
To Max or Not to Max: Online Learning for Speeding Up Optimal Planning ∗

Carmel Domshlak and Erez Karpas
Faculty of Industrial Engineering & Management

Technion, Israel

Shaul Markovitch
Faculty of Computer Science

Technion, Israel

Abstract

It is well known that there cannot be a single “best” heuris-
tic for optimal planning in general. One way of overcom-
ing this is by combining admissible heuristics (e.g. by using
their maximum), which requires computing numerous heuris-
tic estimates at each state. However, there is a tradeoff be-
tween the time spent on computing these heuristic estimates
for each state, and the time saved by reducing the number of
expanded states. We present a novel method that reduces the
cost of combining admissible heuristics for optimal search,
while maintaining its benefits. Based on an idealized search
space model, we formulate a decision rule for choosing the
best heuristic to compute at each state. We then present an
active online learning approach for that decision rule, and
employ the learned model to decide which heuristic to com-
pute at each state. We evaluate this technique empirically, and
show that it substantially outperforms each of the individual
heuristics that were used, as well as their regular maximum.

Introduction

One of the most prominent approaches to cost-optimal plan-
ning is using the A∗ search algorithm with an admissible
heuristic. Many admissible heuristics have been proposed,
varying from cheap to compute yet typically not very in-
formative to expensive to compute but often very informa-
tive. Since the accuracy of heuristic functions varies for dif-
ferent problems, and even for different states of the same
problem, we can produce a more robust optimal planner by
combining several admissible heuristics. The simplest way
of doing this is by using their point-wise maximum at each
state. Presumably, each heuristic is more accurate, that is,
provides a higher estimate, in different regions of the search
space, and thus their maximum is at least as accurate as
each of the individual heuristics. In some cases it is also
possible to use additive (Felner, Korf, and Hanan 2004;
Haslum, Bonet, and Geffner 2005; Katz and Domshlak
2008) or mixed additive/maximizing (Coles et al. 2008;
Haslum et al. 2007) combinations of admissible heuristics.

An important issue with both max-based and sum-based
approaches is that the benefit of adopting them over sticking
to just a single heuristic is assured only if the planner is not

∗Partly supported by ISF grant 670/07
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

constrained by time. Otherwise, the time spent on comput-
ing numerous heuristic estimates at each state may outweigh
the time saved by reducing the number of expanded states.
This is precisely the contribution of this paper: We propose a
novel method for combining admissible heuristics that aims
at providing the accuracy of their max-based combination
while still computing just a single heuristic for each search
state. This method, called selective max, is presented and
evaluated in what follows in the context of heuristic-search
planning, yet is applicable to any search problem.

At a high level, selective max can be seen as a hyper-
heuristic (Burke et al. 2003) — a heuristic for choosing be-
tween other heuristics. Specifically, selective max is based
on a seemingly useless observation that, if we had an or-
acle indicating the most accurate heuristic for each state,
then computing only the indicated heuristic would provide
us with the heuristic estimate of the max-based combina-
tion. In practice, of course, such an oracle is not available.
However, in the time-limited settings of our interest, this is
not our only concern: It is possible that the extra time spent
on computing the more accurate heuristic (indicated by the
oracle) may not be worth the time saved by the reduction in
expanded states.

Addressing the latter concern, we first analyze an ideal-
ized model of a search space and deduce a decision rule for
choosing a heuristic to compute at each state when the objec-
tive is to minimize the overall search time. Taking that de-
cision rule as our target concept, we then describe an online
active learning procedure for that concept that constitutes
the essence of selective max. Our experimental evaluation
with two state-of-the-art admissible heuristics for domain-
independent planning, hLA (Karpas and Domshlak 2009)
and hLM-CUT (Helmert and Domshlak 2009), shows that,
under various time limits, using selective max consistently
results in solving more problems than using each of these
two heuristics individually, as well as using their max-based
combination. Furthermore, the results show that using se-
lective max results in solving problems faster on average.

Notation

We consider planning in the SAS+ formalism (Bäckström
and Nebel 1995); a SAS+ description of a planning task
can be automatically generated from its PDDL descrip-
tion (Helmert 2009). A SAS+ task is given by a 4-tuple

1071

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



sg

s0

f1 = c∗f2 = c∗

s

Figure 1: An illustration of the idealized search space model
and the f -contours of two admissible heuristics.

