
Introduction Object Oriented Planning Empirical Evaluation

Lifting Delete Relaxation Heuristics To Successor
Generator Planning

Michael Katz1 Dany Moshkovich1 Erez Karpas2

1IBM Haifa Research Lab
2Technion — Israel Institute of Technology

Workshop on Heuristics and Search for Domain-Independent
Planning — ICAPS 2016



Introduction Object Oriented Planning Empirical Evaluation

What is Planning?



Introduction Object Oriented Planning Empirical Evaluation

What is Planning?

Given initial state, goal, and description of possible actions, find a
sequence of actions which leads from the initial state to the goal
How are these described?

Symbolically, e.g., in PDDL
With a black-box successor generator



Introduction Object Oriented Planning Empirical Evaluation

What is Planning?

Given initial state, goal, and description of possible actions, find a
sequence of actions which leads from the initial state to the goal
How are these described?

Symbolically, e.g., in PDDL
With a black-box successor generator



Introduction Object Oriented Planning Empirical Evaluation

The Symbolic Approach

Problem description is given by:
A set of state variables F
A set of actions A

Preconditions and effects are partial assignments to F

Initial state is a complete assignment to F
Goal is a partial assignment to F

PDDL also adds types, objects, parameters



Introduction Object Oriented Planning Empirical Evaluation

The Black-Box Approach

Problem description is given by:
Initial state s0 — some opaque object
Successor generator succ — a function which can be applied to a
state s and returns a list of applicable actions and their successor
Goal test goal? — a function which can be applied to a state and
returns whether that state is a goal state



Introduction Object Oriented Planning Empirical Evaluation

Black-Box vs. Symbolic Approach

Symbolic approach allows us to automatically derive heuristics
Symbolic approach is sometimes harder to understand

I realize this is the wrong room to make this point, but consider
students you’ve taught PDDL

Black box approach allows for more efficient successor
generation

No need for “unnecessary” parameters in actions, e.g., in
DRIVE(?FROM, ?TO) — we know where we are (see also Areces,
Bustos, Dominguez and Hoffmann, 2014)
No need for static predicates which encode math, e.g.,
NEXT(N1,N2), NEXT(N2,N3), . . .



Introduction Object Oriented Planning Empirical Evaluation

Black-Box vs. Symbolic Approach

Symbolic approach allows us to automatically derive heuristics
Symbolic approach is sometimes harder to understand

I realize this is the wrong room to make this point, but consider
students you’ve taught PDDL

Black box approach allows for more efficient successor
generation

No need for “unnecessary” parameters in actions, e.g., in
DRIVE(?FROM, ?TO) — we know where we are (see also Areces,
Bustos, Dominguez and Hoffmann, 2014)
No need for static predicates which encode math, e.g.,
NEXT(N1,N2), NEXT(N2,N3), . . .



Introduction Object Oriented Planning Empirical Evaluation

Black-Box vs. Symbolic Approach

Symbolic approach allows us to automatically derive heuristics
Symbolic approach is sometimes harder to understand

I realize this is the wrong room to make this point, but consider
students you’ve taught PDDL

Black box approach allows for more efficient successor
generation

No need for “unnecessary” parameters in actions, e.g., in
DRIVE(?FROM, ?TO) — we know where we are (see also Areces,
Bustos, Dominguez and Hoffmann, 2014)
No need for static predicates which encode math, e.g.,
NEXT(N1,N2), NEXT(N2,N3), . . .



Introduction Object Oriented Planning Empirical Evaluation

The Best of Both Worlds?

We introduce the Semi Black-Box approach

Combines the flexibility of the black-box approach with the ability
to automatically derive a heuristic

Implemented in a Java framework called object oriented planning



Introduction Object Oriented Planning Empirical Evaluation

Object Oriented Planning

A state consists of a set of entities
These are objects in the pddl sense, which are implemented as
objects in Java
Each entity has an internal state (e.g,. location)

Operators (ungrounded actions) are implemented as Java
classes

Operator implements two functions: ISAPPLICABLE and APPLY

Successor generator calls ISAPPLICABLE for all possible
parameter combinations (according to entities in given state)
If an operator + parameters is applicable, APPLY is called to
generate the successor

So far, this is purely a black-box framework



Introduction Object Oriented Planning Empirical Evaluation

Object Oriented Planning: Archetypes

The framework also contains a set of entities and operators with
known behavior

Intuitively, a set of entities and operators that corresponds to a
known PDDL domain

We refer to these known entities and operators as archetypes
Example: MobileEntity and Move operator

Users can inherit from these, and modify their behavior

Note: unlike PDDL, actions can create or destroy entities



Introduction Object Oriented Planning Empirical Evaluation

Object Oriented Planning: Archetypes

The framework also contains a set of entities and operators with
known behavior

Intuitively, a set of entities and operators that corresponds to a
known PDDL domain

We refer to these known entities and operators as archetypes
Example: MobileEntity and Move operator

