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Planning

The object of (classical) planning is to find a sequence of actions
that leads from an initial state to some goal
Usually divided into:

Satisficing planning
Optimal planning
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Planning as Search

Planning can be viewed as a search problem
Π = 〈S,A, tr ,s0,Sg〉 where

S is the set of states
A is the set of actions
tr : S×A→ S is the transition function
s0 is the initial state
Sg is a set of goal states

Satisficing planning: find a sequence of actions 〈a0 . . .an〉 s.t.
tr(an, . . . tr(tr(s0,a0),a1) . . .) ∈ Sg

Optimal planning: find one of the shortest such sequences
A∗ with an admissible heuristic
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Planning in STRIPS

STRIPS is a language for describing planning problems compactly
A STRIPS task is a 5-tuple Π = 〈V ,A,C ,s0,G〉

V = {v1, . . . ,vn} is a set of binary state variables
s0 is an initial state
G ⊆ V is the goal
A is a finite set of actions

Each action a is a triple 〈pre,add,del〉 of sets of variables
Each action has a non-negative cost C (a)

A complete assignment to V is called a state

A fact is an assignment to a single variable (i.e. vi = T/F )
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Planning Example - Blocks

The BLOCKSWORLD domain deals with arranging blocks in a specific
way using a crane

Variables: crane-empty, holding(X), clear(X), ontable(X), on(X,Y)
Operators:

pickup(X)
Pre: ontable(X), clear(X), crane-empty
Add: holding(X)
Del: ontable(X), clear(X), crane-empty

putdown(X) . . .
stack(X,Y) . . .
unstack(X,Y) . . .
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Landmarks

A landmark is a fact that must be true at some point in every valid
plan (Hoffmann, Porteous and Sebastia 2004)

Example: if on(A,B) is a goal, then clear(B) must be true
sometime before that in every plan

Some landmarks can be discovered automatically (Hoffmann,
Porteous and Sebastia 2004, Richter, Helmert and Westphal
2008)
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Landmark Orderings

There is a (partial) order between landmarks

φ < ψ means that landmark φ must be achieved before landmark
ψ

Orderings can also be discovered automatically
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Landmark Discovery

Backchaining - if all actions that achieve landmark φ have a
common precondition ψ , then ψ is also a landmark, and is
ordered greedy-necessarily before φ

Goal facts are (trivially) landmarks

Landmark discovery is done by backchaining from goal facts

Small disjunctive landmarks are also allowed

More ways to discover (more) landmarks also exist
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Landmarks Example

Consider the following blocks problem (“The Sussman Anomaly”)

Initial State

Goal: on(A,B), on(B,C)

clear C

on B C

clear A

on C A ontable B

holding B

crane-empty

holding A

ontable A clear B

on A B
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Using Landmarks - Subgoals

Landmarks were originally used as subgoals in search

Advantages: considerable speedup in search

Disadvantage:longer plans, incompleteness (sometimes)
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Using Landmarks - Heuristic

The number of landmarks that still need to be achieved can be
used as an (inadmissible) heuristic function (Richter et. al.)

This is the heuristic used by LAMA - a state of the art satisficing
planner, and winner of the IPC-2008 sequential satisficing track

Suppose we are in state s. Did we achieve landmark φ yet?

There is no way to tell. Achieved landmarks are a function of
path, not state

Solution: make the heuristic path-dependent, instead of
state-dependent
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LAMA

The landmarks that still need to be achieved after reaching state
s via path π are

L(s,π) =

L is the set of all (discovered) landmarks

Accepted(s,π)⊂ L is the set of accepted landmarks

ReqAgain(s,π)⊆ Accepted(s,π) is the set of required again
landmarks - landmarks that must be achieved again

ReqAgain(s,π) is computed from landmark orderings
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Admissibility - how?

We are interested in admissible heuristics, in order to perform
cost-optimal planning

LAMA is inadmissible because a single action can achieve
multiple landmarks

Example: crane-empty and on(A,B) can both be achieved by
stack(A,B)

Solution: assign a cost to each landmark, and sum over the costs
of landmarks
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Conditions for Admissibile Cost Sharing

Each action shares its cost between all the landmarks it achieves

∀a ∈ A : ∑
φ∈L(a|s,π)

cost(a,φ)≤ C (a)

cost(a,φ) is the cost “assigned” by action a to φ

L(a|s,π) is the set of landmarks achieved by a

Each landmark is assigned the cheapest cost any action
assigned it

∀φ ∈ L(s,π) : cost(φ)≤ min
a∈ach(φ |s,π)

cost(a,φ)

cost(φ) is the cost assigned to landmark φ

ach(φ |s,π)⊆ A is the set of actions that can achieve φ
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Admissibile Cost Sharing

The idea is that the cost of a set of landmarks is no greater than
the cost of any single action that achieves them

Given costs that obey these constraints, the sum of costs of
landmarks that still need to be achieved is an admissible
heuristic, which we call hL

hL(s,π) := cost(L(s,π)) = ∑
φ∈L(s,π)

cost(φ)

Proof: left up to the reader ¨̂
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Cost Partitioning - how?