Π = 〈V,A, s0, G〉. V = {v1, . . . , vn} is a set of state
variables, each associated with a finite domain dom(vi).
Each complete assignment s to V is called a state; s0 is
an initial state, and the goal G is a partial assignment to V .
A is a finite set of actions, where each action a is a pair
〈pre(a), eff(a)〉 of partial assignments to V called precondi-
tions and effects, respectively.

An action a is applicable in a state s iff pre(a) ⊆ s.
Applying a changes the value of each state variable v to
eff(a)[v] if eff(a)[v] is specified. The resulting state is de-
noted by s a ; by s 〈a1, . . . , ak〉 we denote the state ob-
tained from sequential application of the (respectively appli-
cable) actions a1, . . . , ak starting at state s. Such an action
sequence is a plan if G ⊆ s0 〈a1, . . . , ak〉 .

A Model for Heuristic Selection

Given a set of admissible heuristics and the objective of min-
imizing the overall search time, we are interested in a deci-
sion rule for choosing the right heuristic to compute at each
search state. In what follows, we derive such a decision rule
for a pair of admissible heuristics with respect to an ideal-
ized search space model corresponding to a tree-structured
search space with a single goal state, constant branching fac-
tor b, and uniform cost actions (Pearl 1984). Two additional
assumptions we make are that the heuristics are consistent,
and that the time ti required for computing heuristic hi is in-
dependent of the state being evaluated; w.l.o.g. we assume
t2 ≥ t1. Obviously, most of the above assumptions do not
hold in typical search problems, and later we carefully ex-
amine their individual influences on our framework.

Adopting the standard notation, let g(s) be the cost of
the cheapest path from s0 to s. Defining maxh(s) =
max(h1(s), h2(s)), we then use the notation f1(s) = g(s)+
h1(s), f2(s) = g(s) + h2(s), and maxf (s) = g(s) +
maxh(s). The A∗ algorithm with a heuristic h expands states
in increasing order of f = g + h. Assuming the goal state is
at depth c∗, let us consider the states satisfying f1(s) = c∗
(the dotted line in Fig. 1) and those satisfying f2(s) = c∗
(the solid line in Fig. 1). The states above the f1 = c∗
and f2 = c∗ contours are those that are surely expanded
by A∗ with h1 and h2, respectively. The states above both
these contours (the grid-marked region in Fig. 1), that is,

the states SE = {s | maxf (s) < c∗}, are those that are
surely expanded by A∗ using maxh (see Theorem 4, p. 79,
Pearl 1984).

Under the objective of minimizing the search time, ob-
serve that the optimal decision for any state s ∈ SE is
not to compute any heuristic at all, since all these states
are surely expanded anyway. The optimal decision for all
other states is a bit more complicated. f2 = c∗ contour that
separates between the grid-marked and lines-marked areas.
Since f1(s) and f2(s) account for the same g(s), we have
h2(s) > h1(s), that is, h2 is more accurate in state s than
h1. If we were interested solely in reducing state expansions,
then h2 would obviously be the right heuristic to compute at
s. However, for our objective of reducing the actual search
time, h2 may actually be the wrong choice because it might
be much more expensive to compute than h1.

Let us consider the effects of each of our two alternatives.
If we compute h2(s), then s is no longer surely expanded
since f2(s) = c∗, and thus whether A∗ expands s or not
depends on tie-breaking. In contrast, if we compute h1(s),
then s is surely expanded because f1(s) < c∗. Note that not
computing h2 for s and then computing h2 for one of the
descendants s′ of s is surely a sub-optimal strategy as we do
pay the cost of computing h2, yet the pruning of A∗ is lim-
ited only to the search sub-tree rooted in s′. Therefore, our
choices are really either computing h2 for s, or computing
h1 for all the states in the sub-tree rooted in s that lie on the
f1 = c∗ contour. Suppose we need to expand l complete
levels of the state space from s to reach the f1 = c∗ contour.
This means we need to generate order of bl states, and then
invest blt1 time in calculating h1 for all these states that lie
on the f1 = c∗ contour. In contrast, suppose we choose to
compute h2(s). Assuming favorable tie-breaking, the time
required to “explore” the sub-tree rooted in s will be t2.

