
Goal Recognition Design for Non-Optimal Agents

Sarah Keren and Avigdor Gal
{sarahn@tx,avigal@ie}.technion.ac.il

Technion — Israel Institute of Technology

Erez Karpas
karpase@csail.mit.edu

Massachusetts Institute of Technology

Abstract

Goal recognition design involves the offline analysis of goal
recognition models by formulating measures that assess the
ability to perform goal recognition within a model and find-
ing efficient ways to compute and optimize them. In this work
we present goal recognition design for non-optimal agents,
which extends previous work by accounting for agents that
behave non-optimally either intentionally or naı̈vely. The
analysis we present includes a new generalized model for
goal recognition design and the worst case distinctiveness
(wcd) measure. For two special cases of sub-optimal agents
we present methods for calculating the wcd, part of which are
based on novel compilations to classical planning problems.
Our empirical evaluation shows the proposed solutions to be
effective in computing and optimizing the wcd.

Introduction
Goal recognition design (grd) (Keren, Gal, and Karpas
2014) involves the offline analysis of goal recognition mod-
els, interchangeably called in the literature plan recog-
nition (Pattison and Long 2011; Kautz and Allen 1986;
Cohen, Perrault, and Allen 1981; Lesh and Etzioni 1995;
Ramirez and Geffner 2009; Agotnes 2010; Hong 2001), by
formulating measures that assess the ability to perform goal
recognition within a model and finding efficient ways to
compute and optimize them.

Goal recognition design is applicable to any domain for
which quickly performing goal recognition is essential and
in which the model design can be controlled. Such problems
include intrusion detection (Jarvis, Lunt, and Myers 2004;
Kaluza, Kaminka, and Tambe 2011; Boddy et al. 2005), as-
sisted cognition (Kautz et al. 2003), and computer games
(Kabanza et al. 2010; Albrecht, Zukerman, and Nicholson
1998; Ha et al. 2011). In computer games for example,
goal recognition aims at quickly understanding the user’s
intention in order to enhance her user experience. Goal
recognition design offers a tool for designing and modifying
these virtual environments, by e.g., preventing certain ac-
tions from being performed, in order to guarantee improved
real-time goal recognition abilities.

Notice that whereas goal recognition focuses on finding
efficient ways to perform the online analysis of incoming

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

observations, goal recognition design is an offline task. Ac-
cordingly, the computational efficiency of the grd analysis is
not a key concern. Instead, the effectiveness of the grd anal-
ysis is measured according to its ability to asses and mini-
mize the maximal number of observations that need to col-
lected in during the online recognition process.

Previous work in grd analysis (Keren, Gal, and Karpas
2014) involves the classification of an observation sequence
as distinctive if it is a prefix to a plan to only one goal and
non-distinctive otherwise. Accordingly, the worst case dis-
tinctiveness (wcd) measure is defined as the maximal non-
distinctive path.

Keren et al. (2014) offer ways to calculate and minimize
the wcd of the grd model that rely on three simplifying as-
sumptions, namely that the system is assumed to be fully
observable, the outcomes of actions are deterministic, and
that the agents are assumed to be optimal. These assump-
tions lead to a compact analysis of the grd model and its
compilation to classical planning in a straightforward man-
ner.

In this work we relax the optimality assumption and of-
fer innovative tools for a grd analysis that accounts for non-
optimal agents. Non-optimal behavior can be modeled in
various ways and can account for settings where agents be-
have non-optimally, either intentionally or naı̈vely. We fo-
cus our attention on a setting we call Bounded Non-Optimal,
where an agent is assumed to have a specified budget for
diverting from an optimal path. Bounded Non-Optimal is
suitable for settings where agents are not fully familiar with
their environment and may therefore act close to but yet not
in a fully optimal manner, as well as for settings where de-
ceptive agents aim at achieving time-sensitive goals, with
some flexibility in their schedule.

