
To Max or not to Max:
Online Learning for Speeding Up Optimal Planning
Carmel Domshlak, Erez Karpas, Shaul Markovitch - Technion

Motivation
The problem of interest: optimal planning, in a
time-bounded setting

A∗ ≡ f = g+h

hLM-CUT

hLA

hm

PDB

M&S

hmax
SP

Which heuristic is the best?

Theoretical Model Illustrated
Assumptions — State Space

• State space is a tree
• Single goal state
• Uniform cost actions
• Constant branching factor b

Assumptions — Heuristics

• Consistent
• Evaluating hi takes time ti
• Perfect knowledge

sg

s0

f2 = c∗

+ s

f1 = c∗
`

Choosing a Heuristic
• No single best heuristic⇒why only one?
• Use the maximum of several heuristics
Sample results:

Domain hLA hLM-CUT max
airport 25 38 36
freecell 28 15 22

Number of problems solved in 30 minutes
Explanation:

More Informed
Heuristic

Less Search
Effort

More Time Per
State

Less Expanded
States

Simple Observation
The maximum of several heuristics — is simply
the value of one of those heuristics. Idea:

• Choose hi = ORACLE(s, {h1, . . . , hn})
• Compute only hi(s)

How do we define ORACLE?

ORACLE(s, {h1, . . . , hn})
?
= argmax

i
hi(s)

• The extra time to compute the most informed
heuristic may not be worth it

• We need to come up with a theoretical model

Decision Rule
In the surely expanded region (above both
lines) — just expand, don’t evaluate.
For state s on the border, either:

• use h2, which takes time t2, or
• use h1, in which case we expand the high-

lighted region in b`t1 time

Best decision for s: use h2 iff

t2 < b`t1 ⇐⇒ ` > logb(t2/t1)

After some more assumptions about the rate of
growth of heuristic value

Use h2 iff

h2 − h1 > α logb(t2/t1)

α is a hyper-parameter

Dealing with Assumptions
Assumptions

• State space is a tree - rule is still applicable
• Single goal state - rule is still applicable
• Uniform cost actions - rule is still applicable
• Constant branching factor b - estimate
• Perfect knowledge - use decision rule at ev-

ery state

Two heuristics: h1 and h2

• Consistent - rule is still applicable
• Evaluating hi takes time ti - estimate

Learning
Pre-search:

• Collecting training examples
• Labeling training examples
• Generating features
• Building a classifier

During search:

• Classification
• Active learning

Collecting Examples
Sample using stochastic hill climbing “probes”

• Depth limit = 2 ∗ h(s0)
• Expand s with probability ∼ 1/h(s)

s0

Depth limit

Labelling Examples
1. b, t1, t2 are estimated
2. h2 − h1 is calculated for each state
3. A state is labeled by h2 iff

h2 − h1 > α logb(t2/t1).

WLOG t2 > t1 - the choice is always whether to
evaluate the more expensive heuristic

Features
The simplest features — just values of state
variables — are used

Classifier
We use the Naive Bayes classifier, because it is:
• Very fast
• Incremental
• Provides probabilistic classification

Using the Learned Model
state

classifier
features

Evaluate h2Evaluate h1

Pr(h1) > ρ Pr(h2) > ρ

Learn
else

ρ is a hyper-parameter

Experiments
We used two state of the art heuristics:
• hLM-CUT (Helmert and Domshlak 2009)
• hLA (Karpas and Domshlak 2009)
Parameters:
• α = 1

• ρ = 0.6

• Training set size = 100
Problems from 22 domains from IPC 1–5

Anytime Behavior

 370

 380

 390

 400

 410

 420

 430

 440

 450

 460

 0 200 400 600 800 1000 1200 1400 1600 1800

S
ol

ve
d

In
st

an
ce

s

Timeout

hLA
hLM-CUT

maxh
rndh
selh

Total Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

hLA hLM-CUT maxh rndh selh

T
im

e
(s

ec
)

Total Time to Solve All Common Problems

1

