
Lifting Delete Relaxation Heuristics To Successor Generator Planning

Michael Katz
IBM Watson Health, Israel

katzm@il.ibm.com

Dany Moshkovich
IBM Watson Health, Israel

mdany@il.ibm.com

Erez Karpas
Technion, Israel

karpase@technion.ac.il

Abstract
The problem of deterministic planning, i.e., of finding a se-
quence of actions leading from a given initial state to a goal,
is one of the most basic and well studied problems in artificial
intelligence. Two of the best known approaches to determin-
istic planning are the black box approach, in which a pro-
grammer implements a successor generator, and the model-
based approach, in which a user describes the problem sym-
bolically, e.g., in PDDL. While the black box approach is
usually easier for programmers who are not experts in AI to
understand, it does not scale up without informative heuris-
tics. We propose an approach that we baptize as semi-black
box (SBB) that combines the strength of both. SBB is im-
plemented as a set of Java classes, which a programmer can
inherit from when implementing a successor generator. Us-
ing the known characteristics of these classes, we can then
automatically derive heuristics for the problem. Our empir-
ical evaluation shows that these heuristics allow the planner
to scale up significantly better than the traditional black box
approach.

Introduction
The field of artificial intelligence has spent considerable ef-
fort on the seemingly simple problem of deterministic plan-
ning. At a high level, this problem can be formulated as:
given an initial state, a desired goal, and a set of possible (de-
terministic) actions, find a sequence of actions which leads
from the initial state to a state satisfying the goal. One pop-
ular approach to solving deterministic planning problems is
heuristic search. However, two very different ways of using
heuristic search algorithms to solve deterministic planning
problems have been pursued throughout the history of the
field.

The first approach, which we will refer to as the “black
box” approach, involves implementing a piece of software
to represent the planning problem. While the details of de-
terministic planning problems can be quite complex, it is
enough to implement a very simple interface consisting of
three functions: GET-INIT-STATE(), which returns an object
representing the initial state, GET-SUCCESSORS(s), which
returns the successors of a given state s, and IS-GOAL?(s),
which checks whether the given state s is a goal state. Stan-
dard forward search algorithms, such as breadth first search,
depth first search, or depth-first iterative deepening (Korf
1985), can use these three functions to solve the planning

problem. However, in order to solve the problem more
quickly, it is possible to use a heuristic evaluation function,
or heuristic for short, which estimates the distance from a
given state to the goal. Heuristic search algorithms such as
A∗ (Hart, Nilsson, and Raphael 1968) and its variants can
use such a heuristic to solve the problems more quickly. Of
course, the developer now also has to implement the H(s)
function, in order to allow heuristic search algorithms to be
used.

The second approach is the model-based approach
(Geffner 2010), wherein one uses some symbolic language,
such as PDDL (Mcdermott et al. 1998), to describe the
planning problem. This typically involves defining a set
of state variables and describing the initial state, the goal,
and action preconditions and effects in terms of these state
variables. It is then possible to automatically derive the
same three functions mentioned above, as well as a heuristic
evaluation function from the problem description (for ex-
ample (Bonet and Geffner 1999)). Thus, it is possible to
use the same heuristic search algorithms to solve domain-
independent planning problems.

However, a major challenge for using the model-based ap-
proach to solve planning problems of interest to real-world
users is that the average software developer has little to no
experience with modeling. This is further compounded by
the fact that some aspects of real world problems can be very
hard to model symbolically, as evidenced by approaches
such as planning with semantic attachments (Dornhege et
al. 2009; Hertle et al. 2012) and planning modulu theories
(Gregory et al. 2012), which allow the modeler to plug in ex-
ternal code in a general programming language to deal with
specific aspects of the problem.

Our main motivation in this paper is the desire to make
solving deterministic planning problems accessible to soft-
ware developers who are not necessarily experts in artificial
intelligence. The need to solve deterministic planning prob-
lems occurs not infrequently in real life, yet we are not aware
of any frameworks which are both accessible to non-experts,
and provide reasonable performance “out of the box”.