Putting things together, the optimal decision in state s is
thus to compute h2 iff t2 < blt1, or if we rewrite this, if

l > logb(t2/t1).

As a special case, if both heuristics take the same time to
compute, this decision rule boils down to l > 0, that is,
the optimal choice is simply the more accurate (for state s)
heuristic.

The next step is to somehow estimate the “depth to go”
l. For that, we make another assumption about the rate
at which f1 grows in the sub-tree rooted at s. Although
there are many possibilities here, we will look at two esti-
mates that appear to be quite reasonable. The first estimate
assumes that the h1 value remains constant in the subtree
rooted at s, that is, the additive error of h1 increases by
1 for each level below s. In this case, f1 increases by 1
for each expanded level of the sub-tree (because h1 remains
the same, and g increases by 1), and it will take expanding
Δh(s) = h2(s)− h1(s) levels to reach the f1 = c∗ contour.
The second estimate we examine assumes that the absolute
error of h1 remains constant, that is, h1 increases by 1 for
each level expanded, and so f1 increases by 2. In this case,
we will need to expand Δh(s)/2 levels. This can be gen-
eralized to the case where the estimate h1 increases by any
constant additive factor c, which results in Δh(s)/(c + 1)

1072



levels being expanded. In either case, the dependence of l
on Δh(s) is linear, and thus our decision rule can be refor-
mulated to compute h2 if

Δh(s) > α logb(t2/t1),

where α is a hyper-parameter for our algorithm. Note that,
given b, t1, and t2, the quantity α logb(t2/t1) becomes fixed
and in what follows we denote simply by threshold τ .

Dealing with Model Assumptions

The idealized model above makes several assumptions,
some of which appear to be very problematic to meet in
practice. Here we examine these assumptions more closely,
and when needed, suggest pragmatic compromises.

First, the model assumes that the search space forms a tree
with a single goal state and uniform cost actions, and that the
heuristics in question are consistent. Although the first as-
sumption does not hold in most planning problems, and the
second assumption is not satisfied by some state-of-the-art
heuristics, they do not prevent us from using the decision
rule suggested by the model. Furthermore, there is some
empirical evidence to support our conclusion about expo-
nential growth of the search effort as a function of heuristic
error, even when the assumptions made by the model do not
hold. In particular, the experiments of Helmert and Röger
(2008) with heuristics with small constant additive errors
clearly show that the number of expanded nodes typically
grows exponentially as the (still very small and additive) er-
ror increases.

The model also assumes that both the branching factor
and the heuristic computation times are constant across the
search states. In our application of the decision rule to plan-
ning in practice, we deal with this assumption by adopt-
ing the average branching factor and heuristic computation
times, estimated from a random sample of search states. Fi-
nally, the model assumes perfect knowledge about the surely
expanded search states. In practice, this information is ob-
viously not available. We approach this issue conservatively
by treating all the examined search states as if they were on
the decision border, and thus apply the decision rule at all
the search states. Note that this does not hurt the correctness
of our algorithm, but only costs us some heuristic compu-
tation time on the surely expanded states. Identifying the
surely expanded region during search is the subject of on-
going work, and can hopefully be used to improve search
efficiency even further.

Online Learning of the Selection Rule

Our decision rule for choosing a heuristic to compute at a
given search state s suggests to compute the more expen-
sive heuristic h2 when h2(s) − h1(s) > τ . However, com-
puting h2(s) − h1(s) requires computing in s both heuris-
tics, defeating the whole purpose of reducing search time by
selectively evaluating only one heuristic at each state. To
overcome this pitfall, we take our decision rule as a tar-
get concept, and suggest an active online learning proce-
dure for that concept. Intuitively, our concept is the set

of states where the more expensive heuristic h2 is ”signif-
icantly” more accurate than the cheaper heuristic h1. Ac-
cording to our model, this corresponds to the states where
the reduction in expanded states by computing h2 outweighs
the extra time needed to compute it. In what follows, we
present our learning-based methodology in detail, describ-
ing the way we select and label training examples, the fea-
tures we use to represent the examples, the way we construct
our classifier, and the way we employ it within A∗ search.

