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@ The object of (classical) planning is to find a sequence of actions
that leads from an initial state to some goal
@ Usually divided into:

e Satisficing planning
e Optimal planning
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Planning as Search

@ Planning can be viewed as a search problem
e = (S,Atr,sy,Sy) where

S is the set of states

Ais the set of actions

tir: S x A— Sis the transition function

Sp is the initial state

S, is a set of goal states

@ Satisficing planning: find a sequence of actions (ag ... an) s.t.
tr(ap,...tr(tr(so,a0),a1)...) € Sy
@ Optimal planning: find one of the shortest such sequences
e A* with an admissible heuristic
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Planning in STRIPS

@ STRIPS is a language for describing planning problems compactly
@ A sTRIPS task is a 5-tuple N = (V,A, €, so, G)

V ={w,...,v,} is a set of binary state variables

@ Sp is an initial state

e G C Visthe goal

e Ais afinite set of actions

e Each action ais a triple (pre,add,del) of sets of variables
@ Each action has a non-negative cost %’(a)

@ A complete assignment to V is called a state
@ A factis an assignment to a single variable (i.e. v; = T/F)
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Planning Example - Blocks

@ The BrocksworLb domain deals with arranging blocks in a specific
way using a crane

B8] [

@ Variables: crane-empty, holding(X), clear(X), ontable(X), on(X.Y)
@ Operators:
e pickup(X)
@ Pre: ontable(X), clear(X), crane-empty
@ Add: holding(X)
@ Del: ontable(X), clear(X), crane-empty
e putdown(X)...
o stack(X)Y)...
e unstack(X,Y)...
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@ Alandmark is a fact that must be true at some point in every valid
plan (Hoffmann, Porteous and Sebastia 2004)

@ Example: if on(A,B) is a goal, then clear(B) must be true
sometime before that in every plan

@ Some landmarks can be discovered automatically (Hoffmann,

Porteous and Sebastia 2004, Richter, Helmert and Westphal
2008)
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Landmark Orderings

@ There is a (partial) order between landmarks

@ ¢ < y means that landmark ¢ must be achieved before landmark

L4
@ Orderings can also be discovered automatically
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Landmark Discovery

Backchaining - if all actions that achieve landmark ¢ have a
common precondition y, then y is also a landmark, and is
ordered greedy-necessarily before ¢

Goal facts are (trivially) landmarks

Landmark discovery is done by backchaining from goal facts
Small disjunctive landmarks are also allowed

More ways to discover (more) landmarks also exist
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Landmarks Example

@ Consider the following blocks problem (“The Sussman Anomaly”)

@ Initial State B

@ Goal: on(A,B), on(B,C)

ontable A

ontable B

ding B

¥
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Using Landmarks - Subgoals

@ Landmarks were originally used as subgoals in search
@ Advantages: considerable speedup in search
@ Disadvantage:longer plans, incompleteness (sometimes)
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Using Landmarks - Heuristic

@ The number of landmarks that still need to be achieved can be
used as an (inadmissible) heuristic function (Richter et. al.)

@ This is the heuristic used by LAMA - a state of the art satisficing
planner, and winner of the IPC-2008 sequential satisficing track
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Using Landmarks - Heuristic

@ The number of landmarks that still need to be achieved can be
used as an (inadmissible) heuristic function (Richter et. al.)

@ This is the heuristic used by LAMA - a state of the art satisficing
planner, and winner of the IPC-2008 sequential satisficing track

@ Suppose we are in state s. Did we achieve landmark ¢ yet?
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Using Landmarks - Heuristic

@ The number of landmarks that still need to be achieved can be
used as an (inadmissible) heuristic function (Richter et. al.)

@ This is the heuristic used by LAMA - a state of the art satisficing
planner, and winner of the IPC-2008 sequential satisficing track

@ Suppose we are in state s. Did we achieve landmark ¢ yet?