In this paper, we describe such a framework, which brings
the benefits of the model based approach, namely automat-
ically derived heuristics, into black box successor genera-
tor planning. The key insight behind our framework is that,
while planning problems can vary in their details, there are

some common underlying principles behind the vast major-
ity of these problems. Our framework provides an imple-
mentation of these common principles, which is transparent
to the model-based view, yet can still be used inside a “black
box” implementation.

Background
We now describe the two approaches we mention above in
more detail. We begin by defining a deterministic plan-
ning problem over a state space, which is a tuple Π =
〈S,A, s0, SG, f〉, where S is a finite set of states, A is a
finite set of action labels, s0 ∈ S is the initial state, SG ⊆ S
is the set of goal states, and f : S × A → S is the transi-
tion function, such that f(s, a) is the state which applying
action a in state s leads to. A solution to such a problem is
a sequence of action labels π = 〈a0, a1, . . . an〉, such that
f(f(f(s0, a0), a1), . . . an) ∈ SG — that is, a sequence of
action labels which leads from the initial state to some goal
state, using the transition function f .

While deterministic planning over a state space provides
a nice mathematical model, the question of how the state
space is described has more than one answer. The “black
box” approach uses a tuple Πbb = 〈s0, succ, goal?〉, where
s0 is the initial state, succ : S → 2A×S is a succes-
sor generator, and goal? : S → {T, F} is the goal test
function. In order to obtain a “black box” description of
state space planning problem Π, we use the same initial
state, and define succ(s) = {〈a, s′〉 | f(s, a) = s′}, and

goal?(s) =

{
T s ∈ SG

F otherwise
.

On the other hand, the model-based approach assumes
that the state space, S, can be factored, and represented by a
set of variables. Different mathematical formalisms for such
models exist (Fikes and Nilsson 1971; Bäckström and Nebel
1995), but we will focus on describing PDDL (Mcdermott
et al. 1998), which includes both a mathematical formal-
ism and a syntax for writing text files describing a planning
problem in this formalism.

For ease of presentation, we describe a limited subset of
PDDL, which corresponds to STRIPS (Fikes and Nilsson
1971). A planning task in PDDL is described by a tuple
Πpddl = 〈O,P,Op, s0, G〉, where O is a set of objects, P
is a set of predicates, Op is a set of operator schemas, s0 is
the initial state, and G is the goal condition. Each predicate
p ∈ P has an arity ar(p), and defines the set of boolean
propositions {p(o1 . . . on) | ar(p) = n, o1 . . . on ∈ O}. We
will denote the union of these propositions from all predi-
cates by F . Then the set of states defined by Πpddl is 2F ,
the initial state s0 is defined by a list of the propositions
which are true in the initial state, and the goal condition G
is a list of propositions which we want to be true in the end,
that is SG = {s | G ⊆ s}.

Each operator scheme op ∈ Op has a set of named
arguments, args(op), as well as a list of preconditions,
add effects, and delete effects. Each element in these
lists is a predicate p ∈ P , with a list of arguments from
args(op) of size ar(p). A grounded action a is obtained
from op by applying a substitution θ : args(op) →

O to all preconditions, add effects, and delete effects,
which results in a 3-tuple 〈pre(a), add(a), del(a)〉, such
that pre(a), add(a), del(a) ⊆ F . We can finally de-
scribe the transition function f that is defined by Πpddl, as

f(s, a) =

{
(s \ del(a)) ∪ add(a) pre(a) ⊆ s
s otherwise

.

Note that it is always possible to crate a PDDL description
Π of a finite state space S, by defining a predicate of arity
0 for each state s ∈ S. However, the number of states that
is described by this planning problem is exponential in |S|.
Finding a compact PDDL description of a state space plan-
ning problem Π requires understanding the structure of Π,
and is not always an easy task.

