 20
logistics98 (35) 6 6 6
miconic (150) 140 140 141
mprime (35) 24 21 24
mystery (30) 17 15 16
openstacks-opt08-strips (30) 17 19 19
parcprinter-08-strips (30) 21 18 20
pathways (30) 5 5 5
pegsol-08-strips (30) 27 27 27
pipesworld-notankage (50) 17 16 17
pipesworld-tankage (50) 9 8 9
psr-small (50) 48 48 49
rovers (40) 7 7 7
satellite (36) 9 7 8
scanalyzer-08-strips (30) 13 13 15
schedule (150) 27 27 30
sokoban-opt08-strips (30) 25 25 25
storage (30) 15 15 15
tpp (30) 6 6 6
transport-opt08-strips (30) 11 11 11
trucks-strips (30) 9 9 10
woodworking-opt08-strips (30) 15 14 18
zenotravel (20) 12 12 12
SUM 614 602 630

expansions maxh rndh selh
airport (26) 1.0 1.1904 1.4445
blocks (27) 1.0 1.0099 1.0257
depot (7) 1.0 6.0425 1.2722
driverlog (13) 1.0 1.4085 1.5944
elevators-opt08-strips (18) 1.0 1.407 1.7418
freecell (12) 1.0 4.6317 1.308
grid (2) 1.0 2.1345 1.2952
gripper (6) 1.0 1.0265 1.0507
logistics00 (16) 1.0 1.0 1.0
logistics98 (6) 1.0 1.0661 1.0594
miconic (140) 1.0 1.0 1.0
mprime (21) 1.0 4.4253 1.27
mystery (16) 1.0 2.5598 1.4236
openstacks-opt08-strips (17) 1.0 1.0 1.0
parcprinter-08-strips (17) 1.0 13.1052 1.0
pathways (5) 1.0 1.1554 1.3181
pegsol-08-strips (27) 1.0 1.164 1.2025
pipesworld-notankage (16) 1.0 5.9653 1.4612
pipesworld-tankage (8) 1.0 2.2528 1.7729
psr-small (48) 1.0 1.0175 1.0403
rovers (7) 1.0 1.3125 1.3485
satellite (7) 1.0 4.5871 1.6311
scanalyzer-08-strips (13) 1.0 1.1927 1.174
schedule (27) 1.0 1.0 1.0
sokoban-opt08-strips (25) 1.0 1.0149 1.0254
storage (15) 1.0 1.0291 1.0801
tpp (6) 1.0 1.2044 2.5831
transport-opt08-strips (11) 1.0 1.1567 1.3079
trucks-strips (9) 1.0 1.1431 1.2694
woodworking-opt08-strips (13) 1.0 1.3942 1.1584
zenotravel (12) 1.0 1.4235 1.2424
AVERAGE 1.0 2.291 1.2936

Table B.5: hLM-CUT / h+
LM-CUT: Performance summary in terms of coverage

(top) and expanded nodes measure, relative to maxh (bottom).

94 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

coverage maxh rndh selh
airport (50) 31 26 30
blocks (35) 27 27 28
depot (22) 7 7 7
driverlog (20) 14 13 13
elevators-opt08-strips (30) 18 14 21
freecell (80) 31 15 33
grid (5) 2 2 2
gripper (20) 5 6 7
logistics00 (28) 16 20 20
logistics98 (35) 6 5 6
miconic (150) 140 140 142
mprime (35) 24 18 23
mystery (30) 17 12 17
openstacks-opt08-strips (30) 16 18 16
parcprinter-08-strips (30) 21 13 19
pathways (30) 5 4 5
pegsol-08-strips (30) 27 27 27
pipesworld-notankage (50) 17 15 17
pipesworld-tankage (50) 9 9 11
psr-small (50) 48 48 49
rovers (40) 7 7 8
satellite (36) 9 7 8
scanalyzer-08-strips (30) 13 6 15
schedule (150) 27 28 30
sokoban-opt08-strips (30) 23 27 26
storage (30) 15 15 15
tpp (30) 6 6 6
transport-opt08-strips (30) 11 11 11
trucks-strips (30) 9 9 10
woodworking-opt08-strips (30) 15 14 15
zenotravel (20) 12 9 12
SUM 628 578 649