To build a classifier, we first need to collect training ex-
amples, which should be representative of the entire search
space. One option for collecting the training examples is to
use the first k states of the search where k is the desired num-
ber of training examples. However, this method has a bias
towards states that are closer to the initial state, and therefore
is not likely to well represent the search space. Hence, we
instead collect training examples by sending “probes” from
the initial state. Each such “probe” simulates a stochastic
hill-climbing search with a depth limit cutoff. All the states
generated by such a probe are used as training examples,
and we stop probing when k training examples have been
collected. In our evaluation, the probing depth limit was
set to twice the heuristic estimate of the initial state, that
is 2 maxh(s0), and the next state s for an ongoing probe
was chosen with a probability proportional to 1/ maxh(s).
This “inverse heuristic” selection biases the sample towards
states with lower heuristic estimates, that is, to states that
are more likely to be expanded during the search. It is worth
noting here that more sophisticated procedures for search
space sampling have been proposed in the literature (e.g.,
see Haslum et al. 2007), but as we show later, our much
simpler sampling method is already quite effective for our
purpose.

After the training examples T are collected, they are first
used to estimate b, t1 and t2 by averaging the respective
quantities over T . Once b, t1 and t2 are estimated, we can
compute the threshold τ = α logb(t2/t1) for our decision
rule. We generate a label for each training example by cal-
culating Δh(s) = h2(s) − h1(s), and comparing it to the
decision threshold. If Δh(s) > τ , we label s with h2, oth-
erwise with h1. If t1 > t2 we simply switch between the
heuristics—our decision is always whether to compute the
more expensive heuristic or not; the default is to compute
the cheaper heuristic, unless the classifier says otherwise.

Besides deciding on a training set of examples, we need to
choose a set of features to represent each of these examples.
The aim of these features is to characterize search states with
respect to our decision rule. While numerous features for
characterizing states of planning problems have been pro-
posed in previous literature (see, e.g., Yoon, Fern, and Gi-
van (2008); de la Rosa, Jiménez, and Borrajo (2008)), they
were all designed for inter-problem learning, and most of
them are not suitable for intra-problem learning like ours. In
our work we decided to use only elementary features corre-
sponding simply to the actual state variables of the planning
problem.

Once we have our training set and features to represent the
examples, we can build a binary classifier for our concept.
This classifier can then play the role of our hypothetical or-

1073



evaluate(s)
〈h, confidence〉 := CLASSIFY(s, model)
if (confidence > ρ) then return h(s)
else

label := h1

if h2(s) − h1(s) > α logb(t2/t1) then label := h2

update model with 〈s, label〉
return max(h1(s), h2(s))

Figure 2: The selective max state evaluation procedure.

acle indicating which heuristic to compute where. However,
as our classifier is not likely to be a perfect such oracle, we
further consult the confidence the classifier associates with
its classification. The resulting state evaluation procedure of
selective max is depicted in Figure 2. If state s is to be evalu-
ated by A∗, we use our classifier to decide which heuristic to
compute. If the classification confidence exceeds a parame-
ter threshold ρ, then only the indicated heuristic is computed
for s. Otherwise, we conclude that there is not enough infor-
mation to make a selective decision for s, and compute the
regular maximum over h1(s) and h2(s). However, we use
this opportunity to improve the quality of our prediction for
states similar to s, and update our classifier. This is done by
generating a label based on h2(s)−h1(s) and learning from
this new example.1 This can be viewed as the active part of
our learning procedure.

The last decision to be made is the choice of classifier.
Although many classifiers can be used here, there are sev-
eral requirements that need to be met due to our particular
setup. First, both training and classification must be very
fast, as both are performed during time-constrained problem
solving. Second, the classifier must be incremental to allow
online update of the learned model. Finally, the classifier
should provide us with a meaningful confidence for its pre-
dictions. While several classifiers meet these requirements,
we found the classical Naive Bayes classifier to provide a
good balance between speed and accuracy (Mitchell 1997).
One note on the Naive Bayes classifier is that it assumes a
very strong conditional independence between the features.
Although this is not a fully realistic assumption for planning
problems, using a SAS+ formulation of the problem instead
of the classical STRIPS helps a lot: instead of many binary
variables which are highly dependent upon each other, we
have a much smaller set of variables which are less depen-
dent upon each other.2

As a final note, extending selective max to use more
than two heuristics is rather straightforward—simply com-
pare the heuristics in a pair-wise manner, and choose the
best heuristic by a vote, which can either be a regular vote
(i.e., 1 for the winner, 0 for the loser), or weighted accord-
ing to the classifier’s confidence. Although this requires a
quadratic number of classifiers, training and classification

1We do not change the estimates for b, t1 and t2, so the thresh-
old τ remains fixed.