In addition to exploring the general Bounded Non-
Optimal case we investigate a special case we call Bounded
Deception in which an agent behaves non-optimally with the
intention of misleading an observer. In this scenario one pos-
sible goal is the focus of attention and is referred to as the
POI (point of interest) of the system. Agents heading to POI
are assumed to have a budget for diverting from an optimal
path to their goal, which they use to follow an optimal path
to a different goal. In this setting we seek to compute the
maximal number of steps an agent aiming at POI can ad-
vance on an optimal path to a different goal and still achieve

(a) (b)

Figure 1: An example of a goal recognition design problem

his goal while respecting the allocated budget.
After calculating the wcd of the different settings, it may

be desired to minimize it. We implement a procedure called
wcd reduction, which involves finding the a set of actions
whose removal from the model will reduce its wcd. This in-
volves searching over subsets of actions, and computing the
wcd of the model with these actions removed. This proce-
dure was described by Keren, Gal, and Karpas (2014), and
we use the same technique here.

To illustrate the objective of calculating and optimizing
the wcd of a grd model, consider the example depicted in
Figure 1(a), adopted from (Keren, Gal, and Karpas 2014),
which depicts a simplified grd problem that consists of a
simple room (or airport) with a single entry point, marked
as ‘Start’ and two possible exit points (boarding gates),
marked as ‘Goal 0’ (domestic flights) and ‘Goal 1’ (interna-
tional flights). An agent can move vertically or horizontally
from ‘Start’ to one of the goals. In the optimal setting the
wcd = 3, referring to a path where an agent advances for-
ward 3 steps before having to turn right to achieve ‘Goal 1’
or moving on towards ‘Goal 0.’ In this setting, as depicted
in Figure 1(b), a barrier forcing an agent to turn either left or
right upon entering room is enough to reduce wcd to 0, ac-
cording to Keren et al. (2014). In the bounded non-optimal
setting this solution reduces the wcd only if the budget of the
agents is less than 2.

We use automated planning to model and solve the
grd problem for non-optimal agents. The advantage of us-
ing automated planning tools lies in the availability of es-
tablished tools and techniques for efficient computation. We
show how automated planning can be utilized, despite the
sub-optimal nature of agents. Therefore, our main contri-
bution is threefold. First, we show how to generalize the
grd model to non-optimal agents in a way that would still al-
low the use of existing techniques for optimizing goal recog-
nition. Secondly, we provide an efficient method for com-
puting wcd for non-optimal agents using novel compilation
to automated planning. Finally, we provide a thorough em-
pirical analysis to examine the impact of non-optimality on
the quality of a goal recognition model.

The rest of the paper is organized as follows. We start by
providing background on classical planning. We continue by
introducing the formal model representing the grd problem
for non-optimal agents and the wcd value in this setting. The
following sections present the methods developed for calcu-

lating the wcd value of a given grd problem. We conclude
with an empirical evaluation that shows the effectiveness of
the proposed methods, a discussion of related work, and a
conclusion.

Background
The basic form of automated planning, referred to as clas-
sical planning, is a model in which the actions of agents
are fully observable and deterministic. A common way to
represent classical planning problems is the STRIPS formal-
ism (Fikes and Nilsson 1972). A STRIPS planning problem
is a tuple P = 〈F, I,A,G,C〉 where F is the set of flu-
ents, I ⊆ F is the initial state, G ⊆ F represents the set of
goal states, and A is a set of actions. Each action is a triple
a = 〈pre(a), add(a), del(a)〉, that represents the precondi-
tion, add, and delete lists respectively, and are all subsets
of F . An action a is applicable in state s if pre(a) ⊆ s.
If action a is applied in state s, it results in a new state
s′ = (s \ del(a))∪ add(a). C : A→ R0+ is a cost function
that assigns each action a non-negative cost.

The objective of a planning problem is to find a plan π =
a1, . . . , an, a sequence of actions that brings an agent from
I to a state that satisfies the goal. The cost c(π) of a plan
π is Σni=1(C(ai)). Often, the objective is to find an optimal
solution for P , an optimal plan, π∗, that minimizes the cost.
We assume the input of the problem includes actions with a
uniform cost equal to 1. Therefore, plan cost is equivalent to
plan length, and the optimal plans are the shortest ones.

grd for Non-Optimal Agents: Model
The goal recognition design (grd) problem is defined as

D = 〈PD,GD,Πleg(GD)〉

where PD = 〈F, I,A〉 is a planning domain formulated
in STRIPS and GD is a set of possible goals g, g ⊆ F .
Πleg(GD) =

⋃
g∈GD Πleg(g) is a set of legal plans to each of

the goals — plans which are allowed under the assumptions
we make on the behavior of the agent. Πleg(g) may include
any path an agent can take to achieve goal g, which can be
described either explicitly or symbolically (e.g., the set of all
optimal paths that do not make use of action a). Whenever
D is clear from the context we use P , G and Πleg(G).