Additionally, PDDL is not always easy to deal with. For
example, the occasional need to define actions with a very
large number of parameters has been addressed by automatic
domain transformations (Areces et al. 2014). PDDL also
makes the “closed world assumption”, that the only objects
in the world are O. When this assumption does not hold,
using PDDL planners is much more difficult (Talamadupula
et al. 2010).

From Model-Based to Black Box
As previously mentioned, our objective is to provide devel-
opers who are not AI experts with off-the-shelf solvers to
solve problems they are interested in. Modeling a problem
in PDDL is often difficult for such non-experts. For exam-
ple, many non-experts find it hard to understand why we
can not define an action that moves agent A to location Y
by move(A, Y), and why we instead need to define the ac-
tion as move(A,X, Y). Thus, writing code to describe their
problem (the “black box” approach) remains their only vi-
able option. However, as the solver can not automatically
derive a heuristic evaluation function using this approach, it
is unlikely to scale.

In order to be able to combine both being able to program-
matically specify the planning problem, and yet still be able
to derive some heuristic guidance automatically, we propose
a new framework, which we call object oriented planning.
In this framework, the state of the planning problem is rep-
resented by a set of objects referred to as entities, each with
their own internal state. The successor generator is defined
by another set of classes, each of which represents a single
operator, using two functions: IS-APPLICABLE(s,p)? which
takes a state s and a list of parameters p, and checks if the
action with parameters p is applicable in s, and APPLY(s,p)
which returns the state resulting from applying the action
with parameters p in state s. Note that while this is similar in
spirit to PDDL, this is still a black box, since these functions
are defined procedurally, not symbolically. The successor
generator is implemented by calling IS-APPLICABLE? on
the current state with all possible combinations of param-
eters, where each parameter can be any entity in the state.
This allows the programmer to add and delete entities on the
fly, a challenge with PDDL.

So far, we have described a framework which makes the
“black box” approach slightly easier to use. However, the
key idea behind our framework is that there is a small num-

ber of stereotypes of entities, which appear in many differ-
ent planning domains. The developer can inherit from these
stereotypes, saving some implementation effort. We also
provide a number of operator stereotypes with known be-
havior. Since our framework understands these stereotypes,
it can derive some heuristic guidance for these entities. The
next section describes the stereotypes available in our proto-
type implementation.

Our current prototype implementation focuses on trans-
portation domains, and supports two major stereotypes: tem-
poral, which describes an entity with a clock, and mobile,
which inherits the clock from temporal and can also be in
one of several locations. Our framework also provides a
place stereotype, which represents an immobile entity, and
a roadmap interface, which allows the programmer to de-
fine the time and distance to travel directly between any two
places, or to specify that they are not directly connected. For
a mobile entity, we support specifying a set of temporally ex-
tended goal locations, constraining the allowed behavior of
the entity.

Additionally, the framework provides operator stereo-
types, which correspond to common operations on the en-
tity stereotypes: move, which moves a mobile entity from
one place to another, load which changes the location of a
mobile entity to inside a mobile entity, and unload, which
changes the location of a mobile entity from inside a mobile
entity to the location of the entity. In the latter two cases,
the clocks of all involved entities increase to reflect earliest
applicability. As our framework is implemented in an ob-
ject oriented language (specifically, in Java), the developer
can inherit from the entity and action stereotypes, and im-
plement the desired additional behavior, on top of what the
framework provides.

Operators with the move stereotype take a mobile entity
and a destination place as parameters, and update the lo-
cation of the mobile entity to the destination, as well as
incrementing the internal clock by the duration it takes to
travel. Each such operator is associated with an instance of
roadmap to use for obtaining the travel time. Thus, walk and
drive can both inherit from move, be defined over the same
set of places, but have different roadmaps defining different
travel times, costs, and even connectivity. The cost of the
operator is a linear combination of the travel time and travel
distance, where the weights are specified by the program-
mer.