expansions maxh rndh selh
airport (26) 1.0 1.3662 16.8435
blocks (27) 1.0 1.6688 1.7768
depot (7) 1.0 6.7141 5.9097
driverlog (13) 1.0 3.1458 2.3558
elevators-opt08-strips (14) 1.0 5.0138 3.1423
freecell (15) 1.0 721.2053 18.6437
grid (2) 1.0 2.3936 5.7832
gripper (5) 1.0 1.0195 1.0007
logistics00 (16) 1.0 1.0 1.0
logistics98 (5) 1.0 1.8846 1.6551
miconic (140) 1.0 1.0 1.0
mprime (18) 1.0 15.3643 6.5826
mystery (13) 1.0 26.294 2.003
openstacks-opt08-strips (16) 1.0 1.0261 1.079
parcprinter-08-strips (13) 1.0 1069.3099 1.0
pathways (4) 1.0 13.5048 1.0017
pegsol-08-strips (27) 1.0 1.7488 1.2814
pipesworld-notankage (15) 1.0 5.7717 8.8866
pipesworld-tankage (9) 1.0 2.9312 2.1266
psr-small (48) 1.0 1.1148 1.3725
rovers (7) 1.0 2.2181 1.5002
satellite (7) 1.0 13.5424 3.0183
scanalyzer-08-strips (6) 1.0 41.0034 1.9857
schedule (27) 1.0 0.9956 1.1224
sokoban-opt08-strips (23) 1.0 1.149 1.2074
storage (15) 1.0 1.3521 1.6715
tpp (6) 1.0 3.9019 1.7979
transport-opt08-strips (11) 1.0 3.2206 2.2665
trucks-strips (9) 1.0 7.5212 1.3416
woodworking-opt08-strips (11) 1.0 5.5086 2.025
zenotravel (9) 1.0 5.3099 3.8208
AVERAGE 1.0 63.5226 3.4259

Table B.6: hLA / hLM-CUT / h+
LM-CUT: Performance summary in terms of

coverage (top) and expanded nodes measure, relative to maxh (bottom).

B.2. IMPACT OF PARAMETER SETTINGS 95

 300

 350

 400

 450

 500

 550

 600

 650

 700

 0 200 400 600 800 1000 1200 1400 1600 1800

S
o

lv
e

d
 I

n
s
ta

n
c
e
s

Timeout (seconds)

maxh

rndh

selh

Figure B.1: hLA / hLM-CUT / h+
LM-CUT: Anytime performance in terms of

coverage.

B.2 Impact of Parameter Settings

For the second part of our empirical evaluation, we evaluate the impact of
different parameter settings on selective max. We focus on the best choice
of heuristics for selective max — combining hLA and hLM-CUT. For the
experiments described in this section, we take the default configuration,
which is described in Table B.1, and evaluate the impact of setting each
parameter to several different values. Since this results in over 20 different
configurations, we ran this part of the empirical evaluation on 8 selected
domains, which were chosen from the 31 domains in the first part of the
evaluation because they had the highest variance in the number of tasks
solved across different configurations. In each subsection below we focus
on one parameter of selective max, and present a table with the number of
tasks solved in each of our 8 chosen domains under different values of that
parameter.

Hyper-parameter α

The hyper-parameter α controls the tradeoff between computation time and
heuristic accuracy. Setting α = 0 sets the threshold τ to 0, essentially
telling the decision rule to always choose the more informed heuristic (that
is, choose h2 iff it is estimated that h2(s) > h1(s)). Increasing α increases
the threshold, forcing the decision rule to choose the more informed heuristic
h2 only if its value is much higher than that of h1.