@ There is no way to tell. Achieved landmarks are a function of
path, not state

@ Solution: make the heuristic path-dependent, instead of
state-dependent
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LAMA

@ The landmarks that still need to be achieved after reaching state
svia path & are

L(s,m) =
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LAMA

@ The landmarks that still need to be achieved after reaching state
svia path & are

L(s,m)=1L

@ L is the set of all (discovered) landmarks
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LAMA

@ The landmarks that still need to be achieved after reaching state
svia path & are

L(s,m) = L\ Accepted(s, )

@ L is the set of all (discovered) landmarks
@ Accepted(s, ) C L is the set of accepted landmarks
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LAMA

@ The landmarks that still need to be achieved after reaching state
svia path & are

L(s,m) =L\ (Accepted(s,n) \ ReqAgain(s, m))

@ L is the set of all (discovered) landmarks

@ Accepted(s, ) C L is the set of accepted landmarks

@ RegAgain(s, ) C Accepted(s, ) is the set of required again
landmarks - landmarks that must be achieved again
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LAMA

The landmarks that still need to be achieved after reaching state
svia path & are

L(s,m) =L\ (Accepted(s,n) \ ReqAgain(s, x))

L is the set of all (discovered) landmarks

Accepted(s, ) C L is the set of accepted landmarks

RegAgain(s, ) C Accepted(s, 7) is the set of required again
landmarks - landmarks that must be achieved again

ReqgAgain(s, ) is computed from landmark orderings
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Admissibility - how?

@ We are interested in admissible heuristics, in order to perform
cost-optimal planning

@ LAMA is inadmissible because a single action can achieve
multiple landmarks

@ Example: crane-empty and on(A,B) can both be achieved by
stack(A,B)

@ Solution: assign a cost to each landmark, and sum over the costs
of landmarks
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Conditions for Admissibile Cost Sharing

@ Each action shares its cost between all the landmarks it achieves

vacA: ) cost(a¢) <%(a)

¢cL(als,m)

cost(a, 9) is the cost “assigned” by action ato ¢
L(als, ) is the set of landmarks achieved by a
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Conditions for Admissibile Cost Sharing

@ Each action shares its cost between all the landmarks it achieves

vacA: ) cost(a¢) <%(a)

¢cL(als,m)
cost(a, 9) is the cost “assigned” by action ato ¢

L(als, ) is the set of landmarks achieved by a

@ Each landmark is assigned the cheapest cost any action
assigned it

V¢ € L(s,m): cost(p) < min cost(a,q)
acach(¢|s,m)

cost(¢) is the cost assigned to landmark ¢
ach(¢|s,m) C Ais the set of actions that can achieve ¢
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Admissibile Cost Sharing

@ The idea is that the cost of a set of landmarks is no greater than
the cost of any single action that achieves them

@ Given costs that obey these constraints, the sum of costs of
landmarks that still need to be achieved is an admissible
heuristic, which we call h;

hi(s, ) = cost(L(s,m)) = ) cost(¢)

ocL(s,m)
@ Proof: left up to the reader -
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Cost Partitioning - how?

@ How can we find such a partitioning?

@ Easy answer - uniform cost sharing - each action shares its cost
equally between the landmarks it achieves

__%(a)
cost(a, ) = (as, )|
cost(p)= min  cost(a,¢)

acach(¢|s,m)
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Uniform Cost Sharing

@ Advantage: Easy and fast to compute

@ Disadvantage: can be much worse than the optimal cost
partitioning
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Uniform Cost Sharing

@ Advantage: Easy and fast to compute
@ Disadvantage: can be much worse than the optimal cost
partitioning
@ Example:
e The known landmarks are {px,...,px,q}
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Uniform Cost Sharing

@ Advantage: Easy and fast to compute

@ Disadvantage: can be much worse than the optimal cost
partitioning

@ Example:

e The known landmarks are {px,...,px,q}
e The possible actions are a; (1 < i < k) with eff(a;) = {p;, q}
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Uniform Cost Sharing