Operators with the load stereotype take two mobile enti-
ties, which must be in the same place, and change the lo-
cation of the second to inside the first, and increment both
their clocks to the maximum among their clocks plus the ac-
tion duration. This represents having to meet up in the same
place at the same time.

Operators with the unload stereotype take a mobile entity,
which has been loaded inside another mobile entity, and un-
loads it, setting its location to the location of the external
entity, and updates the clocks of both entities to the maxi-
mum among their clocks plus the action duration.

public class Vehicle extends MobileEntity {
private int vehicleCurrentCapacity;
private final int maximalCapacity;
public Vehicle(String entityId, long time,

long timeBound, Place location,
RoutingRequest constraints,
int maxCapacity) {

super(entityId, time, timeBound,
location, constraints);

maximalCapacity = maxCapacity;
vehicleCurrentCapacity = -1;

}
}

public class Participant
extends MobileEntity {

private final String availableVehicleID;
public Participant(String entityId,

long time, long timeBound,
Place location,
RoutingRequest constraints,
String vehicleID) {

super(entityId, time, timeBound,
location, constraints);

this.availableVehicleID = vehicleID;
}

}

Figure 1: Commuter pooling domain Vehicle and Participant
entities implementation example.

Examples
We now demonstrate the advantages of the Semi-Black Box
approach on two concrete examples.

Commuter Pooling Domain
Our first example demonstrates the simplicity of modeling
with the Semi-Black Box approach. We model a commuter
pooling planning problem, where co-workers share rides on
their way to work and back home.

A commuter pooling planning problem is defined by a set
of participants P , which are mobile entities, as well as their
home locations L and a work location w which are places.
Some participants have a vehicle with limited capacity avail-
able, which is also a mobile entity. Figure 1 describes how
these are implementated in our Semi-Black Box framework,
and shows how Vehicle and Participant are implemented as
classes which inherit from MobileEntity.

Each participant p ∈ P is initially at her home location
home(p) ∈ L, which she can leave no earlier than hd(p),
and arrive to the work location no later than wa(p). On her
way home, she can leave her work location no earlier than
wd(p), and arrive back home no later than ha(p). These are
implemented as temporally extended goals on p.

To model the roadmap, we implement the ILocationSer-
vice interface, which specifies travel time and cost between
different places. For each pair of locations, l1, l2, a duration
and distance of moving from l1 to l2 are given by T (l1, l2)
and D(l1, l2), respectively.

public class Drive extends Move {
public Drive(

ILocationService locationService){
super("DRIVE_ACTION", Vehicle.class,

Place.class, locationService,
1, 0, 0);

}

@Override
public boolean isApplicable(IState state,

IEntity[] params) {
Vehicle v = (Vehicle)params[0];
return

(v.getVehicleCurrentCapacity()>-1)
&& super.isApplicable(state,params);

}
}

Figure 2: Implementation of Drive action in commuter pool-
ing domain.

public class Board extends Load {

public Board(){
super("BOARD_ACTION", Participant.class,

Vehicle.class, 1);
}

@Override
public boolean isApplicable(IState state,

IEntity[] params){
if (!super.isApplicable(state,params))

return false;

Participant p = (Participant)params[0];
Vehicle v = (Vehicle) params[1];
int capacity =

v.getVehicleCurrentCapacity();

if (capacity == -1)
return p.getAvailableVehicleID()

.equals(v.getEntityId());

if (capacity < v.getMaximalCapacity())
return !p.getAvailableVehicleID()

.equals(v.getEntityId());

return false;
}

@Override
public void apply(IState state,

IEntity[] params){
super.apply(state, params);

Vehicle v = (Vehicle)params[1];
int capacity =

v.getVehicleCurrentCapacity();
v.setVehicleCurrentCapacity(capacity+1);

}
}

Figure 3: Implementation of Board action in commuter
pooling domain.