2The PDDL to SAS+ translator (Helmert 2009) detects mutual
exclusions between propositions in the PDDL representation of the
problem, and creates a single SAS+ state variable that represents
the whole mutually exclusive set.

Domain hLA hLM-CUT maxh rndh selh

Average Time/Problem 39.65 38.59 41.39 42.6 24.53

Average Time/Domain 67.08 53.02 58.97 64.44 33.83

Total Solved 419 450 454 421 460

(a)

(b)
Figure 3: Summary of the evaluation. Table (a) summarizes
the average search times and number of problem instances
solved with each of the five methods under comparison. Plot
(b) depicts the number of solved instances under different
timeouts; the x- and y-axes capture the timeout in seconds
and the number of problems solved, respectively.

time (at least with Naive Bayes) appear to be much lower
than the overall time spent on heuristic computations, and
thus the overhead induced by learning and classification is
likely to remain relatively low.

Experimental Evaluation

To empirically evaluate the performance of selective max we
have implemented it on top of the A∗ implementation of the
Fast Downward planner (Helmert 2006), and conducted an
empirical study on a wide range of planning domains from
the International Planning Competitions 1998-2006; the do-
mains are listed in Table 2. The search for each problem in-
stance was limited to 30 minutes3 and to 1.5 GB of memory.
The search times do not include the PDDL to SAS+ transla-
tion as it is common to all planners, and is tangential to the
issues considered in our study. The search times do include
learning and classification time for selective max. In the ex-
periments we set the size of the initial training set to 100, the
confidence threshold ρ to 0.6, and α to 1.

Our evaluation of selective max was based on two state-
of-the-art admissible heuristics hLA (Karpas and Domshlak
2009) and hLM-CUT (Helmert and Domshlak 2009). In con-
trast to abstraction heuristics that are typically based on ex-
pensive offline preprocessing, and then very fast online per-

3Each search was given a single core of a 3GHz Intel E8400
CPU machine.

1074



state computation (Helmert, Haslum, and Hoffmann 2007;
Katz and Domshlak 2009), both hLA and hLM-CUT perform
most of their computation online. Neither of our two base
heuristics is better than the other across all planning do-
mains, although A∗ with hLM-CUT solves more problems
overall. On the other hand, the empirical time complexity
of computing hLA is typically much lower than that of com-
puting hLM-CUT.

We compare our selective max approach (selh) to each
of the two base heuristics individually, as well as to their
standard, max-based combination (maxh). In addition, to
avoid erroneous conclusions about the impact of our spe-
cific decision rule on the effectiveness of selective max, we
also compare selh to a trivial version of selective max that
chooses between the two base heuristics uniformly at ran-
dom (rndh).

As the primary purpose of selective max is speeding up
optimal planning, we first examine the average runtime com-
plexity of A∗ with the above five alternatives for search node
evaluation. While the results of this evaluation in detail are
given in Table 2, the table in Figure 3a provides the bottom-
line summary of these results. The first two rows in that table
provide the average search times for all five methods. The
times in the first row are plain averages over all (403) prob-
lem instances that were solved by all five methods. Based
on the same problem instances, the times in the second row
are averages over average search times within each plan-
ning domain. Supporting our original motivation, these re-
sults clearly show that selh is on average substantially faster
than any of the other four alternatives, including not only
the max-based combination of the base heuristics, but also
both our individual base heuristics. Focusing the compari-
son to only maxh (averaging on 454 problem instances that
were solved with both maxh and selh), the average search
time with selh was 65.2 seconds, in contrast to 90.75 sec-
onds with maxh. Although it is hard to measure the exact
overhead of the learning component of selective max, the av-
erage overhead for training and classification over all prob-
lems that took more than 1 second to solve was about 2%