As the results in Table B.7 show, selective max is fairly robust to values

96 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

coverage selα=0.1
h selα=0.5

h selα=1
h selα=2

h selα=5
h

airport (50) 30 30 30 30 30
freecell (80) 49 49 49 49 49
logistics00 (28) 21 21 21 21 21
mprime (35) 24 24 24 22 21
mystery (30) 17 17 17 17 15
pipesworld-tankage (50) 12 12 12 12 13
satellite (36) 8 8 8 7 7
zenotravel (20) 13 13 13 12 10
SUM 174 174 174 170 166

Table B.7: Hyper-parameter α.

of α. However, if α is too large, we do see performance degradation, which
indicates that our default value of α = 1 is a fairly good choice.

Confidence Threshold ρ

coverage sel
ρ=0.51
h

sel
ρ=0.6
h

sel
ρ=0.7
h

sel
ρ=0.8
h

sel
ρ=0.9
h

sel
ρ=0.99
h

airport (50) 30 30 30 30 30 30
freecell (80) 48 49 49 49 49 49
logistics00 (28) 21 21 21 21 21 21
mprime (35) 24 24 24 24 24 24
mystery (30) 17 17 17 17 17 17
pipesworld-tankage (50) 12 12 12 12 12 12
satellite (36) 8 8 8 8 8 8
zenotravel (20) 13 13 13 13 13 13
SUM 173 174 174 174 174 174

Table B.8: Confidence threshold ρ.

The confidence threshold ρ controls the active learning part of selective
max. Setting ρ = 0.5 turns off active learning completely (as the chosen
heuristic always has confidence at least 0.5), while setting ρ = 1 would
mean using active learning almost always, essentially reducing selective max
to regular point-wise maximization. The results in Table B.8 indicate that
selective max is also robust to values of ρ, unless it is set to a very low value.

Initial Sample Size t

coverage selt=10
h selt=100

h selt=1000
h

airport (50) 30 30 30
freecell (80) 47 49 46
logistics00 (28) 21 21 21
mprime (35) 24 24 24
mystery (30) 17 17 17
pipesworld-tankage (50) 12 12 12
satellite (36) 8 8 8
zenotravel (20) 13 13 13
SUM 172 174 171

Table B.9: Initial Sample Size t

B.2. IMPACT OF PARAMETER SETTINGS 97

The initial sample size t is an important parameter, not just because it is
used to train the initial classifier (before any active learning is done), but also
because it is the only source of estimates for branching factor and heuristic
computations times, thus controlling the threshold τ . Increasing t increases
the accuracy of the initial classifier and of the estimates for branching factor
and heuristic computations times, at the cost of more preprocessing time.

As the results in Table B.9 show, our default value of t = 100 is the best
(of the 3 values we tried), although selective max is still fairly robust to the
choice of parameter.

Sampling Method

coverage selPDBh selPh selUPh
airport (50) 30 30 30
freecell (80) 49 53 55
logistics00 (28) 21 21 21
mprime (35) 24 24 24
mystery (30) 17 17 17
pipesworld-tankage (50) 12 12 12
satellite (36) 8 8 8
zenotravel (20) 13 13 13
SUM 174 178 180

Table B.10: Sampling method.

The sampling method used is also an important parameter which affects
the initial sample, and thus the accuracy of the threshold τ and of the initial
classifier. The default sampling method (in this version of selective max) is
the sampling method of Haslum et al. (2007). This sampling method is based
on unbiased random walks (probes), but only adds the last state reached in
each probe. The depth of each probe is distributed binomially around the
estimated goal depth. We refer to the planner using this sampling method
as (selPDBh).