Each participant’s vehicle is initially located at that par-
ticipant’s home location. Each participant with an avail-
able vehicle can board/disembark that vehicle as a driver
and any vehicle as a rider, as long as its full capacity is
not reached. Vehicles with boarded drivers can drive be-
tween two connected locations. Figure 2 shows the imple-
mentation of the drive action, which inherits from Move.
Note that the isApplicable method is overriden, and an
extra check for checking if there is a driver in the car
(v.getVehicleCurrentCapacity() > −1) is added.

Figure 3 shows the implementation of the board action,
which checks if the vehicle is full or not by comparing cur-
rent occupancy to the passenger capacity. In PDDL , this
would have required having named slots for each seat. We
omit the description of the other actions for the sake of
brevity.

Evolution Domain
Our second example demonstrates that the Semi-Black Box
approach is more expressive than PDDL. Our objective here
is to create an organism that will merge the qualities of sev-
eral organisms, a common task in evolutionary biology.

An Evolution planning task is defined by a set of organ-
isms, who are either male or female. Each of them is initially
at some location, and can move between locations. Two or-
ganisms of an opposite sex can reproduce, given that they
are at the same location.

Given a subset of organisms G, the goal is to obtain a
new organism, whose predecessors contain all organisms in
G. Note that this planning problem involves creating an un-
known number of new entities, and is therefore beyond the
ability of PDDL to express.

Planning with Semi Black Box
Representations

Having described our representation framework, we must
now describe how we can solve problems formulated in this
representation. We have already described how we can im-
plement a successor generator and a goal test, and there-
fore we can use any uninformed search algorithm, such as
BFS, DFS, ID-DFS (Korf 1985), etc. to solve the problem.
However, uninformed search will not scale to large problem
sizes.

In order to be able to scale up, we must make use of
the extra information we have available — the model-based
portion of the representation. Since we already have some
known operator stereotypes, we exploit our knowledge of
how these affect some aspects of the entities they are ap-
plied to, which also have known stereotypes. We do this by
deriving a heuristic evaluation function, which estimates the
distance from a given state to the goal. This allows us to use
informed search algorithms, such as GBFS or weighted A∗
and solve larger problems.

Our framework provides operator stereotypes with known
behavior, and entity stereotypes with known properties.
Therefore, we derive a heuristic estimate of the distance to
the goal by first “projecting” the problem onto its known
aspects (that is, the known properties of entities and known

behavior of operators), and then deriving a heuristic estimate
for this projection. Note that this projection is not a true ab-
straction in the formal sense of the word, as an operator with
a known stereotype can modify its inherited behavior in ar-
bitrary ways. However, that would constitute poor software
engineering, and our purpose here is to provide a useful tool
for software developers. Furthermore, even if the program-
mer did do this, it would only lead to inaccurate heuristic
estimates, but will never affect the correctness of the plan
that is returned.

We illustrate this point for our prototype implementation
on mobile entities, and provide a PDDL-like description of
this projection. The objects in our PDDL description are the
set of entities and locations. The predicates we use are:

• Each mobile entity E can be in location L (at(E,L))

• Each mobile entity E can be inside another entity E′

(in(E,E′))

• Each temporal entity (including mobile ones) has a clock
with value T (time(E, T))

• For each mobile entity’s temporally extended goal loca-
tions G, we need to indicate whether it was satisfied or
not (satisfied(E,G)).

Finally, we can describe the effects of move, load, and un-
load using the above predicates.

While one might think it is possible to use any of the ex-
isting heuristics from the model-based planning community,
there is a subtle issue here — unlike in PDDL, it is pos-
sible to add or delete entities on the fly in our framework.
Therefore, if we ground the projection according to the ini-
tial state, as is commonly done in model-based planning, we
might end up deriving a heuristic for the wrong problem as
soon as some entity is added or deleted. Another issue is
that with temporal entities, we can not ground their clocks,
as the domain of the variable is all non-negative integers,
and is thus unbounded. Therefore, we opt for computing a
heuristic estimate over a lifted representation.