@ Advantage: Easy and fast to compute

@ Disadvantage: can be much worse than the optimal cost
partitioning
@ Example:

e The known landmarks are {px,...,px,q}
e The possible actions are a; (1 < i < k) with eff(a;) = {p;, q}
e With uniform cost sharing:

e cost(aj,pi) = cost(aj,q) =0.5

@ cost(p;) = cost(q) =0.5

4] hL(S7 7'6') = k%
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Uniform Cost Sharing

@ Advantage: Easy and fast to compute

@ Disadvantage: can be much worse than the optimal cost
partitioning
@ Example:

e The known landmarks are {px,...,px,q}
e The possible actions are a; (1 < i < k) with eff(a;) = {p;, q}
e With uniform cost sharing:
e cost(aj,pi) = cost(aj,q) =0.5
@ cost(p;) = cost(q) =0.5
4] hL(S7 7'6') = k%
e The optimal cost partitioning is:
e cost(aj,pi) =1, cost(ai,q) =0
e cost(p;) =1, cost(q) =0
] hL(S7 TL') =k
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Example lllustrated
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Example lllustrated

Uniform cost sharing
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Example lllustrated

Uniform cost sharing

min(0.5)=0.5
min(0.5)=0.5
min(0.5)=0.5

min(0.5)=0.5

min(0.5,0.5,0.5,0.5)=0.5
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Example lllustrated

Uniform cost sharing hy=25

min(0.5)=0.5
min(0.5)=0.5

min(0.5)=0.5

min(0.5,0.5,0.5,0.5)=0.5
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Example lllustrated

Optimal cost sharing
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Example lllustrated

Optimal cost sharing

min(1)=1
min(1)=1
min(1)=1
min(1)=1

min(0,0,0,0)=0
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Example lllustrated

Optimal cost sharing h =4
min(1)=1
min(1)=1
min(1)=1
min(1)=1

min(0,0,0,0)=0
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Optimal Cost Sharing

@ The good news: the optimal cost partitioning is poly-time to
compute
e The constraints for admissibility are linear, and can be used in a
Linear Programming (LP) problem
e The objective is to maximize the sum of landmark costs
e The solution to the LP gives us the optimal cost partitioning

@ The bad news: poly-time can still take a long time

=
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Optimal Cost Sharing - Properties

@ Monotonicity along the inclusion relation of the landmark sets

o If Land L are sets of landmarks, and L C L', the optimal cost
sharing ensures cost(L") > cost(L)

@ This does not hold for uniform cost sharing

e Consider the previous example - landmarks {p1,...,px,q},

eff(a;) = {pi,q}
o If we exclude landmark q, uniform cost sharing assigns
cost(p;) = cost(aj,pi) =1,s0 hy = k

min(1)=1

min(1)=1

1 @ min(1)=1

! @ min(1)=1
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How can we do better?

@ Sofar:
e Uniform cost sharing is easy to compute, but suboptimal
e Optimal cost sharing takes a long time to compute

@ Q: How can we get better heuristic estimates that don’t take a
long time to compute?

@ A: Exploit additional information
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Introducing - Action Landmarks

@ An action landmark is an action that must be taken in every valid
plan (Zhu and Givan 2004, Vidal and Geffner 2006)

@ Example: if on(A,B) is a goal, then stack(A,B) must occur in every
plan

@ Checking if action a is an action landmark can be done efficiently

E. Karpas, C. Domshlak Cost-optimal Planning with Landmarks
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Using Action Landmarks

@ Discover (some) action landmarks during preprocessing

@ Keep track of which action landmarks were not used along the
current path 7 - call this set U(s, )

@ Every action in U(s, ) must occur after s, so we should account
for their cost in our heuristic estimate
@ Action landmark covering

e Sum up the costs of actions in U(s, )

e Remove from L(s, ) the landmarks that are achieved by actions
in U(s, ) - call this Ly(s, )

o Perform action cost sharing over Ly(s, )
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Introducing - h 4