The default (and only) method in previous versions was the one de-
scribed in Section 5.3.1, with stochastic probes biased towards states with
low heuristic values (selPh). Another version we compared to used a similar
sampling method, except that the random walks were unbiased, and the
successor to move to was chosen uniformly (selUPh).

As the results in Table B.10 demonstrate, the choice of sampling method
can have a significant effect. However, since the effect is only evident in
the freecell domain, we believe this effect is more due to the time spent
in heuristic computation during the initial sample, rather than due to the
quality of the sample.

98 APPENDIX B. SELECTIVE MAX EMPIRICAL EVALUATION

Classifier

coverage selNBh selAODEh selITIh sel3NNh sel5NNh
airport (50) 30 25 30 30 28
freecell (80) 49 49 34 35 46
logistics00 (28) 21 20 20 20 20
mprime (35) 24 24 24 24 23
mystery (30) 17 17 17 17 17
pipesworld-tankage (50) 12 12 12 12 10
satellite (36) 8 8 7 7 6
zenotravel (20) 13 13 12 13 11
SUM 174 168 156 158 161

Table B.11: Classifier.

Finally, the choice of classifier is also very important. Our default choice
is the Naive Bayes classifier (Mitchell, 1997), which combines very fast learn-
ing and classification (selNBh). A more sophisticated variant of Naive Bayes
called AODE (Webb et al., 2005) is also considered here (selAODEh). AODE
is more accurate than Naive Bayes, at the cost of higher classification and
learning times (as well as increased memory overhead). Another possible
choice is using incremental decision trees (Utgoff et al., 1997), which offer
even faster classification, but more expensive learning when the tree struc-
ture needs to be changed (selITIh). We also consider kNN classifiers (Cover
and Hart, 1967), which offer faster learning than Naive Bayes, but usu-
ally more expensive classification, especially as k grows larger (selkNNh , for
k = 3, 5).

As the results in Table B.11 show, Naive Bayes is indeed the best clas-
sifier to use with selective max, although AODE performs quite well. As
expected, kNN does not do as well, since the classifier is used mostly for
classification, which is expensive for kNN . However, the increased accuracy
of k = 5 seems to pay off against the faster classification when k = 3.

Bibliography

Christer Bäckström and Inger Klein. Planning in polynomial time: the
SAS-PUBS class. Computational Intelligence, 7(3):181–197, 1991.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655, 1995.

A. Bagchi and A. Mahanti. Search algorithms under different kinds of
heuristics-a comparative study. Journal of the ACM, 30(1):1–21, 1983.

Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques
to solve real-world SAT instances. In Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI 1997), pages 203–208.
AAAI Press, 1997.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1):5–33, 2001.

Blai Bonet and Malte Helmert. Strengthening landmark heuristics via hit-
ting sets. In Helder Coelho, Rudi Studer, and Michael Wooldridge, ed-
itors, Proceedings of the 19th European Conference on Artificial Intelli-
gence (ECAI 2010), pages 329–334. IOS Press, 2010.

Blai Bonet, Gábor Loerincs, and Héctor Geffner. A robust and fast action
selection mechanism for planning. In Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI 1997), pages 714–719.
AAAI Press, 1997.

Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer.
Macro-FF: Improving AI planning with automatically learned macro-
operators. Journal of Artificial Intelligence Research, 24:581–621, 2005.

Olivier Buffet and Jörg Hoffmann. All that glitters is not gold: Using land-
marks for reward shaping in FPG. In ICAPS 2010 Workshop on Planning
and Scheduling Under Uncertainty, 2010.

99

100 BIBLIOGRAPHY

Edmund Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and
Sonia Schulenburg. Hyper-Heuristics: An Emerging Direction in Modern
Search Technology. In Handbook of Metaheuristics, International Series in
Operations Research & Management Science, chapter 16, pages 457–474.
2003.

Tom Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1–2):165–204, 1994.

Yixin Chen and Guohui Yao. Completeness and optimality preserving re-
duction for planning. In Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI 2009), pages 1659–1664, 2009.