Devising meaningful estimates from lifted representation
poses a challenge to the planning community (Ridder and
Fox 2014). Our current implementation is a lifted variant
of the hFF(ΠC) heuristic (Keyder, Hoffmann, and Haslum
2014; Hoffmann and Fickert 2015). Given a set of sets of
facts C, hFF(ΠC) finds a semi-relaxed plan, in which delete
effect interactions between the fluents in each set X ∈ C
are preserved. In our framework, these sets of fluents corre-
spond to {AT(E) ∪ IN(E) ∪ TIME(E) ∪ SATISFIED(E) |
E is a moblie entity}, where

• AT(E) = {at(E,L) | L is a location},
• IN(E) = {in(E,E′) | E′ is an entity},
• TIME(E) = {time(E, T) | T is a clock value}, and

• SATISFIED(E) = {satisfied(E,G) |
G is a temporally extended goal location}.
Naturally, these sets are quite large, and impractical to be

exploited in the grounded setting. In our framework, how-
ever, these sets correspond exactly to the possible values of
mobile entities.

Specifically, we construct a variant of the relaxed plan-
ning graph, which is a layered graph, describing the relaxed
action application from a given state. The layers are added
until a fixpoint is reached, that is no new relaxed entity is
added. During the construction of the graph, a successor
generator is used to create concrete grounded instances of
the move, load, and unload actions and add these instances
to the graph. Additionally, if we can achieve some entity
E being at some location L at two different times, we only
keep the earliest. Thus, the overall procedure is guaranteed
to terminate, since the aforementioned actions change mo-
bile entities, with location having a finite number of possi-
ble values. Since each layer adds at least one such modified
mobile entity to the graph, the overall bound on the number
of layers is polynomial in the number of these values.

Once the relaxed planning graph is constructed, the last
layer is checked to consists of a representative with all tem-
porally extended goals on locations achieved for each mo-
bile entity of the evaluated state. If that does not hold,
an infinity value is returned. Otherwise, similarly to hFF,
the heuristic is computed using best supporters from either
hmax or hadd heuristics on the nodes of the constructed lay-
ered graph1 (Bonet and Geffner 2001; Keyder and Geffner
2008).

In order to speed up the heuristic computation, we intro-
duced a simple dead end detection check, validating that
each mobile entity can reach each location it is explicitly
constrained to visit within the defined temporal bounds in
a relaxed fashion. We note that our implementation of the
heuristic function is rather naive and can be significantly
sped up by introducing sophisticated data structures, etc.

Related work
We are not the first to identify the difficulty of using sym-
bolic languages such as PDDL to model some interesting,
useful planning problems. Functional STRIPS (Geffner
2000; Francés and Geffner 2015) introduces function sym-
bols which can be nested, and thus allows us to have objects
without explicit names — something that PDDL does not
support.

Planning with semantic attachments (Dornhege et al.
2009; Hertle et al. 2012) and planning modulu theories
(Gregory et al. 2012) both allow the user to combine
symbolic models with more expressive modules (or theo-
ries), which are implemented as external function calls to a
generic programming language. These external calls are tied
into the symbolic model via an interface involving a set of
predicates of the symbolic model.

None of the approaches described above alleviate the need
for symbolic modeling. In fact, they force the user to think
of a good abstraction for the external modules, which will
serve as the interface. Our approach, on the other hand, frees
the user from the need for symbolic modelling, except where
she specifically chooses to do so.

1We currently do not implement the preferred operators feature
that proved to be extremely helpful in the model-based planning,
leaving it for the future work.