@ The resulting heuristic is

hia(s,m) := cost(Ly(s,m))+ Y, €(a)

acU(s,m)

@ h4 is admissible, and dominates h;
o %(a) dominates the sum of costs of landmarks achieved by a
(because of our contraints)
e Removing these landmarks and adding %’ (a) never lowers the
heuristic estimate

=
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Side Benefits of h 4

@ Side Benefit: action landmark covering with uniform cost sharing

e Consider the same example as before - landmarks {py,...,px,q},
eff(ai) = {pi.q}

o Recall that with uniform cost sharing h; = %

e Suppose one of these actions (say aj) is discovered to be an
action landmark

e p; and g are removed from our landmarks for cost sharing

@ po,...,pk are assigned a cost of 1, and a; adds 1

e With uniform cost sharing h; 4 = k
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Side Benefits of h; 4 - lllustrated
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Side Benefits of h; 4 - lllustrated

Action landmark covering

®)
&)
1
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Side Benefits of h; 4 - lllustrated

Uniform Cost Sharing hia=4

1 @ min(1)=1
1 @ min(1)
! @ min(1)=1
1

1
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A* with Path Dependent Heuristics

@ Regular A* evaluates a state only the first time it is reached (via
path 74)

@ When the same state is reached again (via a different path ), it
is not evaluated again - fine for state-dependent heuristics

@ Using A* with an admissible path dependent heuristic still
guarantees that an optimal solution is found
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A* with Path Dependent Heuristics

@ Regular A* evaluates a state only the first time it is reached (via
path 74)

@ When the same state is reached again (via a different path ), it
is not evaluated again - fine for state-dependent heuristics

@ Using A* with an admissible path dependent heuristic still
guarantees that an optimal solution is found

@ Q: Can we do better with a path-dependent heuristic?
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A* with Path Dependent Heuristics

@ Regular A* evaluates a state only the first time it is reached (via
path 74)

@ When the same state is reached again (via a different path ), it
is not evaluated again - fine for state-dependent heuristics

@ Using A* with an admissible path dependent heuristic still
guarantees that an optimal solution is found

@ Q: Can we do better with a path-dependent heuristic?

@ A: Yes. Evaluate states every time they are reached, and take the
maximum

@ This works for any path-dependent heuristic
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

@ Suppose state s was reached by paths 71, o

E<<|

E. Karpas, C. Domshlak Cost-optimal Planning with Landmarks



A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

o 7y |l achieved ¢

©
@)

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

| did not achieve ¢ m» 7y lachieved ¢

@

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

| did not achieve ¢ m» 7y lachieved ¢

@

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
@ Then ¢ needs to be achieved after state s
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

| did not achieve ¢ m» 7y lachieved ¢

| need to achieve ¢

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
@ Then ¢ needs to be achieved after state s
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A* with Landmarks Heuristics

@ Q: Can we do even better with landmarks?

| did not achieve ¢ m» 7y lachieved ¢

| need to achieve ¢

@ Suppose state s was reached by paths 71, o
@ Suppose 7y achieved landmark ¢ and 7, did not
@ Then ¢ needs to be achieved after state s

@ Proof: ¢ is a landmark, therefore it needs to be true in all valid
plans, including valid plans that start with 7,
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Fusing Data from Multiple Paths

@ Suppose & is a set of paths from sy to a state s. Define

U(s,Z) = U U(s,m)

ey

L(s,2?) = L\ (Accepted(s, &) \ ReqAgain(s, Z?))