Definition 1, next, defines non-distinctive paths as pre-
fixes of legal plans to goals that belong to more than one goal
set. Definition 2 defines worst case distinctiveness (wcd) to
be a value that represent the maximal non-distinctive path in
the model.

Definition 1 Given a grd problem D = 〈P,G,Πleg(G)〉,
a sequence of actions π is a non-distinctive path in D if
∃gi, gj ∈ G s.t. i 6= j and ∃π′ ∈ Πleg(gi) and π′′ ∈
Πleg(gj) s.t. π is a prefix of π′ and π′′. Otherwise, π is
distinctive.

Definition 2 Let ΠD = 〈π|π is a non-distinctive path of D〉
and let |π| denote the length of a path π. Then, worst case
distinctiveness (wcd) of a model D, denoted by wcd(D), is:

wcd(D) = max
π∈ΠD

|π|

Solving a grd problem involves calculating and optimiz-
ing the wcd of a model. We therefore seek characteristics of
the grd model that influence the analysis process. One such
feature reveals an upper bound on the wcd value of a given
model. We let πimax = maxπ∈Πleg(gi) |π| be the longest
path in Πleg(gi) and {g1, . . . , gn} represent the goals in G,
ordered according to the increasing lengths of πimax.

Theorem 1
wcd(T) ≤ |πn−1

max|

Proof: For any pair of paths, the length of a non-distinctive
path is bound by the length of the shorter path. If we choose
gn and gn−1 and consider πnmax and πn−1

max we get the pair
of paths for which the possible length of the non-distinctive
path is maximal and is bound by πn−1

max, which is the shorter
of the two.

We now discuss the effect the removal of actions from
the model has on its wcd value. We let D and D

′
represent

two grd problems. Let A represent the actions of D and
A
′

the actions of D
′

such that A
′

= A \ {a}, that is, A
′

disallows action a. The paths that share the wcd of model D
are denoted by Πwcd(D). Theorem 2 links the reduction of
the wcd of a model and action removal.

Theorem 2 Given grd models D and D
′

s.t. A
′

= A \ {a}{
wcd(D

′
) ≤ wcd(D) a ∈ Πwcd(D)

wcd(D
′
) = wcd(D) otherwise

Proof: The wcd value of a model is defined over the set
of legal paths Πleg(GD). The removal of actions from the
model cannot create new paths but only eliminates them.
This means that Πleg(GD) ⊆ Πleg(G

′

D) and there can-
not be a pair of paths in Πleg(G

′

D) that did not exist in
Πleg(GD) and share a longer non-distinctive path. Specif-
ically, if all paths in Πwcd(D) do not include action a,
∀π ∈ Πwcd(D), π ∈ Πwcd(D

′
) and the wcd is unchanged.

Bounded Non-Optimality
We now introduce a special case of the grd model. Among
the many ways to represent non-optimal behavior patterns
of agents and their corresponding Πleg(G), we focus our at-
tention on the Bounded Non-Optimal setting, representing a
non-optimal behavior where each agent is assigned a budget
for diverting from an optimal path.

Definition
We extend the description of a grd problem to include a bud-
get specification for each of the goalsB = 〈b0, ..., bn〉where
bi signifies the budget for diverting from an optimal path for
an agent aiming at goal gi. The Bounded Non-Optimal for-
mulation of the grd problem is therefore

Dbna = 〈P,G,Πleg(G), B〉

A path π ∈ Πleg(gi) if π achieves gi and C(π) ≤ C∗(gi) +
bi, whereC∗(gi) is the optimal cost of achieving gi. Our ob-
jective in this setting is to discover the wcd, which describes
the maximal distance an agent in the system, bounded by the
specified budget, can advance without revealing his goal.

One key observation to notice is that for any increase in
the budget assigned to any of the goals it is guaranteed that
the wcd does not decrease. In particular, the wcd of the op-
timal setting, where ∀i, bi = 0 serves as a lower bound for
the wcd for any assignment of B s.t. bi ≥ 0.