Andrew Coles and Amanda Smith. Marvin: A heuristic search planner with
online macro-action learning. Journal of Artificial Intelligence Research,
28:119–156, 2007.

Andrew. I. Coles and Amanda. J. Smith. Upwards: The role of analysis in
cost optimal SAS+ planning. In Sixth International Planning Competition
(IPC-6): planner abstracts, 2008.

Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21 – 27, 1967.

Tomás de la Rosa, Sergio Jiménez, and Daniel Borrajo. Learning relational
decision trees for guiding heuristic planning. In Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen, editors, Proceedings
of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), pages 60–67. AAAI Press, 2008.

Rina Dechter and Judea Pearl. Generalized best-first search strategies and
the optimality of A∗. Journal of the ACM, 32(3):505–536, 1985.

Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, and Silvia
Richter. Landmarks in optimal planning. Working paper, 2012.

Stefan Edelkamp. Planning with pattern databases. In Amedeo Cesta and
Daniel Borrajo, editors, Pre-proceedings of the Sixth European Conference
on Planning (ECP 2001), pages 13–24, Toledo, Spain, 2001.

Stefan Edelkamp and Malte Helmert. The model checking integrated plan-
ning system (MIPS). AI Magazine, 22(3):67–71, 2001.

BIBLIOGRAPHY 101

Stefan Edelkamp and Stefan Schrödl. Heuristic Search: Theory and Appli-
cations. Morgan Kaufmann, 2011.

Alan Fern. Speedup learning. In Claude Sammut and Geoffrey I. Webb,
editors, Encyclopedia of Machine Learning, pages 907–911. Springer, 2010.

Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track
of the international planning competition. Machine Learning, 84(1-2):
81–107, 2011.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence,
2:189–208, 1971.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing
generalized robot plans. Artificial Intelligence, 3:251–288, 1972.

Lev Finkelstein and Shaul Markovitch. A selective macro-learning algorithm
and its application to the NxN sliding-tile puzzle. Journal of Artificial
Intelligence Research, 8:223–263, 1998.

Maria Fox and Derek Long. Extending the exploitation of symmetries in
planning. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso,
editors, Proceedings of the Sixth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS 2002), pages 83–91. AAAI
Press, 2002.

Ángel Garćıa-Olaya, Sergio Jiménez, and Carlos Linares López. The 2011
international planning competition. Technical report, Universidad Carlos
III de Madrid, 2011. http://hdl.handle.net/10016/11710.

Hector Geffner. The model-based approach to autonomous behavior: A
personal view. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI 2010), pages 1709–1712. AAAI Press, 2010.

David Gelperin. On the optimality of A*. Artificial Intelligence, 8:69–76,
1977.

Larry R. Harris. The heuristic search under conditions of error. Artificial
Intelligence, 5(3):217–234, 1974.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

102 BIBLIOGRAPHY

Patrik Haslum and Héctor Geffner. Admissible heuristics for optimal plan-
ning. In Steve Chien, Subbarao Kambhampati, and Craig A. Knoblock,
editors, Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS 2000), pages 140–149. AAAI
Press, 2000.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
Domain-independent construction of pattern database heuristics for cost-
optimal planning. In Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence (AAAI 2007), pages 1007–1012. AAAI Press,
2007.

Malte Helmert. Understanding Planning Tasks – Domain Complexity and
Heuristic Decomposition, volume 4929 of Lecture Notes in Artificial In-
telligence. Springer-Verlag, 2008.

Malte Helmert. personal communication, 2009a.

Malte Helmert. Concise finite-domain representations for PDDL planning
tasks. Artificial Intelligence, 173:503–535, 2009b.

Malte Helmert. A planning heuristic based on causal graph analysis. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, Proceedings
of the Fourteenth International Conference on Automated Planning and
Scheduling (ICAPS 2004), pages 161–170. AAAI Press, 2004.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and ab-
stractions: What’s the difference anyway? In Alfonso Gerevini, Adele
Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Proceedings of the
Nineteenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2009), pages 162–169. AAAI Press, 2009.

