To Max or not to Max: Online Learning for Speeding Up Optimal Planning

Carmel Domshlak, Erez Karpas, Shaul Markovitch - Technion

Motivation

The problem of interest: optimal planning, in a time-bounded setting

Choosing a Heuristic

- No single best heuristic \Rightarrow why only one?
- Use the maximum of several heuristics Sample results:

[Domain	h_{LA}	$h_{ ext{LM-CUT}}$	max
ſ	airport	25	38	36
	freecell	28	15	22
	T 1 7 11			

Number of problems solved in 30 minutes

Explanation:

Simple Observation

The maximum of several heuristics — is simply the value of one of those heuristics. Idea:

Choose h_i = ORACLE(s, {h₁,..., h_n})
Compute only h_i(s)

How do we define ORACLE?

 $ORACLE(s, \{h_1, \dots, h_n\}) \stackrel{?}{=} \operatorname{argmax}_i h_i(s)$

- The extra time to compute the most informed heuristic may not be worth it
- We need to come up with a theoretical model

Theoretical Model Illustrated

Decision Rule

In the surely expanded region (above both lines) — just expand, don't evaluate. For state *s* on the border, either:

• use h_2 , which takes time t_2 , or

• use h_1 , in which case we expand the highlighted region in $b^{\ell}t_1$ time

Best decision for s: use h_2 iff

 $t_2 < b^{\ell} t_1 \iff \ell > \log_b(t_2/t_1)$

After some more assumptions about the rate of growth of heuristic value

Use h_2 iff

 $h_2 - h_1 > \alpha \log_b(t_2/t_1)$

 α is a hyper-parameter

Dealing with Assumptions

Assumptions

- State space is a tree rule is still applicable
- Single goal state rule is still applicable
- Uniform cost actions rule is still applicable
- Constant branching factor *b* estimate
- Perfect knowledge use decision rule at every state

Two heuristics: h_1 and h_2

- Consistent rule is still applicable
- Evaluating h_i takes time t_i estimate

Labelling Examples

b, t₁, t₂ are estimated
 h₂ - h₁ is calculated for each state
 A state is labeled by h₂ iff

Learning

Pre-search:

- Collecting training examples
- Labeling training examples
- Generating features
- Building a classifier

During search:

- Classification
- Active learning

Features

The simplest features — just values of state variables — are used

Classifier

We use the Naive Bayes classifier, because it is:

Collecting Examples

Sample using stochastic hill climbing "probes"

- Depth limit = $2 * h(s_0)$
- Expand s with probability $\sim 1/h(s)$

Using the Learned Model

max_h

rnd_h

sel_h

h_{LM-CUT}

2000

 h_{LA}

 $h_2 - h_1 > \alpha \log_b(t_2/t_1).$

WLOG $t_2 > t_1$ - the choice is always whether to evaluate the more expensive heuristic

Experiments

We used two state of the art heuristics:

- *h*_{LM-CUT} (Helmert and Domshlak 2009)
- *h*_{*LA*} (Karpas and Domshlak 2009) Parameters:
- $\alpha = 1$
- $\rho = 0.6$
- Training set size = 100

Problems from 22 domains from IPC 1–5

- Very fast
- Incremental
- Provides probabilistic classification

Anytime Behavior