How can we find such a partitioning?

Easy answer - uniform cost sharing - each action shares its cost
equally between the landmarks it achieves

cost(a,φ) =
C (a)

|L(a|s,π)|

cost(φ) = min
a∈ach(φ |s,π)

cost(a,φ)
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Uniform Cost Sharing

Advantage: Easy and fast to compute

Disadvantage: can be much worse than the optimal cost
partitioning
Example:

The known landmarks are {p1, . . . ,pk ,q}
The possible actions are ai (1≤ i ≤ k) with eff(ai ) = {pi ,q}
With uniform cost sharing:

cost(ai ,pi) = cost(ai ,q) = 0.5
cost(pi) = cost(q) = 0.5
hL(s,π) = k+1

2

The optimal cost partitioning is:
cost(ai ,pi) = 1, cost(ai ,q) = 0
cost(pi) = 1, cost(q) = 0
hL(s,π) = k
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Example Illustrated
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Optimal Cost Sharing

The good news: the optimal cost partitioning is poly-time to
compute

The constraints for admissibility are linear, and can be used in a
Linear Programming (LP) problem
The objective is to maximize the sum of landmark costs
The solution to the LP gives us the optimal cost partitioning

The bad news: poly-time can still take a long time
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Optimal Cost Sharing - Properties

Monotonicity along the inclusion relation of the landmark sets
If L and L′ are sets of landmarks, and L⊆ L′, the optimal cost
sharing ensures cost(L′)≥ cost(L)
This does not hold for uniform cost sharing
Consider the previous example - landmarks {p1, . . . ,pk ,q},
eff(ai ) = {pi ,q}
If we exclude landmark q, uniform cost sharing assigns
cost(pi ) = cost(ai ,pi ) = 1, so hL = k
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a1
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1

1
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How can we do better?

So far:
Uniform cost sharing is easy to compute, but suboptimal
Optimal cost sharing takes a long time to compute

Q: How can we get better heuristic estimates that don’t take a
long time to compute?

A: Exploit additional information

E. Karpas, C. Domshlak Cost-optimal Planning with Landmarks



Introducing - Action Landmarks

An action landmark is an action that must be taken in every valid
plan (Zhu and Givan 2004, Vidal and Geffner 2006)

Example: if on(A,B) is a goal, then stack(A,B) must occur in every
plan

Checking if action a is an action landmark can be done efficiently
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Using Action Landmarks

Discover (some) action landmarks during preprocessing

Keep track of which action landmarks were not used along the
current path π - call this set U(s,π)

Every action in U(s,π) must occur after s, so we should account
for their cost in our heuristic estimate
Action landmark covering

Sum up the costs of actions in U(s,π)
Remove from L(s,π) the landmarks that are achieved by actions
in U(s,π) - call this LU(s,π)
Perform action cost sharing over LU(s,π)
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Introducing - hLA

The resulting heuristic is

hLA(s,π) := cost(LU(s,π)) + ∑
a∈U(s,π)

C (a)

hLA is admissible, and dominates hL

C (a) dominates the sum of costs of landmarks achieved by a
(because of our contraints)
Removing these landmarks and adding C (a) never lowers the
heuristic estimate
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Side Benefits of hLA

Side Benefit: action landmark covering with uniform cost sharing
Consider the same example as before - landmarks {p1, . . . ,pk ,q},
eff(ai ) = {pi ,q}
Recall that with uniform cost sharing hL = k+1

2
Suppose one of these actions (say a1) is discovered to be an
action landmark
p1 and q are removed from our landmarks for cost sharing
p2, . . . ,pk are assigned a cost of 1, and a1 adds 1
With uniform cost sharing hLA = k
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Side Benefits of hLA - Illustrated
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A∗ with Path Dependent Heuristics

Regular A∗ evaluates a state only the first time it is reached (via
path π1)

When the same state is reached again (via a different path π2), it
is not evaluated again - fine for state-dependent heuristics

Using A∗ with an admissible path dependent heuristic still
guarantees that an optimal solution is found

Q: Can we do better with a path-dependent heuristic?