Theorem 3 For any two problems Dbna, D
′

bna s.t

Dbna = 〈P,G,Πleg(G) , B〉

and
D′bna = 〈P,G,Πleg(G), B′〉

if ∀i : bi ≤ b
′

i then wcd(Dbna) ≤ wcd(D
′

bna)

Proof: The increase in budget expands the set of legal paths
of each goal. In particular, the wcd paths, the paths that share
the wcd, are legal for the extended setting and therefore the
wcd cannot decrease when the budget increases.

Calculating wcd
As a baseline for computing the wcd in the Bounded Non-
Optimal setting we use a breadth first search, where each
node represents a prefix of a plan. The successors of a node
are created by applying each applicable action to the state
represented by the parent node. This method, referred to as
wcd-bfs, prunes a node if it represents a distinctive path. The
wcd is the length of the longest non-distinctive path that is
left in the search.

Following Definition 1, classifying a node π as non-
distinctive involves finding a pair of legal paths to two dif-
ferent goals that share π as their prefix. The full observ-
ability of the system ensures that each node represents a
full sequence of actions starting at the initial state, and
therefore a state sπ . Therefore, a path π ∈ Πleg(gi) if
C∗(gi) + bi ≤ C(π) + C∗sπ (gi), where C∗sπ (gi) is the cost
of a cheapest path from sπ to goal gi, and the optimal costs
are found by solving planning problems.

Compilation to Classical Planning To improve the effi-
ciency of the wcd calculation, we exploit the bounded nature
of agent suboptimality to compile the problem to a single
classical planning problem and solve it using a single search.
We first describe the compilation for two agents with a single
goal each. Then, we discuss the extension of the technique
to n > 2 goals.

In a dual goal setting, we create a classical planning prob-
lem with two agents, each trying to achieve one goal. Each
agent has its own copy of the state propositions so they can
be in different states. However, if both agents are in the same
state they are encouraged to perform the same action by get-
ting a discount on the action’s cost. Additionally, agents can
split up, and start performing actions on their own.

The idea of using multiple agents in a single planning
problem in order to find the wcd was introduced in the latest-
split compilation (Keren, Gal, and Karpas 2014), which re-
lies on agent optimality. In the Bounded Non-Optimal set-
ting, this assumption is no longer appropriate. However, we
can still ensure that an optimal solution to the classical plan-
ning problem yields the wcd, by constraining each agent to
take exactly C∗(gi) + bi actions (including idle actions). An
intuitive way to encode the constraints on the number of ac-
tions each agent must take is to add a separate counter for the
number of actions taken by each agent, and make sure that
whenever an agent takes an action, that counter is advanced.
We call this compilation the timed-latest-split.

Another approach is to include a single global counter.
The agents then alternate in taking actions, so that the global
counter always counts the number of actions taken by both
agents. The restriction on the number of actions each agent
is allowed to take can be encoded here, by artificially in-
creasing the cost of one of the goals, so that C∗(g0) + b0 =
C∗(g1) + b1, and thus both agents must take the exact same
number of actions. We call this compilation sync-latest-
split. Due to space constraints we will only present the
timed-latest-split compilation in detail.

timed-latest-split Given a Dbna problem where G =
{g0, g1}, the timed-latest-split compilation includes two
agents: agent0 aiming at g0 and agent1 aiming at g1.
Agents have two types of actions to choose from. They
can either work together by performing ’together-actions,’
marked asA0,1, which represent the simultaneous execution
of action a by both agents. For each action performed to-
gether the agents get a discount of ε. Alternatively, agents
can act alone by performing ’separate-actions’ Ai that rep-
resent the execution of action a by agenti.

The ordering between the actions in A0,1 and Ai is
achieved by adding to the model the DoSplit no-cost op-
eration, which adds to the current state the split predicate.
Actions in A0,1 are applicable only before DoSplit is per-
formed, after which the only applicable actions are the ac-
tions in Ai. Since we require agents to act at every stage, we
add the idle no-op action for each agent. Idlei is applicable
by agent i only after having achieved his goal.

To constrain the path lengths, each agent is assigned a
sequence of time steps 〈timei0, ..., timeiT 〉. Each action ad-
vances the time step from t to t + 1 for the acting agents.
The goal specification requires that each agent reaches time
step timeiT in addition to achieving his original goal.

