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Abstract
Agents operating in a multi-agent system must con-
sider not just their own actions, but also those of
the other agents in the system. Artificial social sys-
tems are a well known means for coordinating a set
of agents, without requiring centralized planning or
online negotiation between agents. Artificial social
systems enact a social law which restricts the agents
from performing some actions under some circum-
stances. A good social law prevents the agents from
interfering with each other, but does not prevent
them from achieving their goals. However, design-
ing good social laws, or even checking whether a
proposed social law is good, are hard questions. In
this paper, we take a first step towards automating
these processes, by formulating criteria for good
social laws in a multi-agent planning framework.
We then describe an automated technique for veri-
fying if a proposed social law meets these criteria,
which is based on a compilation to classical plan-
ning.

1 Introduction
The design of an agent which is about to operate in a multi-
agent environment is quite different from the design of an
agent which performs his activities in isolation from other
agents. Typically, a plan that would have allowed an agent
to obtain his goals had he operated in isolation might yield
unexpected results as a consequence of other agents’ activ-
ities. Various approaches to multi-agent coordination have
been considered in the literature. We could, for instance, sub-
ordinate the agents to a central controller. This approach
may be useful in various domains but might suffer from
well-known limitations, such as bottlenecks at the central
site or sensitivity to failure. Another approach is to design
rules of encounter, that is, rules which determine the be-
havior of the agent, and in particular the structure of nego-
tiation, when his activities interfere with those of another
agent. Rules of encounter may be quite useful for conflict
resolution, but might sometimes be inefficient, requiring re-
peated negotiations to solve on-line conflicts. In this paper we
consider a canonical intermediate approach to coordination,
referred to as artificial social systems [Tennenholtz, 1991;

Shoham and Tennenholtz, 1992a; 1992b; 1995; Moses and
Tennenholtz, 1995].

An artificial social system institutes a social law that the
agents shall obey. Intuitively, a social law restricts, off-line,
the actions legally available to the agents, and thus minimizes
the chances of an on-line conflict, and the need to negotiate.
Similarly to a code of laws in a human society [Rousseau,
1762], an artificial social law regulates the individual behav-
ior of the agents and benefits the community as a whole. Yet,
the agents should still be able to achieve their goals, and re-
stricting their legal actions to a too wide extent might leave
them with no possible way to do so.

Consider for instance a domain consisting of roads on
which our agents travel. These roads cross one another at
junctions where total freedom on the side of the agents makes
an accident a likely event. In order to guarantee accident-free
traffic we could set a law that allows an agent to enter an
intersection only if the crossing road is free. This law cer-
tainly prevents accidents, but restricts the agents too much.
Although we have guaranteed an accident-free environment,
we have also introduced the possibility of a deadlock: when
two agents reach the intersection via crossing roads, they
might find themselves waiting indefinitely for the crossing
road to get free before initiating their move. This example
illustrates the fact that we must be careful in designing social
laws: Only useful social laws, i.e laws which guarantee that
each agent achieves his goals, are to be considered. In the
example above, the law could be modified to give one direc-
tion the right-of-way, obliging cars coming from the crossing
direction to yield.

The artificial social systems approach has become a canon-
ical approach to the design of multi-agent systems [Wool-
ridge, 2001; Shoham and Leyton-Brown, 2008; Horling and
Lesser, 2004; d’Inverno and Luck, 2004; Klusch, 1999].
However, while the origins of the artificial social systems
approach arise from a knowledge representation and plan-
ning perspective, and early work by the founders of that ap-
proach had advocated the use of planning paradigms, such
as STRIPS-like presentations for multi-agent planning [Ten-
nenholtz and Moses, 1989], the connection between artificial
social systems to modern planning techniques has not been
crystallized or exploited. The aim of our current line of re-
search is to re-visit the artificial social systems approach in
view of progress made in planning. Specifically, the contri-



butions of this paper are threefold: First, we describe a for-
malism for representing and reasoning over social laws in a
multi-agent planning framework. Second, we describe some
robustness criteria we believe good social laws should sat-
isfy. Third, we describe an algorithm for verifying if a given
social law meets these criteria, which is based on a compila-
tion to classical planning. An empirical evaluation shows this
approach scales up very well.

2 Preliminaries
We consider multi-agent planning settings formulated in (a
variation of) MA-STRIPS [Brafman and Domshlak, 2008].
Our focus in this paper is on problems which do not require
cooperation, but do require coordination, and thus we modify
MA-STRIPS to include a goal for each agent, rather than an
overall goal. A multi-agent planning setting is defined by
a tuple Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: F is a set
of facts, I ⊆ F is the initial state, Gi ⊆ F is the goal of
agent i, and Ai is the set of actions of agent i. Each action
a ∈ Ai is described by preconditions pre(a) ⊆ F , add ef-
fects add(a) ⊆ F , and delete effects del(a) ⊆ F . The result
of applying action a in state s is (s \ del(a)) ∪ add(a).

The projection of Π for agent i is the (single agent)
STRIPS [Fikes and Nilsson, 1971] planning problem Πi =
〈F,Ai, I, Gi〉. A sequence of actions πi is a solution for Πi

if applying the actions in πi from state I results in a state s
that satisfies the goal, that is, a state such that Gi ⊆ s. In
the execution model we consider here, each agent attempts
to follow its own plan πi. The plans interact with each other
through a scheduler, which determines which agent acts next.
We do not make any assumptions about the fairness of the
scheduler, and in fact, consider it to be adversarial.

3 Encoding Social Laws
We have described our multi-agent setting, but we have yet
to describe how we represent social laws in this setting. To
begin with, we will represent social laws as modifications to
a MA-STRIPS problem. That is, a social law l takes an input
MA-STRIPS problem Π, modifies it, and outputs a new MA-
STRIPS problem Πl. Such a social law can be described by:

1. The facts it adds or removes,

2. The actions it adds or removes,

3. The preconditions, add effects, or delete effects it adds
or removes from each existing action,

4. The facts it adds or removes from the initial state

5. The facts it adds or removes from each agent’s goal, and

6. The action preconditions which are denoted as waitfor
preconditions

The first 5 items above are simply syntactic modifications
of an MA-STRIPS setting. For example, the social law which
says that everyone must drive on the right side of the road can
be encoded by removing all actions which drive to the left
side of the road.

The waitfor precondition annotations, however, require
some explanation. Waiting is one of the most basic forms

of coordination, and can eliminate some failures. For exam-
ple, waiting for an intersection to be clear before entering it
eliminates the possibility of collision. However, waiting also
introduces the possibility of a deadlock — if our social law
states that to enter the intersection we wait until there are no
cars to the right, then a deadlock occurs when there are four
cars on the four sides of the intersection, as illustrated in Fig-
ure 2(c).

The semantics of executing an action with a waitfor pre-
condition in our model is as follows: When an agent invokes
an action a with a waitfor precondition p in state s, the sched-
uler will only execute the action if p holds in s. We will de-
note the waitfor preconditions of action a by prew(a) and the
other preconditions of a by pref (a). Then the scheduler can
only choose to execute an action a whose waitfor precondi-
tions hold in the current state s, that is prew(a) ⊆ s. If all
agents are currently either waiting for some precondition or
finished (that is, have already achieved their goal), then the
system is in a deadlock.

We conclude this section with a brief discussion of when
it does or does not make sense to wait for some precondi-
tion of an action. One of the original motivations for social
laws comes from robotics, and in the real world, robots can
not sense everything. Thus, it only makes sense to wait for
something the agent can sense, as otherwise there is no way
to implement the action on a robot. This is a subtle point with
the assumptions underlying classical planning: assuming the
actions are deterministic, do we sense at every state, or only
at the initial state? For classical planning, the answer is ir-
relevant, but when there are multiple agents operating in the
world, the answer is very important. waitfor precondition an-
notations answer this question by stating that we sense before
we start executing an action.

Secondly, it does not make sense to wait for a precondi-
tion which the agent can achieve by itself — a private fact
in multi-agent planning terms. This would automatically re-
sult in an agent entering a deadlock by itself. For example,
consider the action move(A,X, Y ) which has a precondition
at(A,X), which the agent waits for. Unless some other agent
can move A to X , and has a good reason to do so, A will be
stuck waiting for itself to move to X .

4 Properties of Social Laws
Now that we have formalized the setting in which we con-
sider social laws, we describe what are the criteria that define
a good social law. We consider two different criteria for so-
cial laws, which we call rational and adversarial robustness.
In rational robustness, we assume all agents are rational and
want to achieve their goal, and ask whether there is any pos-
sible way for them to interfere with each other. In adversarial
robustness, we assume all agents except for one specific agent
(say agent i) are adversarial, and only want to prevent agent
i from achieving its goal, without regard for achieving their
own goal later.

These criteria are formally stated in the following defini-
tion:

Definition 1. A social law l for multi agent setting Π =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 is robust to:



rational iff for all agents i = 1 . . . n, for all individual so-
lutions πi for Πi, for all possible action sequences π re-
sulting from any arbitrary interleaving of {πi}ni=1 which
respects waitfor preconditions, π achievesG1∪. . .∪Gn.

adversarial against i iff for all individual solutions πi for
Πi, for all possible action sequences π resulting from
an arbitrary interleaving of πi which respects waitfor
preconditions with any valid action sequence of all other
agents, π achieves Gi.

adversarial iff it is robust to adversarial against i for all i =
1 . . . n.

It is easy to see that if a social law is robust to adversarial,
then it is also robust to rational. Conversely, we show that
the verification problem for adversarial robustness VERIFY-
ADVERSARIAL is reducible to the verification problem for
rational robustness VERIFY-RATIONAL.

Theorem 1.
VERIFY-RATIONAL ≥p VERIFY-ADVERSARIAL.

Proof. Given a multi-agent setting Π and a social law l, we
want to solve VERIFY-ADVERSARIAL(Πl). From Definition
1, this is equivalent to verifying that Πl is robust to adversar-
ial against i for all i = 1 . . . n. To verify that Πl is robust to
adversarial against a given i, we will construct a 2-agent set-
ting Π′ and a social law l, such that Π

′l is robust to rational
iff Πl is robust to adversarial against i.

The facts and the initial state in Π′ are the same facts as in
Π: F and I , respectively. The first agent in Π′ is agent i from
Π, and its actions and goal are the same as in Π: Ai and Gi,
respectively. The second agent in Π′ is a single virtual agent,
which controls all agents in Π except for i, that is, its action
set is

⋃
j 6=iAj . The goal of this agent is always true (>), that

is, it can achieve its goal whenever it wants. The social law l
is the same, except for the required modifications introduced
by renaming the agents.

To see that Π
′l is robust to rational iff Πl is robust to adver-

sarial against i, note that for any solution πi for Πi, and for
any sequence of actions π′ of all other agents, the set of inter-
leavings of πi and π′ which respects waitfor preconditions is
the same in Π

′l and in Πl. Furthermore, note that given any
such interleaving π, it achieves Gi in Π

′l iff it achieves Gi

in Πl. Finally, note that π always achieves the (always true)
goal of the second agent in Π

′l, and that the definition for ad-
versarial against i does not require the agents other than i to
achieve their goal.

We conclude this section by noting that Definition 1 is
somewhat restrictive. Specifically, it assumes each agent
chooses a plan to execute a-priori, and then executes that
plan. Without introducing the ability to wait, this is similar
to conformant planning — whenever the scheduler tells an
agent to act, it must execute its next action. If the precondi-
tions of that action do not hold, the agent fails.

In general, we would like to be able to support more gen-
eral policies for the agents. This would be similar to con-
tingent planning, except that the non-determinism is really
the result of other agents acting in the world. However,

this makes the non-deterministic planning problem highly in-
tractable, as any action can have many outcomes [Muise et
al., 2015].

Therefore, in this paper we adopt a limited form of con-
tingent planning — waiting until some condition holds. This
means that each agent can treat its own individual planning
problem as a classical planning problem, and does not need
to reason about the possible changes introduced by the other
agents. In fact, we argue that the purpose of a good social law
is to allow agents to do just that — not have to reason about
what the other agents are going to do, assuming they respect
the social law.

To show that waiting is a natural way to specify social laws,
consider a traffic light. Without waiting, if an agent chooses
to execute the action which drives into the intersection, and
the light happens to be red, the action will fail because one
of its preconditions is violated. However, if we denote the
precondition of having a green light as waitfor, we obtain the
desired behavior of waiting for the light to turn green.

5 Verifying Social Laws
Now that we have formally stated the criteria we want in
a social law, and showed that verifying adversarial robust-
ness can be compiled into verifying rational robustness, we
turn to describing how we can verify that a social law l ap-
plied in a multi-agent setting Π is rationally robust. Our al-
gorithm compiles the VERIFY-RATIONAL problem for Πl =
〈F, {Ai}ni=1, I, {Gi}ni=1〉 into a classical planning problem.
This compilation is described formally in full in Figure 1, but
we will first provide some explanations of the compilation,
and then prove its correctness.

The idea behind this compilation is to create n + 1 copies
of each fact of the planning problem, and thus of the state.
We will refer to copies 1 . . . n as local copies (one for each
agent), and the final copy as the global copy, which will be
denoted by g. Each action of agent i affects both its local
copy i and the global copy g. Thus, each agent i acts alone in
copy i, and all agents act together in the global copy g. The
goal is to find a plan for each agent which works alone (that
is, in copy i), but when all plans are joined together (in an
order chosen by the planner) in copy g, there is a failure. The
goal of this planning task is to achieve Gi in copy i, and have
either a deadlock or some action fail in the global copy, as
indicated by the flag failure. We remark that this duplication
of facts is similar to the compilations for discovering worst
case distinctiveness in goal recognition design [Keren et al.,
2014; 2015; 2016], although the rest of the compilation is
very different.

In order to identify failures in the global copy, we create
several versions of each action ai for each of the possible
outcomes of ai: ai succeeds, ai fails due to a violated (non-
wait) precondition, or ai leads to a deadlock. Each of these
work in copy i as if ai succeeds, but has different effects on
the global copy: the success outcome also succeeds in the
global copy, the fail version requires one of the preconditions
of ai to be false in the global copy1, and the deadlock version

1note that this requires disjunctive negative preconditions, which
can be easily compiled away by adding more actions



Π′ = 〈F ′, A′, I ′, G′〉, where:
• F ′ = {f1 . . . fn | f ∈ F} ∪ {fg, fc | f ∈ F} ∪
{wtf,i | f ∈ F, i = 1 . . . n} ∪ {fini | i = 1 . . . n} ∪
{failure, act}
• A′ =

⋃n
i=1A

′
i ∪

{CHECK-NO-f,CHECK-NO-WAITING-f | f ∈ F},
where:
A′

i = {ENDs
i ,ENDf

i ,ENDw
i } ∪ {asi , a

f
i | ai ∈

Ai} ∪ {aw,x
i | ai ∈ Ai, x ∈ prew(ai)}, such that:

pre(asi ) = act ∧ (
∧

f∈pre(ai)
(fi ∧ fg)),

add(asi ) = {fi, fg | f ∈ add(ai)},
del(asi ) = {fi, fg | f ∈ del(ai)},

pre(afi ) = act ∧ (
∧

f∈pre(ai)
fi) ∧ (

∧
f∈prew(a) fg) ∧

(
∨

f∈pref (ai)
¬fg),

add(afi ) = {failure} ∪ {fi | f ∈ add(ai)},
del(afi ) = {fi | f ∈ del(ai)},

pre(aw,x
i ) = act ∧ (

∧
f∈pre(ai)

fi) ∧ ¬xg ,
add(aw,x

i ) = {failure, wtx,i} ∪ {fi | f ∈ add(ai)},
del(aw,x

i ) = {fi | f ∈ del(ai)},

pre(ENDs
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∧

f∈Gi
fg),

add(ENDs
i ) = {fini},

del(ENDs
i ) = {act},

pre(ENDf
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈Gi
¬fg),

add(ENDf
i ) = {fini, failure},

del(ENDf
i ) = {act}

pre(ENDw
i ) = ¬fini ∧ (

∧
f∈Gi

fi) ∧ (
∨

f∈F wtf,i),
add(ENDw

i ) = {fini, failure},
del(ENDw

i ) = {act}

pre(CHECK-NO-f) = (
∧

i=1...n fini) ∧ ¬fg ,
add(CHECK-NO-f) = fc,
del(CHECK-NO-f) = ∅

pre(CHECK-NO-WAITING-f) = (
∧

i=1...n fini) ∧
(
∧

i=1...n ¬wtf,i),
add(CHECK-NO-WAITING-f) = fc,
del(CHECK-NO-WAITING-f) = ∅

• I ′ = {act} ∪ {fi | f ∈ I, i = 1 . . . n} ∪ {fg | f ∈ I},
and

• G′ = {failure} ∪ {fc | f ∈ F} ∪ {fini | i ∈
{1 . . . n}}

Figure 1: Formal Description of the Compilation. For ease
of exposition, we use logic, rather than sets, to express pre-
conditions.

requires that one of the facts that ai waits for is false, and re-
mains false when agent i has a chance to act. This is achieved
by raising a flag wtf,i that indicates that agent i is waiting
for fact f . Since we assume the scheduler is adversarial to
the agents, and thus under the control of the planner, the next
opportunity when agent i is sure to be able to act is after all
other agents have finished (either achieved their goal or are
also waiting).

It is important to note here that we are attempting to find a
sequence in which actions are executed which leads to a fail-
ure, not a sequence in which actions are started. Thus, if agent
i has started action ai, which is currently waiting for fact f ,
this could be reflected in the final plan in two different ways.
If this is going to result in a deadlock, meaning that the wait
precondition f must not hold at the end, then the plan will
contain the deadlock version of ai, at the point when agent i
decides to apply ai. However, if f is going to be achieved,
and the scheduler is going to execute ai when this happens,
then the success version of ai will appear in the plan later,
when ai is actually executed, and not when agent i decides to
apply ai.

In order to know when agents have finished, we also add an
END action for each agent, whose preconditions are the goal
facts of the agent. We create the success, fail, and deadlock
versions of this action, and thus the only failures we need
to consider are action preconditions not holding and dead-
locks. However, in order to prevent a situation where an agent
achieves its goal early, and then another agent invalidates it
later, we do not allow any “regular” actions to occur after one
agent executed an END action, which is controlled by the act
flag.

Finally, in order to make sure that deadlocks are true dead-
locks (that is, that if agent i is waiting for fact f , then f will
be false after all agents have finished), for each fact f we
also add two actions which are meant to verify that no agent
is waiting for f at the end, and f holds. These actions are
called CHECK-NO-f and CHECK-NO-WAITING-f . The
first checks that f does not hold, and the second checks that
no agents are waiting for f . Both of these achieve a new fact,
fc, which is also included in the goal, and are only applicable
after all agents have executed their END actions. Together,
these actions verify that at the end, wtf,i → ¬f , that is, that
if agent i is waiting for fact f , then f does not hold at the
end. Note that, since we need this to hold for all agents, this
is equivalent to ¬f ∨ (

∧
1=1...n ¬wtf,i), and each of these

actions is responsible for checking one of the disjuncts.
We now proceed to prove that the compilation is correct,

through a series of lemmas. We begin by proving a lemma
about the structure of any solution of Π′.
Lemma 1. Any solution π of Π′ can be divided into three sub-
sequences, π = πa · πEND · πCHECK, such that πa contains
only “regular” actions (asi , a

f
i or aw,f

i for some ai ∈ Ai),
πEND contains only END actions, and πCHECK contains
only CHECK-NO-f and CHECK-NO-WAITING-f actions.

Proof. By construction of Π′, as soon as one of the END ac-
tions is executed, act is deleted. As act is a precondition of
all regular actions, they must all precede the first END ac-
tion. Similarly,

∧
i=1...n fini is a precondition of all CHECK



actions, and since fini can only by achieved by one of the
ENDi actions, all END actions must precede all CHECK ac-
tions.

Next, we prove that any solution for Π′ contains valid in-
dividual solutions for each of the agents:
Lemma 2. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. Define πi to be the subsequence of πa consist-
ing only of actions of agent i. Then πi is a solution for Πl

i —
the projection of Πl for agent i.

Proof. Let us look at the projection of Π′ on {fi | f ∈ F} ∪
{fini}, which we will denote by Π′

i. It is easy to see that Π′
i

is simply Πl
i with an END action that achieves fini added to

it. As Π′
i is an abstraction of Π′, any solution for Π′ is also

a solution for Π′
i. Since actions that do not belong to agent

i do not affect {fi | f ∈ F} or fini, if π is a solution of
Π′, πi · 〈ENDi〉 is a solution of Π′

i, for any of the versions
of ENDi. Because Π′

i and Πl
i are equivalent except for the

addition of END and fini, πi is a solution for Πl
i.

We now prove that any solution of Π′ respects the waitfor
preconditions:
Lemma 3. Let π = πa · πEND · πCHECK be an arbitrary
solution of Π′. π respects the waitfor preconditions of all
actions in πa, that is, whenever one of the success (asi ) or
fail (afi ) variants of action ai is executed in π, all waitfor
preconditions of ai hold.

Proof. prew(ai) is in the preconditions of both asi and afi ,
meaning that any action that is executed, is executed only
when the agent would not have waited to execute it. Recall
that the meaning of aw,f

i is that agent i is attempting to exe-
cute ai, and will now wait for f forever (that is, until the end
of the plan).

We are now ready to prove our main theorem, about the
correctness of the compilation:
Theorem 2. Assume Πl

i is solvable for all agents i. Then Π′

is not solvable iff Πl is rationally robust.

Proof. Assume Π′ is solvable, let π = πa ·πEND ·πCHECK
be a solution for Π′, and denote by πi the subsequence of πa
consisting only of actions of agent i. Let us denote the first
non-success action in πi (that is, afi or aw,f

i ) by nsi, where
nsi = ⊥ if all actions in πi are success actions (that is, asi ).
From Lemma 2, each πi is a solution for Πi.

First, note that there must exist some j such that nsj 6= ⊥.
Otherwise, none of the actions in the plan achieve failure,
which is part of the goal. If there exists some j such that
nsj = afj then πa gives us an interleaving of {πi}ni=1 which
violates one of the (non-wait) preconditions of afj . From
Lemma 3, πa respects all waitfor preconditions. Thus, we
have found an interleaving of valid individual plans, which
respects waitfor preconditions, but leads to an illegal joint
plan, and thus Πl is not rationally robust.

If there does not exist some j such that nsj = afj then
there must exist some j such that nsj = aw,f

j . We can

(a) (b) (c)

Figure 2: Intersection Example Illustration

guarantee that f will not hold at the end, since the only way
to achieve fc, which is part of the goal, would be through
CHECK-NO-f (as CHECK-NO-WAITING-f is not applica-
ble after aw,f

j is executed). Thus, if the scheduler does not
allow agent j to act until all other agents are done, we have an
interleaving in which agent j is in a deadlock. Here again, we
have found an interleaving of valid individual plans, which re-
spects waitfor preconditions, but leads to an illegal joint plan,
and thus Πl is not rationally robust.

We have shown that if Π′ has a solution then Πl is not ra-
tionally robust. Now assume Π′ does not have a solution, and
let πi be any solution for Πi, for i = 1 . . . n. Let π be any
interleaving of these individual plans which respects waitfor
preconditions. All preconditions of all actions in π hold when
the action is executed, as otherwise Π′ would have been solv-
able (taking π with the appropriate END and CHECK ac-
tions added at the end as a solution). Similarly, π achieves
G1 ∪ . . . ∪ Gn, and none of the agents is stuck waiting for
some fact (as again, either of these scenarios would have led
to Π′ being solvable). Thus, if Π′ does not have a solution
then Πl is rationally robust.

6 Empirical Evaluation
We implemented our compilation, based upon the script
which was used to convert MA-PDDL to PDDL representing
a centralized planning problem from the first Competition of
Distributed and Multiagent Planners [Stolba et al., 2015]. We
remark that while we have described the compilation for a
grounded MA-STRIPS setting, most of the compilation can ac-
tually be done on the lifted level of MA-PDDL.

Our empirical evaluation is divided into two parts: First,
to demonstrate the benefits of our approach, we describe a
scenario in which a human designer uses it to create a useful
social law. Second, we provide some empirical results on ex-
isting benchmarks, to demonstrate how our technique scales
up with problem size.

6.1 Intersection Example
We demonstrate how one might use our proposed compila-
tion on the classical example for deadlock — that of an inter-
section with entrances from the north, south, east, and west,
where each car wants to go straight. This is illustrated in Fig-
ure 2.

This example can be modeled with facts: at(A,L) and
clear(L) where A is an agent and L is one of the 12 locations
illustrated in Figure 2(a): both lanes on the north, south, east,



BLOCKSWORLD
Instance Time (s)
9-0 0.1
9-1 0.09
9-2 0.11
10-0 0.1
10-1 0.08
10-2 0.09
11-0 0.17
11-1 0.18
11-2 0.11
12-0 0.18
12-1 0.26
13-0 0.32
13-1 0.48
14-0 0.44
14-1 0.19
15-0 4.17
15-1 1.83
16-1 1.83
16-2 0.43
17-0 8.23

DRIVERLOG
Instance Time (s)
pfile1 0
pfile2 0
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0
pfile11 0.01
pfile12 0.01
pfile13 0.02
pfile14 0.04
pfile15 0.17
pfile16 1.25
pfile17 28.63
pfile18 23.53
pfile19 88.06
pfile20 111.54

ZENOTRAVEL
Instance Time (s)
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0.01
pfile12 0
pfile13 0.04
pfile14 0.1
pfile15 0.22
pfile16 0.12
pfile17 0.61
pfile18 1.04
pfile19 5.26
pfile20 2.77
pfile21 3.85
pfile22 5.46
pfile23 15.06

SATELLITES
Instance Time (s)
p05 0.11
p07 0.24
p21 243.38
p24 —
p25 —

SOKOBAN
Instance Time (s)
p06-1 —

Table 1: Solution Times on Benchmark Domains (timeouts
indicated by a dash)

or west of the intersection, as well as the southeast, south-
west, northeast, or northwest corners of the intersection. The
actions are:
• arrive(A, l), which models the arrival of agent A at lo-

cation l, which must be one of the north, south, east,
or west entrances to the intersection. This action adds
at(A, l), and can only be applied once per agent2.
• drive(A, l1, l2), which models agent A driving from lo-

cation l1 to location l2. This requires at(A, l1) and
clear(l2).

When we run our compilation on this problem, we of
course obtain a failure, as agents can crash into each other
in the intersection, which is represented by violating the clear
preconditions of drive.

In an effort to correct this, we add to drive a wait annotation
which avoids driving into occupied locations. Running our
compilation on this yields a deadlock, as illustrated in Figure
2(b).

Attempting to correct this, we add to drive a precondition
stating that a car that is about to enter the intersection must
yield to a car which is about to enter the intersection from its
right. Running our compilation on this yields a deadlock, as
illustrated in Figure 2(c).

Finally, we arrive at a deadlock free solution, by dropping
the yield preconditions we added for cars entering from the
east and the west, while still making cars entering from the
north and south yield, and also adding preconditions which
ensure that a car does not enter the intersection when it is
blocked. Our compilation then verifies that this social law is
rationally robust. All planner runs in this example terminate
within fractions of a second.

6.2 Benchmarks
In order to evaluate the effectiveness of our compilation on
problems with increasing size, we used the benchmark do-

2we keep track of this through another fact, which we omit for
the sake of brevity

mains from the first Competition of Distributed and Multia-
gent Planners [Stolba et al., 2015]. These benchmarks are
for cooperative planning, and thus contain a single goal in
each instance. We created an instance with a separate goal
for each agent by allocating each fact in the goal to one of
the agents, in a round-robin manner (except in cases where
the first argument of the goal fact mentions a specific agent,
in which case it was allocated to that agent). We excluded
problem instances in which one of the agents was not able
to achieve its goal alone (we checked this by solving the Πi

planning problem for each agent), which left us with only
3 full domains (BLOCKSWORLD, DRIVERLOG, and ZENO-
TRAVEL), as well as 5 instances from SATELLITE and one
instance of SOKOBAN.

The choice of planner to use here poses an interesting ques-
tion. On the one hand, if the social law we are trying to verify
is robust, then the planning problem is going to be unsolvable.
In such a case, planners for proving unsolvability [Bäckström
et al., 2013; Hoffmann et al., 2014] might be a good choice.
On the other hand, if we were sure that the social law is ro-
bust, we would not be verifying it, and thus using a planner
that is geared towards finding solutions might be better.

While in general it is probably a good idea to combine sev-
eral planners in a portfolio, we have no reason to assume that
the multi-agent planning benchmarks already contain a ro-
bust social law. In fact, if they did, they would have been
fairly easy planning tasks. Therefore, we used the FF planner
[Hoffmann and Nebel, 2001] on the compilation for each of
these instances, with a timeout of 5 minutes. Table 1 shows
how much time it took to solve each of these instances. As
these results show, we are able to solve almost all of them
very quickly.

7 Discussion

In this paper, we have connected social laws to model-based
planning, and formalized some criteria which we believe
“good” social laws should exhibit under this framework. We
have also described a compilation to classical planning for
verifying whether an artificial social system meets these cri-
teria, and provided an empirical demonstration that this com-
pilation is feasible in practice.

We remark that the principles behind the compilation we
present can be easily extended to more realistic settings. First,
agents might not know what the goals of other agents are, and
only have some idea of what the possible goals are. A simple
compilation which eliminates disjunctive goals can solve this
problem. Second, agents might enter the system at different
places and at different times. It is very easy to define actions
for “adding” agents at legal locations, and our compilation
will take care of making sure the social law criteria are not
violated by this.

We conclude by noting that, in this paper, we focus on
the problem of verifying whether a social law (encoded in
a multi-agent planning framework) meets some desired crite-
rion. However, our ultimate goal is to automatically synthe-
size such social laws, rather than just verifying them. Having
efficient verification techniques is a first step in this direction.
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