Users can inherit from these, and modify their behavior



Introduction Object Oriented Planning Empirical Evaluation

Example: Vehicle Entity

public class Vehicle extends MobileEntity {
private int vehicleCurrentCapacity;
private final int maximalCapacity;
public Vehicle(String entityId, long time,

long timeBound, Place location,
RoutingRequest constraints,
int maxCapacity) {

super(entityId, time, timeBound,
location, constraints);

maximalCapacity = maxCapacity;
vehicleCurrentCapacity = -1;

}
}



Introduction Object Oriented Planning Empirical Evaluation

Example: Drive Action

public class Drive extends Move {
public Drive(

ILocationService locationService){
super("DRIVE_ACTION", Vehicle.class,

Place.class, locationService,
1, 0, 0);

}

@Override
public boolean isApplicable(IState state,

IEntity[] params) {
Vehicle v = (Vehicle)params[0];
return
(v.getVehicleCurrentCapacity()>-1)
&& super.isApplicable(state,params);

}
}



Introduction Object Oriented Planning Empirical Evaluation

Heuristics for Object Oriented Planning Problems

High level idea
Project the problem onto the known aspects
Use a known heuristic on this symbolic planning problem
Can not make any guarantees on admissibilty or dead-end safety
because we can not know what behavior the user overrode

However, because entities can be created and destroyed, we can
not ground the problem during preprocessing
We implemented a lifted variant of hFF (ΠC)

Actions are grounded on-the-fly, as they are added to the relaxed
planning graph
Since we know the domain, we can also choose a good C



Introduction Object Oriented Planning Empirical Evaluation

Empirical Evaluation

We tested on two domains:
Commuter car pooling

A set of commuters can drive vehicles and pick each other up
Each commuter has temporal constraints on when they can leave
their house, get to work, leave work, and get back home
Supported by another feature of our framework — temporally
expressive goals
Compared to LAMA and GBFS with FF heuristic (running on
PDDL encoding), to our framework without the heuristic, and to
optic on PDDL 2.1 encoding

Evolution
A set of entities can move between different locations and mate (if
they are in the same place)
Goal is to create an entity whose ancestors include a given set of
entities
Impossible to model in PDDL, so only SBB was tested



Introduction Object Oriented Planning Empirical Evaluation

Evaluation: Commuter Car Pooling — Cost and Quality

Plan cost Quality
LAMA FF SBB BB LAMA FF SBB BB

02_0 1108 1108 1108 1108 1.00 1.00 1.00 1.00
02_1 1108 1108 1108 1108 1.00 1.00 1.00 1.00
04_0 2176 1136 0.52 0.00 1.00 0.00
04_1 1136 1136 1136 1.00 1.00 1.00 0.00
04_2 1140 1140 1140 1140 1.00 1.00 1.00 1.00
04_3 1136 1136 1136 1136 1.00 1.00 1.00 1.00
06_0 5324 4332 0.81 0.00 1.00 0.00
06_1 5364 5374 1.00 0.00 1.00 0.00
06_2 4304 3270 0.76 0.00 1.00 0.00
06_3 3264 3304 2244 0.69 0.68 1.00 0.00
06_4 2244 2244 2244 2244 1.00 1.00 1.00 1.00
08_0 7472 5426 0.73 0.00 1.00 0.00
08_1 6412 6402 1.00 0.00 1.00 0.00
08_6 ∞ 0.00 0.00 1.00 0.00
10_0 9560 1.00 0.00 0.00 0.00
10_2 8560 1.00 0.00 0.00 0.00
Sum 13.51 6.68 14.00 5.00



Introduction Object Oriented Planning Empirical Evaluation

Evaluation: Commuter Car Pooling — Planning Time

Total time
optic LAMA FF SBB BB

02_0 0.1 0.2 0.1 0.1 0.1
02_1 0.0 0.1 0.1 0.1 0.0
04_0 8.3 1322.5 280.4
04_1 0.3 1203.7 737.8 29.3
04_2 22.2 93.2 25.9 1.5 2.0
04_3 0.2 4.8 1.1 0.3 0.6
06_0 50.3 3.5
06_1 22.2 5.3
06_2 437.4 35.1 1.1
06_3 22.6 627.0 471.7
06_4 54.7 304.6 6.7 25.9
08_0 151.3 39.0
08_1 208.6 6.7
08_6 239.9
10_0 244.6
10_2 368.4



Introduction Object Oriented Planning Empirical Evaluation

Evaluation: Evolution

cost time
03_3 250 0.564
04_3 250 0.311
04_4 340 0.511
06_3 240 1.27
06_4 320 1.224
06_5
08_3 220 0.482
08_4 320 6.88
08_5
08_6
10_3 220 2.368
10_4
10_5
10_6
10_7



Introduction Object Oriented Planning Empirical Evaluation

Summary

Presented the object oriented planning framework, which adds
some symbolic elements to black-box planning

Empirically showed the benefits of this approach
Future work

Add more archetypes to the framework, possibly with a generic
mechanism for adding PDDL notations
Empirical evaluation of people’s ease-of-use of BB, SBB, and
PDDL



Introduction Object Oriented Planning Empirical Evaluation

Thank You

Questions?


	Introduction
	Object Oriented Planning
	Empirical Evaluation