Following the STRIPS notation in which an action is de-
fined as the set of 〈pre, add, del〉, we define the timed-latest-
split compilation as follows.

Definition 3 For a grd problem

Dbna = 〈P,G = {g0, g1},Πleg(G), {b0, b1}〉

we create a planning problem P ′ = 〈F ′, I ′, A′, G′〉, with
action costs C ′, where:

• F ′ = {fi, donei | f ∈ F, i ∈ {0, 1}} ∪ {split} ∪ {timeit |
i ∈ {0, 1}, t ∈ {0...Ti}}

• I ′ = {f0, f1 | f ∈ I} ∪ {time0
0, time

1
0}

• A′ = A0,1 ∪A0 ∪A1 ∪ {DoSplit} ∪ {Donei, Idlei | i ∈
{0, 1}} where
– A0,1 = {〈{f0, f1 | f ∈ pre(a)}∪{¬split}∪{timeit},
{f0, f1 | f ∈ add(a)} ∪ {timeit+1},
{f0, f1 | f ∈ del(a)} ∪ {timeit}〉 | a ∈ A}

– Ai= {〈{fi | f ∈ pre(a)} ∪ {split} ∪ {timeit} ∪
{done0 | i = 1},
{fi | f ∈ add(a)} ∪ {timeit+1},
{fi | f ∈ del(a)} ∪ {timeit}〉 | a ∈ A}

– Donei = 〈{split}, {donei}, ∅〉
– Idle0 = 〈{done0, time

0
t}, {time0

t+1}, {time0
t}〉

– Idle1 = 〈{done1, done0, time
1
t}, {time1

t+1}, {time1
t}〉

– DoSplit = 〈∅, {split}, ∅〉
• G′ = 〈g0 ∪ g1 ∪ timeiT 〉

• C ′(a) =

{
2− ε, if a ∈ A0,1

1, if a ∈ Ai ∪ Idlei

fi is a copy of f for agent i. The initial state is common
to both agents and does not include split. The compiled
problem P ′ is solved using standard classical planning tools
that produce an optimal plan π∗P ′(G

′). The wcd value of the
model is the length of the action sequence until the DoSplit
action occurs.

To encourage the agent to act together, and follow-
ing (Keren, Gal, and Karpas 2014), the upper bound on ε
guarantees that agents do not divert from legal paths. Ac-
cording to Theorem 1 the upper bound on ε is set according
to the bound on the wcd of the model s.t. 0 < ε < 1

|πn−1
max|

.

Note that the actions in A1 include done0 in the precon-
dition specification, enforcing agent 1 to wait until agent 0
reaches its goal before starting to act. This increases effi-
ciency by removing symmetries between different interleav-
ing plans of agents after DoSplit occurs.

Extension to multiple goals The method shown so far
finds the wcd shared between a pair of goal sets. This
compilation can be applied to n > 2 goal sets by creating
n corresponding agents and integrating them into a single
search. However, following the analysis shown for the mul-
tiple goal extension presented for the latest-split compilation
in (Keren, Gal, and Karpas 2014) we will instead perform a
separate search for all the pairs and choose the pair with the
maximal wcd.

Bounded deception as a special case
Having described the general case of bounded non-optimal
behavior of agents, we turn our attention to a special case we
call Bounded Deception in which agents are assumed to be
optimal except for agents aiming at gpoi that have a specified
budget bpoi for diverting from an optimal path. The sets of
goals excluding gpoi are marked as Ḡ. The definition of the
grd problem in Bounded Deception setting is

Dbd = 〈P, Ḡ ∪ gpoi, bpoi〉

Our objective is to discover how far an agent aiming at gpoi,
denoted by agentpoi, can advance on an optimal path to a

goal in Ḡ and still achieve gpoi while respecting the speci-
fied budget. Otherwise stated, we are trying to discover the
wcd between Π∗(Ḡ), the set of optimal paths to goal in Ḡ and
Πleg(gpoi), the plans that achieve gpoi with a cost bound by
C∗(gpoi) + bpoi.