Malte Helmert and Héctor Geffner. Unifying the causal graph and additive
heuristics. In Jussi Rintanen, Bernhard Nebel, J. Christopher Beck, and
Eric Hansen, editors, Proceedings of the Eighteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2008), pages 140–
147. AAAI Press, 2008.

Malte Helmert and Gabriele Röger. How good is almost perfect? In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008), pages 944–949. AAAI Press, 2008.

BIBLIOGRAPHY 103

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction
heuristics for optimal sequential planning. In Mark Boddy, Maria Fox,
and Sylvie Thiébaux, editors, Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling (ICAPS 2007), pages
176–183. AAAI Press, 2007.

Malte Helmert, Gabriele Röger, and Erez Karpas. Fast Downward Stone
Soup: A baseline for building planner portfolios. In ICAPS 2011 Work-
shop on Planning and Learning, pages 28–35, 2011.

Jörg Hoffmann. Local search topology in planning benchmarks: A theoret-
ical analysis. In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso,
editors, Proceedings of the Sixth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS 2002), pages 92–100. AAAI
Press, 2002.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in
planning. Journal of Artificial Intelligence Research, 22:215–278, 2004.

Erez Karpas and Carmel Domshlak. Living on the edge: Safe search with
unsafe heuristics. In ICAPS 2011 Workshop on Heuristics for Domain-
Independent Planning, 2011.

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks.
In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI 2009), pages 1728–1733, 2009.

Michael Katz and Carmel Domshlak. Optimal admissible composition of
abstraction heuristics. Artificial Intelligence, 174(12–13):767–798, 2010a.

Michael Katz and Carmel Domshlak. Implicit abstraction heuristics. Journal
of Artificial Intelligence Research, 39:51–126, 2010b.

Henry Kautz and Bart Selman. Planning as satisfiability. In Bernd Neu-
mann, editor, Proceedings of the 10th European Conference on Artificial
Intelligence (ECAI 1992), pages 359–363. John Wiley and Sons, 1992.

Emil Keyder, Silvia Richter, and Malte Helmert. Sound and complete land-
marks for and/or graphs. In Helder Coelho, Rudi Studer, and Michael

104 BIBLIOGRAPHY

Wooldridge, editors, Proceedings of the 19th European Conference on Ar-
tificial Intelligence (ECAI 2010), pages 335–340. IOS Press, 2010.

Peter Kissmann and Stefan Edelkamp. Improving cost-optimal domain-
independent symbolic planning. In Wolfram Burgard and Dan Roth,
editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2011), pages 992–997. AAAI Press, 2011.

Richard E. Korf. Depth-first iterative-deepening: An optimal admissible
tree search. Artificial Intelligence, 27(1):97–109, 1985.

Nir Lipovetzky and Hector Geffner. Searching for plans with carefully de-
signed probes. In Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp,
and Malte Helmert, editors, Proceedings of the Twenty-First International
Conference on Automated Planning and Scheduling (ICAPS 2011), pages
154–161. AAAI Press, 2011.

João P. Marques-Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD 1996), pages
220–227, 1996.

Alberto Martelli. On the complexity of admissible search algorithms. Arti-
ficial Intelligence, 8(1):1–13, 1977.

David Mcallester and David Rosenblitt. Systematic nonlinear planning. In
Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI 1991), pages 634–639. AAAI Press/MIT Press, 1991.

László Mérő. A heuristic search algorithm with modifiable estimate. Artifi-
cial Intelligence, 23(1):13–27, 1984.

Steven Minton. Machine Learning Methods for Planning. Morgan Kaufmann
Publishers Inc., 1994.