Plan cost Quality Total time
LAMA FF SBB BB LAMA FF SBB BB optic LAMA FF SBB BB

02 0 1108 1108 1108 1108 1.00 1.00 1.00 1.00 0.1 0.2 0.1 0.1 0.1
02 1 1108 1108 1108 1108 1.00 1.00 1.00 1.00 0.0 0.1 0.1 0.1 0.0
04 0 2176 1136 0.52 0.00 1.00 0.00 8.3 1322.5 280.4
04 1 1136 1136 1136 1.00 1.00 1.00 0.00 0.3 1203.7 737.8 29.3
04 2 1140 1140 1140 1140 1.00 1.00 1.00 1.00 22.2 93.2 25.9 1.5 2.0
04 3 1136 1136 1136 1136 1.00 1.00 1.00 1.00 0.2 4.8 1.1 0.3 0.6
06 0 5324 4332 0.81 0.00 1.00 0.00 50.3 3.5
06 1 5364 5374 1.00 0.00 1.00 0.00 22.2 5.3
06 2 4304 3270 0.76 0.00 1.00 0.00 437.4 35.1 1.1
06 3 3264 3304 2244 0.69 0.68 1.00 0.00 22.6 627.0 471.7
06 4 2244 2244 2244 2244 1.00 1.00 1.00 1.00 54.7 304.6 6.7 25.9
08 0 7472 5426 0.73 0.00 1.00 0.00 151.3 39.0
08 1 6412 6402 1.00 0.00 1.00 0.00 208.6 6.7
08 6 ∞ 0.00 0.00 1.00 0.00 239.9
10 0 9560 1.00 0.00 0.00 0.00 244.6
10 2 8560 1.00 0.00 0.00 0.00 368.4
Sum 13.51 6.68 14.00 5.00

Table 1: Empirical Results on Commuter Pooling Domain.

task 03 3 04 3 04 4 06 3 06 4 08 3 08 4 10 3
cost 250 250 340 240 320 220 320 220
time 0.564 0.311 0.511 1.27 1.224 0.482 6.88 2.368

Table 2: Empirical Results for SBB on Evolution Domain.

Empirical evaluation
In order to empirically evaluate the effectiveness of solving
complex problems with the semi-black box approach, we
implemented the approach in Java, together with the greedy
best-first search, and the lazy weightedA∗ search. The com-
parison was performed on 25 generated problems of an in-
creasing size of the commuter pooling domain. The results
are depicted in Table 1, showing the instances where at least
one of the planners was able to find a solution. We used a
2GB memory bound and 30 minutes time bound on a single
core of an Intel(R) Core(TM) i7 2.5 GHz machine.

Our approach (SBB in Table 1) performs an iterative
search with found solution cost passed as an upper bound
to the next iteration, similarly to the LAMA planner (Richter
and Westphal 2010). We start with a greedy best first search,
and then weightedA∗ with decreasing weights 5, 3, 2, and 1,
continuing with weight 1 until no solution is found. First, we
compare our approach to a state-of-the-art temporal planner
optic (Benton, Coles, and Coles 2012). Second, we com-
pare to the pure black box approach (BB in Table 1) — BFS
without the automatically derived heuristic.

The commuter pooling domain corresponds to a tempo-
rally simple fragment of temporal planning, and thus can be
mapped to STRIPS in linear time (Cushing et al. 2007).
Therefore, we also compare to two classical planners, man-
ually adjusting the time granularity and manually removing
(unrecognized by the preprocessor) unreachable time values,
to allow for successful grounding of reasonable size tasks.
We used the Fast Downward planning framework (Helmert
2006) with two configurations: an iterative search with the
FF heuristic (Hoffmann and Nebel 2001) without preferred

operators, which is the closest configuration to our solution
method (FF in Table 1), and the state-of-the-art LAMA plan-
ner (Richter and Westphal 2010).

The leftmost part of Table 1 shows the best found plan
cost for four of the approaches that aim at optimizing plan
cost. The middle part shows the best obtained solution qual-
ity, which is a standard IPC score allocating a number be-
tween 0 and 1 to each run, where 1 is given to a planner that
found the best solution for that task, and 0 stands for not
being able to solve the task within the given bounds. The
rightmost part shows the total run time until the best solu-
tion was found.