Compilation for Bounded Deception The Bounded De-
ception setting is a special case of the Bounded Non-
Optimal setting, where bi ≥ 0 for gpoi and 0 otherwise and
can be solved using the techniques presented. Alternatively,
we propose to exploit the special structure of the problem to
create tailored compilations. The timed-latest-split-poi com-
pilation is a variation of the timed-latest-split, allowing only
timed actions that are performed by agentpoi, whereas the
optimal agent is not constrained by any timing mechanism
and does not include references to timeit.

The variation of the sync-latest-split compilation to the
Bounded Deception setting, which we refer to as sync-latest-
split-poi, exploits the fact that one of the agents is optimal
to remove the timer altogether. Instead, in order to guar-
antee equal path lengths, agents alternate until the end of
execution when it is the turn of the first agent to act. We let
gopt represent the goal for which bi = 0 and we denote by

ˆgopt and ˆgpoi the goals in our compilation, which have been
artificially modified so that C∗(ˆgopt) = max(C∗(gpoi) +
bpoi, C

∗(gopt)) and C∗(ˆgpoi) = C∗(ˆgopt) − bpoi. This en-
sures that both agents have a path length equal toC∗(gi)+bi.

Empirical Evaluation
Our empirical evaluation has several objectives. Having
proven that increased budget may increase the wcd value
of a model, our first objective is to examine the extent of
this effect empirically. Our second objective is to empir-
ically evaluate the two classical planning compilations for
the Bounded Non-Optimal (BNA) setting, namely timed-
latest-split (timed) and sync-latest-split (sync), and their
specializations to the Bounded Deception (BND) setting
(timedPOI and syncPOI , respectively) on the different
settings. The last objective involves examining the ability to
reduce the wcd by using the technique presented by Keren
et al. (2014) by eliminating actions from the model in the
non-optimal setting.

We examine three settings. In the optimal setting, agents
achieve their goals without diverting from optimal paths. In
the Bounded Non-Optimal setting all agents may have a di-
version budget while in the Bounded Deception setting all
agents are optimal except for a deceptive agent who has a
diversion budget from optimal paths.

We first describe the datasets and the experiment setup
before presenting and discussing the results.
Datasets We use the domains proposed by Ramirez and
Geffner (2009) for plan recognition. The dataset consists
of problems from 4 domains, namely GRID-NAVIGATION,
IPC-GRID+, BLOCK-WORDS and LOGISTICS. For GRID-
NAVIGATION and IPC-GRID+ we used all benchmarks pro-
posed by Ramirez and Geffner (2009) and Keren, Gal, and
Karpas (2014). For BLOCK-WORDS we randomly selected
a subset of the problems in order to keep evaluation time
within our time constraints. For LOGISTICS we used smaller

instances with goals consisting of single facts instead of con-
junctions, as none of the approaches evaluated could handle
the original problems with conjunctive goals within the al-
located time. Each problem description contains a domain
description, a template for a problem description without
the goal, and a set of hypotheses. For each problem we
generated a separate grd problem for each pair of hypothe-
ses. We tested 72 GRID-NAVIGATION instances, 40 IPC-
GRID+ instances, 57 BLOCK-WORDS instances, and 40
LOGISTICS instances.
Setup For each problem instance, we calculated the
wcd value and run-time. For the optimal setting we
compared six methods: latest-split, wcd-bfs, timedPOI ,
syncPOI , timed, and sync. For the Bounded Decep-
tion setting we compared the former 4 methods and ex-
amined problems with the budget of the agents aiming at
POI ranging from 1 to 7 for the GRID-NAVIGATION , IPC-
GRID+ and BLOCK-WORDS domain and from 1 to 3 for the
LOGISTICS (which is the maximal budget the planner could
handle). For the Bounded Non-Optimal setting we tested the
timed and sync methods with the diversion budget of both
agents ranging as for the Bounded Deception setting. Each
execution was assigned a time bound of 30 minutes. For the
wcd reduction we assigned a time bound of 60 minutes and
examined the Bounded Non-Optimal setting with an upper
bound on the number of actions that could be removed from
the model set to 4 and a diversion budget of 4 for each agent
in all domains except LOGISTICS, for which we assigned a
bound and budget of 2.
Results We First analyze the impact of budget allocation on
wcd. Figure 2 shows that for all domains, increasing the bud-
get steadily increases the wcd value for both the Bounded
Deception and Bounded Non-Optimal settings. Bounded
Non-Optimal problems consistently yield higher wcd val-
ues due to the more general nature of the problem that pro-
vides agents with higher exploration flexibility and thus an
increased worst-case value.