@ Where:
o Accepted(s, &) = (e Accepted(s, )
e RegAgain(s, &) C Accepted(s, &) is specified as before by s
and the greedy-necessary orderings over L

@ The multi-path-dependent version of our heuristics are
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Multi-path-dependent Heuristics

@ We call the resulting search algoritm LM-A*

@ In general, any heuristic that can use information from multiple
paths can be used in such a way

@ However, storing all the paths that reach all states is not feasible

@ LM-A* exploits the monotonicity of set union and intersection to
store the information from all paths compactly

@ Note: one of the reasons that almost-perfect heuristics are not
good in many planning domains is transpositions (Helmert and
Rdger 2008). This is our little payback
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Evaluation

@ We want to evaluate how our heuristics fare in the “real” world of
IPC benchmarks

@ We evaluate LM-A* and A* with h; and h; 4

@ We evaluate h; 4 with blind search and a baseline admissible
heuristic hyax

@ We evaluate h; 4 with the state-of-the-art FA heuristic
@ We evaluate how h; 4 and FA scale as problem size increases

@ FAis an abstraction based heuristic (Helmert, Haslum and
Hoffmann 2007), which is one of the best-performing
forward-search planners
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LM-A* vs. A*

domain [N /N solved nodes time

1123 1 2 3 1 2 3
Blocks 17/20 |17 |19 |20 2772 | 3779 | 2354 |0.74 | 1.1 |0.98
Logistics | 10/19 (|10 {19 {19 |101274 347 347 | 11 |0.04 | 0.2
Depots 4/7 4 | 6| 7 |425340 [64159 (28243 | 101 47 | 20
Satellite 717 7|7 |7 | 27925 (27917 (27917 | 27 | 44 | 46

| TOTAL | 38/53 [|38 [51 [53 [480649 [13678 [ 9259 [ 19 | 14 | 11|

o1 -A*+hLA
@ 2-LM-A*+h
@ 3-LM-A*"+ hia
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Baseline Comparison

domain [NT/N' [ solved nodes time

1123 1 2 3 1 2 3
Blocks 18/20 |18 [18 |20 [1202791 | 370074 [16715 [5.73 |8.41 |8.31
Logistics | 10/19 (|10 (10 |19 | 157261 63081 347 1] 06| 0.2
Depots 4/7 4| 4| 7 (2361807 | 635063 |28243 | 24 | 65 | 20
Satellite 5/7 5|6 | 7 (5157775 |2187930 | 5142 | 129 | 74 5

| TOTAL [ 37/53 [[37 [38 [53 [1937465 | 654160 [16497 [ 23 | 21 [ 7|

@ 1 - Blind Search
@ 2- A"+ hpmax
@ 3-LM-A*+ha
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State-of-the-art Comparison

domain NT /N solved nodes time
ha | FA hia FA [ ha | FA
airport 18/24 || 24 | 18 | 1395 [ 528152 | 8 [123
blocks 19/23 20 | 22 | 89179 [1319533 | 56 | 13
driverlog 13/14 14 | 13 109611 | 765930 | 53 | 14
freecell 5/7 7 | 5] 8487 [1406793 | 10 [232
logistics 16/19 19 [ 16 | 14265 | 44111 [ 20 | ©
psr 48/50 || 48 [ 50 | 14541 3267 | 3] 0
pw-no-tank 16/21 16 | 21 [122455 | 295857 | 48 | 20
pw-tank 913 9 [ 13 [127383 | 85165 [211 [142
satellite 6/7 7] 6] 6287 | 437238 | 5 [ 13
schedule-strips 23/50 49 | 24 3932 152 15 | 713
trucks 6/7 7 | 6 |249518 4586761 198 | 80
zeno-travel 91 9] 11| 6658 [ 36030 | 9| {1
total [226/284 [[267 [243 | 99838 | 458689 | 43 [103 |
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Scaling - Initial State Estimate

Logistics Satelite
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@ We introduced the h; and h; 4 heuristics

@ We introduced the LM-A* search algorithm that uses
multi-path-dependent heuristics more effectively than A*

@ LM-A* with h; 4 favorably compete with state-of-the-art admissible
heuristics
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Thank You

@ Thank You
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