The third row in the table provides the total number of
problems solved by each of the methods. Here as well, se-
lective max is the winner, yet the picture gets even sharper
when the results are considered in more detail. For all five
methods, Figure 3b plots the total number of solved in-
stances as a function of timeout. The plot is self-explanatory,
and it clearly indicates that selective max has a consistently
better anytime behavior than any of the alternatives. We also
point out that A∗ with selh solved all the problems that were
solved by A∗ with maxh, and more. Finally, note that the
results with rndh in terms of both average runtime and num-
ber of problems solved clearly indicate that the impact of the
concrete decision rule suggested by our model on the perfor-
mance of selective max is spectacular.

One more issue that is probably worth discussing is the
“sophistication” of the classifiers that were learned for se-
lective max. Having read so far, the reader may wonder
whether the classifiers we learn are not just trivial classi-
fiers in a sense that, for any given problem, they either al-
ways suggest computing hLM-CUT or always suggest comput-

Domain hLM-CUT hLA
airport 0.68 0.32
blocks • 0.81 0.19
depots 0.67 0.33
driverlog 0.5 0.5
freecell 0.14 • 0.86
grid 0.05 • 0.95
gripper 0.06 • 0.94
logistics-2000 0.02 • 0.98
logistics-98 0.31 0.69
miconic 0.34 0.66
mprime 0.42 0.58
mystery 0.47 0.53
openstacks 0.06 • 0.94
pathways • 1 0
psr-small 0.38 0.62
pw-notankage 0.62 0.38
pw-tankange 0.62 0.38
rovers 0.49 0.51
satellite 0.53 0.47
tpp 0.26 0.74
trucks • 0.98 0.02
zenotravel 0.53 0.47

Table 1: Average distribution of the high-confidence deci-
sions made by classifiers within selh. Cells marked with (•)
correspond to significant (over 75%) preference for the re-
spective heuristic.

ing hLA. However, Table 1 shows that typically this is not
the case. For each problem solved by selh, we recorded the
distribution of the high-confidence decisions made by our
classifier, and Table 1 shows the averages of these numbers
for each domain. We say that a domain has a significant
preference for heuristic h if the classifier chose h for over
75% of the search states encountered while searching the
problems from that domain. Only 8 domains out of 22 had
a significant preference, and even those are divided almost
evenly—3 domains had significant preference for hLM-CUT,
while 5 had significant preference for hLA.

Finally, we have also compared selh to two of its minor
variants: in one, the successor state in each “probe” used to
generate the initial training set is chosen from the succes-
sors uniformly, and in the other, the decision rule’s thresh-
old τ was set simply to 0. The results of this comparison are
omitted here for the sake of brevity, but they both performed
worse than selh.

Discussion

Learning for planning has been a very active field start-
ing in the early days of planning (Fikes, Hart, and Nils-
son 1972), and is recently receiving growing attention in
the community. So far, however, relatively little work has
dealt with learning for heuristic search planning, one of the
most prominent approaches to planning these days. Most
works in this direction have been devoted to learning macro-
actions (see, e.g., Finkelstein and Markovitch 1998, Botea
et al. 2005, and Coles and Smith 2007). Among the other
works, the one most closely related to ours is probably the
work by Yoon, Fern and Givan (2008) that suggest learn-
ing an (inadmissible) heuristic function based upon features
extracted from relaxed plans. In contrast, our focus is on op-
timal planning. Overall, we are not aware of any previous
work that deals with learning for optimal heuristic search.

The experimental evaluation demonstrates that selective
max is a more effective method for combining arbitrary ad-
missible heuristics than their regular point-wise maximiza-
tion. Another advantage of the selective max approach is