Table 1 summarizes the results for wcd run time for the
three settings. The comparison is partitioned into settings
and into domains. For each setting we compare average run
time (in seconds) over commonly solved problems. When-
ever some of the problems timed-out, we mention in paren-
thesis the ratio of solved instances. For the optimal set-
ting latest-split outperforms the other method in all domains
with up to three orders of magnitude accelaration. For the
non-optimal settings, the results for the wcd-bfs are not dis-
played, since for all domains it is outperformed by at least
one of the classical planning compilations. In addition, the
efficiency achieved by the tailored compilations is more ef-
fective for the sync method and almost without effect for
timed. For both non-optimal settings, the results show
the sync compilations to be more efficient in computing
the wcd for the GRID-NAVIGATION and LOGISTICS do-
mains. The timed compilations are more efficient for the
IPC-GRID+ and BLOCKSWORLD domains. The reasons for
these performance differences is an open question we intend
to investigate in future work.

Table 2 summarizes the results for the wcd reduction
for the Bounded Non-Optimal setting, showing the average

(a) GRID-NAVIGATION (b) IPC-GRID+

(c) BLOCKSWORLD (d) LOGISTICS

Figure 2: wcd and execution time given various budget allocations
Optimal Bounded Deception Bounded Non-Optimal

wcd-bfs latest-split timedPOI syncPOI timed sync timedPOI syncPOI timed sync timed sync

GRID-NAVIGATION 16.78 0.17 2.28 0.22 2.42 0.53 2.76 0.41 2.78 0.91 4.02 1.22
IPC-GRID+ 5.82 1.15 5.95 1.22 5.57 1.85 18.39 23.33 18.44 79.18 29.85 616.15(0.84)
LOGISTICS 103.19 0.7 372.78 1.8 372.76 2.97 787.43(0.71) 24.67 796.58 50.7(0.99) 682.45(0.7) 480.29(0.98)
BLOCKSWORLD 36.75 1.09 200.35 3.46 200.51 24.3 192.72(0.98) 870.61 201.64(0.98) 1035.62(0.84) 377.11(0.80) 830(0.30)

Table 1: Average running time for wcd calculation over solved problems (when not all solved, the ratio of solved problems are in parenthesis)

wcd reduction achieved within the allocated time, the ratio
of problems for which wcd was reduced within the allocated
budget, and the ratio of problems for which the exploration
exhausted all combinations. The evaluation shows that for
many of the problems the wcd could be decreased, with
more then 4 reduced steps for the LOGISTICS domain.

Related Work
Goal recognition design was first introduced by Keren et
al. (2014). Our work provides two extensions. First, we
relax the optimality assumptions and propose a generic
grd framework for non-optimal agents and secondly, we
offer tools to solve the grd model in the Bounded Non-
Optimal setting.

The first to establish the connection between the closely
related fields of automated planning and goal recognition
were Ramirez and Geffner (2009). They present a compi-
lation of plan recognition problems into classical planning
problems resulting in a STRIPS problem that can be solved
by any planner. Several works on plan recognition followed
this approach (Agotnes 2010; Pattison and Long 2011;
Ramirez and Geffner 2010; 2011) by using various auto-
mated planning techniques to analyze and solve the prob-
lems. Our work exploits the bounded nature of the sub-
optimality in the Bounded Non-Optimal and Bounded De-

reduced average reduction completed
GRID-NAVIGATION 0.42 1.67 0.58
IPC-GRID+ 0.61 2.78 0.24
LOGISTICS 0.87 4.51 0.4
BLOCKSWORLD 0.35 1.3 0.23

Table 2: wcd redcution for the Bounded Non-Optimal setting

ception settings to create novel compilations of goal recog-
nition design problems into classical planning problems.

Conclusion
We presented a model for goal recognition design for non-
optimal agents and the wcd measure in this extended set-
ting. We focused our attention on two special cases of
sub-optimal agents, namely the Bounded Non-Optimal and
Bounded Deception settings where agents have a budget for
diverting from optimal paths, for any goal or one specific
goal, respectively. For each of the settings we exploited the
bounded nature of the sub-optimality of the agents to create
novel compilations to classical planning.