As these results show, SBB outperforms all other plan-
ners on IPC score. Comparing to the second best performer,
LAMA, LAMA solves two instances that SBB did not, while
SBB solves one instance that LAMA did not (proving that
it is infeasible). On instances that they both solve, SBB is
typically much faster, except for a single instance. A com-
parison to the most similar technique, FF, shows that SBB is
much better, indicating that there is some value in the lifted
heuristic computation. Finally, comparing to BB shows the
automatically derived heuristic is essential.

In addition, to test the feasibility of our approach for solv-
ing tasks outside the PDDL fragment, we performed an
evaluation of the Evolution domain. The results are depicted
in Table 2. The tasks are named x y, where x is the num-
ber of initially existing organizms, and y is the size of G,
the subset of organizms that should be among the predeces-
sors of the target organizm. The results clearly show that our
approach is able to cope with sufficiently large instances.

Discussion and future work
We introduce a framework that brings the benefits of the
model based approach into black box successor generator
planning by allowing annotating planning problem entities
and actions with certain predefined stereotypes. By that, we
take a major step toward making solving deterministic plan-

ning problems accessible to software developers who are not
necessarily experts in artificial intelligence.

For future work, we intend to extend our framework
by both introducing and exploiting additional stereotypes,
and by introducing additional search enhancements, such as
additional automatically derived heuristics (landmarks, ab-
stractions) and search boosting techniques, such as preferred
operators.

References
Areces, C.; Bustos, F.; Dominguez, M. A.; and Hoffmann,
J. 2014. Optimizing planning domains by automatic action
schema splitting. In Proc. ICAPS 2014.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
planning with preferences and time-dependent continuous
costs. In Proc. ICAPS 2012.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. ECP 1999, 360–372.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In Proc.
IJCAI 2007, 1852–1859.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Proc. ICAPS 2009.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3/4):189–208.
Francés, G., and Geffner, H. 2015. Modeling and compu-
tation in planning: Better heuristics from more expressive
languages. In Proc. ICAPS 2015.
Geffner, H. 2000. Functional strips: A more flexible lan-
guage for planning and problem solving. In Minker, J.,
ed., Logic-Based Artificial Intelligence, volume 597 of The
Springer International Series in Engineering and Computer
Science. Springer US. 187–209.
Geffner, H. 2010. The model-based approach to autonomous
behavior: A personal view. In Proc. AAAI 2010.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning modulo theories: Extending the planning paradigm. In
Proc. ICAPS 2012.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Science and Cybernetics 4(2):100–
107.
Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with semantic attachments: An object-oriented
view. In Proc. ECAI 2012, 402–407.

Hoffmann, J., and Fickert, M. 2015. Explicit conjunc-
tions without compilation: Computing hff(pic) in polyno-
mial time. In Proc. ICAPS 2015, 115–119.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Keyder, E., and Geffner, H. 2008. Heuristics for planning
with action costs revisited. In Proc. ECAI 2008, 588–592.
Keyder, E. R.; Hoffmann, J.; and Haslum, P. 2014. Im-
proving delete relaxation heuristics through explicitly repre-
sented conjunctions. J. Artif. Intell. Res. (JAIR) 50:487–533.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial Intelligence 27:97–
109.
Mcdermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J. Ar-
tif. Intell. Res. (JAIR) 39:127–177.
Ridder, B., and Fox, M. 2014. Heuristic evaluation based on
lifted relaxed planning graphs. In Proc. ICAPS 2014.
Talamadupula, K.; Benton, J.; Schermerhorn, P. W.; Kamb-
hampati, S.; and Scheutz, M. 2010. Integrating a closed
world planner with an open world robot: A case study. In
Proc. AAAI 2010.