A: Yes. Evaluate states every time they are reached, and take the
maximum

This works for any path-dependent heuristic
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A∗ with Landmarks Heuristics

Q: Can we do even better with landmarks?

s0

s

g

π1π2

I achieved φI did not achieve φ

I need to achieve φ

Suppose state s was reached by paths π1,π2

Suppose π1 achieved landmark φ and π2 did not

Then φ needs to be achieved after state s

Proof: φ is a landmark, therefore it needs to be true in all valid
plans, including valid plans that start with π2
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Fusing Data from Multiple Paths

Suppose P is a set of paths from s0 to a state s. Define

U(s,P) =
⋃

π∈P
U(s,π)

L(s,P) = L\ (Accepted(s,P)\ReqAgain(s,P))

Where:
Accepted(s,P) =

⋂
π∈P Accepted(s,π)

ReqAgain(s,P)⊆ Accepted(s,P) is specified as before by s
and the greedy-necessary orderings over L

The multi-path-dependent version of our heuristics are

hL(s,P) = cost(L(s,P))

hLA(s,P) = cost(LU(s,P)) + ∑
a∈U(s,P)

C (a)
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Multi-path-dependent Heuristics

We call the resulting search algoritm LM-A∗

In general, any heuristic that can use information from multiple
paths can be used in such a way

However, storing all the paths that reach all states is not feasible

LM-A∗ exploits the monotonicity of set union and intersection to
store the information from all paths compactly

Note: one of the reasons that almost-perfect heuristics are not
good in many planning domains is transpositions (Helmert and
Röger 2008). This is our little payback
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Evaluation

We want to evaluate how our heuristics fare in the “real” world of
IPC benchmarks

We evaluate LM-A∗ and A∗ with hL and hLA

We evaluate hLA with blind search and a baseline admissible
heuristic hmax

We evaluate hLA with the state-of-the-art FA heuristic

We evaluate how hLA and FA scale as problem size increases

FA is an abstraction based heuristic (Helmert, Haslum and
Hoffmann 2007), which is one of the best-performing
forward-search planners
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LM-A∗ vs. A∗

domain N+/N1 solved nodes time
1 2 3 1 2 3 1 2 3

Blocks 17/20 17 19 20 2772 3779 2354 0.74 1.1 0.98
Logistics 10/19 10 19 19 101274 347 347 11 0.04 0.2
Depots 4/7 4 6 7 425340 64159 28243 101 47 20
Satellite 7/7 7 7 7 27925 27917 27917 27 44 46

TOTAL 38/53 38 51 53 480649 13678 9259 19 14 11

1 - A∗+ hLA

2 - LM-A∗+ hL

3 - LM-A∗+ hLA
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Baseline Comparison

domain N+/N1 solved nodes time
1 2 3 1 2 3 1 2 3

Blocks 18/20 18 18 20 1202791 370074 16715 5.73 8.41 8.31
Logistics 10/19 10 10 19 157261 63081 347 1 0.6 0.2
Depots 4/7 4 4 7 2361807 635063 28243 24 65 20
Satellite 5/7 5 6 7 5157775 2187930 5142 129 74 5

TOTAL 37/53 37 38 53 1937465 654160 16497 23 21 7

1 - Blind Search

2 - A∗+ hmax

3 - LM-A∗+ hLA
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State-of-the-art Comparison

domain N+/N1 solved nodes time
hLA FA hLA FA hLA FA

airport 18/24 24 18 1395 528152 8 123
blocks 19/23 20 22 89179 1319533 56 13
driverlog 13/14 14 13 109611 765930 53 14
freecell 5/7 7 5 8487 1406793 10 232
logistics 16/19 19 16 14265 44111 20 0
psr 48/50 48 50 14541 3267 3 0
pw-no-tank 16/21 16 21 122455 295857 48 20
pw-tank 9/13 9 13 127383 85165 211 142
satellite 6/7 7 6 6287 437238 5 13
schedule-strips 23/50 49 24 3932 152 15 713
trucks 6/7 7 6 249518 4586761 198 80
zeno-travel 9/11 9 11 6658 36030 9 1

total 226/284 267 243 99838 458689 43 103
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Scaling - Initial State Estimate

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35

F
A

(s
0
)

hLA(s0)

Blocks

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35

F
A

(s
0
)

hLA(s0)

Blocks

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

F
A

(s
0
)

hLA(s0)

Depots

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5  10  15  20  25  30  35  40  45

F
A

(s
0
)

hLA(s0)

Depots

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

F
A

(s
0
)

hLA(s0)

Logistics

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

F
A

(s
0
)

hLA(s0)

Logistics

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140

F
A

(s
0
)

hLA(s0)

Satellite

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100  120  140

F
A

(s
0
)

hLA(s0)

Satellite

E. Karpas, C. Domshlak Cost-optimal Planning with Landmarks



Outline

E. Karpas, C. Domshlak Cost-optimal Planning with Landmarks



Summary

We introduced the hL and hLA heuristics

We introduced the LM-A∗ search algorithm that uses
multi-path-dependent heuristics more effectively than A∗

LM-A∗ with hLA favorably compete with state-of-the-art admissible
heuristics
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