Our empirical evaluation shows that the increase in bud-
get does indeed yield a higher wcd value for most of the
problems explored. The proposed compilations proved to
be effective in computing the wcd for all the grd problems
examined, with different methods excelling in different do-
mains. In addition, we showed that for many of the prob-
lems, eliminating actions results in a reduced wcd.

Our approach was to provide the minimal possible exten-
sion of the grd model to support non-optimal agents so that
we would still be able to use existing techniques for opti-
mizing goal recognition. When accounting for non-optimal
behavior in goal recognition design problems, we increase
the model relevancy to a wide range of real world settings.
In particular we supply the ability to use optimal classical
planning tools for solving grd problem for non-optimal set-
tings where it is reasonable to assume the diversion from
optimal paths is bounded.

In future work we intend to expand the set of domains that
are used to evaluate the non-optimal grd setting. In addition,
we plan to further investigate the compilation methods pre-
sented in the paper in an attempt to study the characteristics
of grd domains and problems that cause specific calculation
methods to outperform the others.

Acknowledgements
The work was carried out in and partially supported by
the TechnionMicrosoft Electronic Commerce research cen-
ter. The work was partially supported by the Northeastern-
Technion Cooperative Research Program, the DARPA MRC
Program, under grant number FA8650-11-C-7192, and Boe-
ing Corporation, under grant number MIT-BA-GTA-1.

References
Agotnes, T. 2010. Domain independent goal recognition.
In Stairs 2010: Proceedings of the Fifth Starting AI Re-
searchers Symposium, volume 222, 238. IOS Press, Incor-
porated.
Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-
ture game. User modeling and user-adapted interaction 8(1-
2):5–47.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS
2005), 12–21.
Cohen, P. R.; Perrault, C. R.; and Allen, J. F. 1981. Beyond
question-answering. Technical report, DTIC Document.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3):189–208.
Ha, E.; Rowe, J. P.; Mott, B. W.; and Lester, J. C. 2011. Goal
recognition with markov logic networks for player-adaptive
games. In AIIDE.
Hong, J. 2001. Goal recognition through goal graph anal-
ysis. Journal of Artificial Intelligence Research(JAIR 2001)
15:1–30.
Jarvis, P. A.; Lunt, T. F.; and Myers, K. L. 2004. Identifying
terrorist activity with ai plan recognition technology. In Pro-
ceedings of the Sixteenth National Conference on Innovative
Applications of Artificial Intelligence (IAAI 2004, 858–863.
AAAI Press.
Kabanza, F.; Bellefeuille, P.; Bisson, F.; Benaskeur, A. R.;
and Irandoust, H. 2010. Opponent behaviour recognition

for real-time strategy games. In AAAI Workshop on Plan,
Activity, and Intent Recognition (PAIR 2010).
Kaluza, B.; Kaminka, G. A.; and Tambe, M. 2011. Towards
detection of suspicious behavior from multiple observations.
In AAAI Workshop on Plan, Activity, and Intent Recognition
(PAIR 2011).
Kautz, H., and Allen, J. F. 1986. Generalized plan recogni-
tion. In Proceedings of the Fifth National Conference of the
Amercan Association of Artificial Intelligence (AAAI 1986),
volume 86, 32–37.
Kautz, H.; Etzioni, O.; Fox, D.; Weld, D.; and Shastri, L.
2003. Foundations of assisted cognition systems. Univer-
sity of Washington, Computer Science Department, Techni-
cal Report.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In ICAPS Conference Proceedings.
Lesh, N., and Etzioni, O. 1995. A sound and fast goal
recognizer. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI 1995),
volume 95, 1704–1710.
Pattison, D., and Long, D. 2011. Accurately determining
intermediate and terminal plan states using bayesian goal
recognition. Proceedings of the First Workshop on Goal,
Activity and Plan Recognition(GAPRec 2011) 32.
Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (IJCAI 2009).
Ramirez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Pro-
ceedings of the Conference of the American Association of
Artificial Intelligence (AAAI 2010).
Ramirez, M., and Geffner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a pomdp agent. In Pro-
ceedings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence- Volume Three (IJCAI 2011),
2009–2014. AAAI Press.