1075



Domain hLA hLM-CUT maxh rndh selh
Solved Time Solved Time Solved Time Solved Time Solved Time

airport (25) 25 125.96 38 35.36 36 73.8 29 54.78 36 68.44
blocks (20) 20 66.01 28 3.71 28 6.39 28 6.44 28 5.59
depots (7) 7 196.91 7 65.99 7 103.26 7 155.14 7 94.36
driverlog (14) 14 66.67 14 110.87 14 86.04 14 120.84 14 81.31
freecell (15) 28 6.04 15 249.28 22 23.93 15 44.22 28 9.25
grid (2) 2 12.05 2 33.78 2 44.27 2 38.3 2 40.26
gripper (6) 6 71.6 6 106.48 6 264.79 6 161.98 6 77.07
logistics-2000 (19) 19 73.32 20 152.27 20 255.36 20 153.89 20 79.17
logistics-98 (5) 5 18.84 6 24.11 6 29.55 5 28.69 6 24.43
miconic (140) 140 2.03 140 8.04 140 10.08 140 5.67 140 7.65
mprime (19) 21 17.52 25 17.9 25 15.68 19 111.48 25 8
mystery (12) 13 7.55 17 1.61 17 2.03 14 57.93 17 2.49
openstacks (7) 7 15.93 7 72.3 7 75.83 7 52.69 7 17.11
pathways (4) 4 5.38 5 0.08 5 0.14 4 1.15 5 0.18
psr-small (48) 48 3.55 49 4.05 48 7.92 48 5.73 48 4.87
pw-notankage (16) 16 48.8 17 71.34 17 71.49 17 73.92 17 59
pw-tankange (9) 9 211.43 11 173.61 11 189.89 10 172.99 11 130.98
rovers (6) 6 122.7 7 5.23 7 8.79 6 45.72 7 7.97
satellite (7) 7 46.22 8 3.47 9 4.51 7 21.95 9 3.58
tpp (6) 6 108.54 6 14.36 6 5.9 6 56.32 6 5.69
trucks (7) 7 238.85 10 11.69 9 16.48 7 39.64 9 15.56
zenotravel (9) 9 9.84 12 0.91 12 1.33 10 8.27 12 1.28

Table 2: Results of the evaluation in details. For each pair of domain D and state evaluation method E, we give the number of
problems in D that were solved by A∗ using E (left column), and the average search time (right column). The search time is
averaged only on problems that were solved using all five methods; the number of these problems for each domain is listed in
parentheses next to the domain name.

that it can successfully exploit pairs of heuristics where one
dominates the other. For example, the hLA heuristic can
be used with two action cost partitioning schemes: uniform
and optimal (Karpas and Domshlak 2009). The heuristic
induced by the optimal action cost partitioning dominates
the one induced by the uniform action cost partitioning, but
takes much longer to compute. Selective max could be used
to learn when it is worth spending the extra time to compute
the optimal cost partitioning, and when it is not. In contrast,
the max-based combination of these two heuristics would
simply waste the time spent on computing the uniform ac-
tion cost partitioning.

References

Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Comp. Intell. 11(4):625–655.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically
learned macro-operators. JAIR 24:581–621.
Burke, E.; Kendall, G.; Newall, J.; Hart, E.; Ross, P.; and
Schulenburg, S. 2003. Hyper-heuristics: an emerging di-
rection in modern search technology. In Handbook of meta-
heuristics. chapter 16, 457–474.
Coles, A. I., and Smith, A. J. 2007. Marvin: A heuris-
tic search planner with online macro-action learning. JAIR
28:119–156.
Coles, A. I.; Fox, M.; Long, D.; and Smith, A. J. 2008.
Additive-disjunctive heuristics for optimal planning. In
ICAPS, 44–51.
de la Rosa, T.; Jiménez, S.; and Borrajo, D. 2008. Learning
relational decision trees for guiding heuristic planning. In
ICAPS, 60–67.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. JAIR 22:279–318.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. AIJ 3:251–288.

Finkelstein, L., and Markovitch, S. 1998. A selective macro-
learning algorithm and its application to the NxN sliding-tile
puzzle. JAIR 8:223–263.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In AAAI,
1163–1168.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS, 162–169.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In AAAI, 944–949.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
ICAPS, 176–183.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning
with landmarks. In IJCAI, 1728–1733.
Katz, M., and Domshlak, C. 2008. Optimal additive compo-
sition of abstraction-based admissible heuristics. In ICAPS,
174–181.
Katz, M., and Domshlak, C. 2009. Structural-pattern
databases. In ICAPS, 186–193.
Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.
Pearl, J. 1984. Heuristics — Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. JMLR 9:683–718.

1076


	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI




