Automated Verification of Social Law Robustness in
STRIPS

Erez Karpas Alexander Shlefyman Moshe Tennenholtz

Faculty of Industrial Engineering and Management
Technion — Israel Institute of Technology

Workshop on Distributed and Multi-Agent Planning — ICAPS 2016

<<

Introduction

Motivation

@ Multi-agent planning is hard
@ ...centralized or distributed

@ We would like each agent to be able to plan on its own
e ...without considering what the other agents might do

@ This simplifies the planning problem significantly

<<

Introduction

Our Setting: Multi-Agent Systems

@ MA-STRIPS, except each agent has individual goal
@ Formalized as N = (F,{A;}[_,1,{Gi}]_;), where
o Fis aset of facts
o | C F is the initial state
e G; C Fisthe goal of agent i
e A, is the set of actions of agent i

<<

Introduction

Example: Intersection

=

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)

=

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:
@ DRIVE(car,from,to)

=

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)
@ ARRIVE(car,region)

=

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)
@ ARRIVE(car,region)

@ Example plan for red car:

<<

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)
@ ARRIVE(car,region)

- @ Example plan for red car:
@ ARRIVE(red, Went)

<<

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)
@ ARRIVE(car,region)

- @ Example plan for red car:

@ ARRIVE(red, Went)
@ DRIVE(red, Went, SW)

<<

Introduction

Example: Intersection

@ Facts:
@ AT(car, region)
@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)
@ ARRIVE(car,region)

- @ Example plan for red car:
@ ARRIVE(red, Went)

@ DRIVE(red, Went, SW)
@ DRIVE(red, SW, SE)

<<

Introduction

Example: Intersection

@ Facts:

@ AT(car, region)

@ CLEAR(region)
@ Actions:

@ DRIVE(car,from,to)

@ ARRIVE(car,region)
@ Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

<<

Introduction

Example: Intersection with 2 Cars

@ Plan for red car:

ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)
@ Plan for blue car:
ARRIVE(blue, Eent)
DRIVE(blue, Eent, NE)
DRIVE(blue, NE, NW)
DRIVE(blue, NW, Wex)

=

Introduction

Example: Intersection with 2 Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)
@ Plan for blue car:
ARRIVE(blue, Eent)
DRIVE(blue, Eent, NE)
DRIVE(blue, NE, NW)
DRIVE(blue, NW, Wex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

=

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Introduction

Example: Intersection with 2 Crossing Cars

@ Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

@ Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

@ Can these plans interfere
with each other?

<<

Social Laws

Social Laws to the Rescue

@ A social law restricts the set of legal actions available to agents
e Introduced by Tennenholtz, Moses and Shoham more than 25
years ago
o Motivated by laws in a human society
@ What is a good social law?
o Robustness — social law guarantees agents can achieve their
goals
e Efficiency — plans obeying the social law are as efficient as plans
that do not

<<

Social Laws

Encoding Social Laws in MA-STRIPS

@ A social law restricts the set of legal actions available to agents

@ It might be tempting to say that a social law takes in an
MA-STRIPS system, and outputs another MA-STRIPS system
where the legal actions have been restricted.

@ Such a social law can be described by:

e The facts it adds or removes,

@ The actions it adds or removes,

e The preconditions, add effects, or delete effects it adds or
removes from each existing action,

e The facts it adds or removes from the initial state

e The facts it adds or removes from each agent’s goal

@ But such social laws will have very limited usefulness

=

Social Laws

Social Laws with Synchronization

@ What is a good social law for the intersection example?

<<

Social Laws

Social Laws with Synchronization

@ What is a good social law for the intersection example?
e Must include some form of yielding

<<

Social Laws

Social Laws with Synchronization

@ What is a good social law for the intersection example?
e Must include some form of yielding

@ In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor

<<

Social Laws

Social Laws with Synchronization

@ What is a good social law for the intersection example?
e Must include some form of yielding

@ In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor
@ Executing actions with waitfor preconditions:

e When the executive is given an action with waitfor preconditions to
execute, it will first monitor these preconditions, and only dispatch
the action when they are satisfied

e In a robotic system, this means we can only wait for what the robot
can sense

<<

Execution Model and Robustness

Execution Model

@ We are now ready to define our execution model formally:

@ Given a multi-agent setting M = (F,{A/}_,,,{Gi}_,)

@ The projection of I1 for agent i is the single agent STRIPS
planning problem M; = (F, A;, I, G;)

@ Each agent i has some plan 7; which solves I1;

@ Plans are merged by a scheduler:

Scheduler chooses which agent acts next

The agent which is chosen then executes the next action in its plan
Scheduler must choose an agent with a next action whose waitfor
preconditions are satisfied in the current state

No other assumptions about fairness of the scheduler

<<

Execution Model and Robustness

Two Types of Errors

11 T R — ,

Collision: agent executes an ac- Deadlock: all agents are waiting
tion whose precondition does not for some precondition (or finished)
hold

<<

Execution Model and Robustness

Robustness

@ A social law / for multi agent setting I = (F,{A;}/_,,,{Gi}_;)
is robust to:

rational iff for all agents i = 1...n, for all individual
solutions 7; for I1;, for all possible action
sequences 7 resulting from any arbitrary
interleaving of {m; }7_, which respects waitfor
preconditions, 7 achieves Gy U...U G,
adversarial against i iff for all individual solutions ; for I1;, for all
possible action sequences 7 resulting from an
arbitrary interleaving of &; which respects waitfor
preconditions with any valid action sequence of all
other agents, w achieves G;
adversarial iff it is robust to adversarial against i for all
i=1...n

<<

Verification

Robustness: Rational vs. Adversarial

@ Rational — assumes all agents want to achieve their goal

@ Adversarial — assumes nothing about the other agents
@ Easy to see:

o Adversarial robustness = Rational robustness
@ Lemma 1:

® VERIFY-RATIONAL >, VERIFY-ADVERSARIAL
e Intuition: to verify if agent i is robust to adversarial, treat all other
agents as a single “virtual” agent, with an empty goal

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial
o Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial
Objective: choose plans and find some interleaving of actions

(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself

No solution =- rationally robust
Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial
Objective: choose plans and find some interleaving of actions

(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself

@ n+1 copies of each fact: local copy for each agent, and global copy

No solution =- rationally robust
Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial
Objective: choose plans and find some interleaving of actions

(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself

@ n+1 copies of each fact: local copy for each agent, and global copy
@ Create 3 copies of each action: success, fail, deadlock

No solution =- rationally robust
Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial
Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself

@ n+1 copies of each fact: local copy for each agent, and global copy
@ Create 3 copies of each action: success, fail, deadlock
@ Each action affects local copy as if it succeeds

No solution =- rationally robust
Exact excruciating details in the paper

=

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial

o Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself
@ n+1 copies of each fact: local copy for each agent, and global copy
@ Create 3 copies of each action: success, fail, deadlock
@ Each action affects local copy as if it succeeds
@ Success version also succeeds in global copy

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler
@ Scheduler is adversarial

o Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself
@ n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Verification

Verifying Robustness

@ Verify if social law / is rationally robust for multi-agent setting I by
compilation to classical planning:
e Planner can choose plan for each agent and controls scheduler

Scheduler is adversarial

o Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
e Caveat: each individual plan must work by itself

n+ 1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock

Each action affects local copy as if it succeeds

Success version also succeeds in global copy

Fail version achieves failure — goal in global copy

Deadlock version (waiting for global fact f) must guarantee that f
does not hold at the end

o No solution = rationally robust
e Exact excruciating details in the paper

<<

Empirical Evaluation

Intersection Example 1

@ Social law: empty

=

Empirical Evaluation

Intersection Example 1

@ Social law: empty

@ Verification result: collision

=

Empirical Evaluation

Intersection Example 2

@ Social law: do not drive into non-clear location

<<

Empirical Evaluation

Intersection Example 2

@ Social law: do not drive into non-clear location

@ \Verification result: deadlock

<<

Empirical Evaluation

Intersection Example 3

@ Social law: yield to car coming from right

=

Empirical Evaluation

Intersection Example 3

@ Social law: yield to car coming from right
@ Verification result: deadlock

=

Empirical Evaluation

Intersection Example 4

@ Social law: cars coming from north or south yield to cars coming
from their right

=

Empirical Evaluation

Intersection Example 4

@ Social law: cars coming from north or south yield to cars coming
from their right

@ Verification result: robust

=

Empirical Evaluation

CoDMAP Benchmarks

@ We also used CoDMAP benchmarks

@ To convert them from cooperative planning to coordination
problems, we need to have a goal for each agent,

@ Assign each goal fact to an agent

o If goal fact mentions an agent i as first argument, assign it to /
e Otherwise, assign it to a random agent

@ We only kept instances for which all agents could solve their
individual problem

@ Used FF planner with 5 minute timeout
@ No surprise: very few are rationally robust

<<

Empirical Evaluation

CoDMAP Benchmarks: Planning Time Results

BLOCKSWORLD DRIVERLOG ZENOTRAVEL SATELLITES
Instance Time (s) Instance Time (s) Instance Time (s) Instance Time (s)
9-0 0.1 pfilet 0 pfile3 0 po5 0.11
9-1 0.09 pfile2 0 pfile4 0 p07 0.24
9-2 0.11 pfile3 0 pfile5 0 p21 243.38
10-0 0.1 pfile4 0 pfile6 0 p24 —
10-1 0.08 pfile5 0 pfile7 0 p25 —
10-2 0.09 pf!lee 0 pf!leS 0 SOKOBAN
11-0 0.17 pf!le7 0 pf!lee 0 Tnstance l Time (5)
11-1 0.18 pfile8 0 pfile10 0.01 061 [—
11-2 0.11 pfile9 0 pfile12 0
12-0 0.18 pfile10 0 pfile13 0.04
12-1 0.26 pfile11 0.01 pfile14 0.1
13-0 0.32 pfile12 0.01 pfile15 0.22
13-1 0.48 pfile13 0.02 pfile16 0.12
14-0 0.44 pfile14 0.04 pfile17 0.61
14-1 0.19 pfile15 0.17 pfile18 1.04
15-0 4.17 pfile16 1.25 pfile19 5.26
15-1 1.83 pfile17 28.63 pfile20 2.77
16-1 1.83 pfile18 23.53 pfile21 3.85
16-2 0.43 pfile19 88.06 pfile22 5.46
17-0 8.23 pfile20 111.54 pfile23 15.06

=

Empirical Evaluation

Summary

@ Contributions
e Connected social laws to multi-agent planning
e Defined notions of robustness
e Showed how to check robustness by compilation to classical
planning, and showed this works quickly on benchmarks
@ Future Work

o Automatically synthesize social laws
e Apply to robots

<<

Thank You

Questions?

<<

	Introduction
	Social Laws
	Execution Model and Robustness
	Verification
	Empirical Evaluation