Tom Michael Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

Srinivas Nedunuri, William R. Cook, and Douglas R. Smith. Cost-based
learning for planning. In ICAPS 2011 Workshop on Planning and Learn-
ing, pages 68–75, 2011.

Raz Nissim, Jörg Hoffmann, and Malte Helmert. Computing perfect heuris-
tics in polynomial time: On bisimulation and merge-and-shrink abstrac-
tion in optimal planning. In Toby Walsh, editor, Proceedings of the

BIBLIOGRAPHY 105

22nd International Joint Conference on Artificial Intelligence (IJCAI’11),
pages 1983–1990. AAAI Press/IJCAI, 2011.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

Edwin P. D. Pednault. ADL: Exploring the middle ground between STRIPS
and the situation calculus. In Ronald J. Brachman, Hector J. Levesque,
and Raymond Reiter, editors, Proceedings of the First International Con-
ference on Principles of Knowledge Representation and Reasoning (KR
1989), pages 324–332. Morgan Kaufmann, 1989.

J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial
order planner for ADL. In Bernhard Nebel, Charles Rich, and William
Swartout, editors, Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning (KR 1992), pages
103–114. Morgan Kaufmann, 1992.

Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting problem
symmetries in state-based planners. In Wolfram Burgard and Dan Roth,
editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI 2011), pages 1004–1009. AAAI Press, 2011.

Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial
Intelligence, 1(3):193–204, 1970.

Julie Porteous and Stephen Cresswell. Extending landmarks analysis to rea-
son about resources and repetition. In Proceedings of the 21st Workshop
of the UK Planning and Scheduling Special Interest Group (PLANSIG
’02), pages 45–54, 2002.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-
based anytime planning with landmarks. Journal of Artificial Intelligence
Research, 39:127–177, 2010.

Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revis-
ited. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI 2008), pages 975–982. AAAI Press, 2008.

Jussi Rintanen. Symmetry reduction for SAT representations of transition
systems. In Enrico Giunchiglia, Nicola Muscettola, and Dana Nau, ed-
itors, Proceedings of the Thirteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2003), pages 32–40. AAAI Press,
2003.

106 BIBLIOGRAPHY

Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability:
parallel plans and algorithms for plan search. Artificial Intelligence, 170
(12–13):1031–1080, 2006.

Stuart Russell and Peter Norvig. Artificial Intelligence — A Modern Ap-
proach. Prentice Hall, 2010.

Thomas Schiex and Grard Verfaillie. Nogood recording for static and dy-
namic constraint satisfaction problems. Journal of Artificial Intelligence
Research, 3:48–55, 1993.

Austin Tate. Generating project networks. In Raj Reddy, editor, Proceedings
of the 5th International Joint Conference on Artificial Intelligence (IJCAI
1977), pages 888–893. William Kaufmann, 1977.

Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree
induction based on efficient tree restructuring. Machine Learning, 29(1):
5–44, 1997.

Vincent Vidal and Héctor Geffner. Branching and pruning: An optimal
temporal POCL planner based on constraint programming. Artificial In-
telligence, 170(3):298–335, 2006.

Geoffrey I. Webb, Janice R. Boughton, and Zhihai Wang. Not so naive
Bayes: Aggregating one-dependence estimators. Machine Learning, 58
(1):5–24, 2005.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge
for forward search planning. Journal of Machine Learning Research, 9:
683–718, 2008.

Zhifu Zhang, Nathan R. Sturtevant, Robert Holte, Jonathan Schaeffer, and
Ariel Felner. A∗ search with inconsistent heuristics. In Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pages 634–639, 2009.

Lin Zhu and Robert Givan. Landmark extraction via planning graph prop-
agation. In ICAPS 2003 Doctoral Consortium, pages 156–160, 2003.

Terry Zimmerman and Subbarao Kambhampati. Learning-assisted auto-
mated planning: looking back, taking stock, going forward. AI Magazine,
24:73–96, 2003.

