
Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Automated Verification of Social Law Robustness in
STRIPS

Erez Karpas Alexander Shlefyman Moshe Tennenholtz

Faculty of Industrial Engineering and Management
Technion — Israel Institute of Technology

Workshop on Distributed and Multi-Agent Planning — ICAPS 2016



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Motivation

Multi-agent planning is hard
. . . centralized or distributed

We would like each agent to be able to plan on its own
. . . without considering what the other agents might do

This simplifies the planning problem significantly



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Our Setting: Multi-Agent Systems

MA-STRIPS, except each agent has individual goal
Formalized as Π = 〈F ,{Ai}n

i=1, I,{Gi}n
i=1〉, where

F is a set of facts
I ⊆ F is the initial state
Gi ⊆ F is the goal of agent i
Ai is the set of actions of agent i



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection

Facts:
AT(car, region)
CLEAR(region)

Actions:
DRIVE(car,from,to)
ARRIVE(car,region)

Example plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for blue car:
ARRIVE(blue, Eent)
DRIVE(blue, Eent, NE)
DRIVE(blue, NE, NW)
DRIVE(blue, NW, Wex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for blue car:
ARRIVE(blue, Eent)
DRIVE(blue, Eent, NE)
DRIVE(blue, NE, NW)
DRIVE(blue, NW, Wex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Example: Intersection with 2 Crossing Cars

Plan for red car:
ARRIVE(red, Went)
DRIVE(red, Went, SW)
DRIVE(red, SW, SE)
DRIVE(red, SE, Eex)

Plan for green car:
ARRIVE(green, Nent)
DRIVE(green, Nent, NW)
DRIVE(green, NW, SW)
DRIVE(green, SW, Sex)

Can these plans interfere
with each other?



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Social Laws to the Rescue

A social law restricts the set of legal actions available to agents
Introduced by Tennenholtz, Moses and Shoham more than 25
years ago
Motivated by laws in a human society

What is a good social law?
Robustness — social law guarantees agents can achieve their
goals
Efficiency — plans obeying the social law are as efficient as plans
that do not



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Encoding Social Laws in MA-STRIPS

A social law restricts the set of legal actions available to agents

It might be tempting to say that a social law takes in an
MA-STRIPS system, and outputs another MA-STRIPS system
where the legal actions have been restricted.
Such a social law can be described by:

The facts it adds or removes,
The actions it adds or removes,
The preconditions, add effects, or delete effects it adds or
removes from each existing action,
The facts it adds or removes from the initial state
The facts it adds or removes from each agent’s goal

But such social laws will have very limited usefulness



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Social Laws with Synchronization

What is a good social law for the intersection example?
Must include some form of yielding

In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor
Executing actions with waitfor preconditions:

When the executive is given an action with waitfor preconditions to
execute, it will first monitor these preconditions, and only dispatch
the action when they are satisfied
In a robotic system, this means we can only wait for what the robot
can sense



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Social Laws with Synchronization

What is a good social law for the intersection example?
Must include some form of yielding

In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor
Executing actions with waitfor preconditions:

When the executive is given an action with waitfor preconditions to
execute, it will first monitor these preconditions, and only dispatch
the action when they are satisfied
In a robotic system, this means we can only wait for what the robot
can sense



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Social Laws with Synchronization

What is a good social law for the intersection example?
Must include some form of yielding

In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor
Executing actions with waitfor preconditions:

When the executive is given an action with waitfor preconditions to
execute, it will first monitor these preconditions, and only dispatch
the action when they are satisfied
In a robotic system, this means we can only wait for what the robot
can sense



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Social Laws with Synchronization

What is a good social law for the intersection example?
Must include some form of yielding

In our setting, in addition to the above modifications, a social law
can specify some action preconditions as waitfor
Executing actions with waitfor preconditions:

When the executive is given an action with waitfor preconditions to
execute, it will first monitor these preconditions, and only dispatch
the action when they are satisfied
In a robotic system, this means we can only wait for what the robot
can sense



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Execution Model

We are now ready to define our execution model formally:

Given a multi-agent setting Π = 〈F ,{Ai}n
i=1, I,{Gi}n

i=1〉
The projection of Π for agent i is the single agent STRIPS

planning problem Πi = 〈F ,Ai , I,Gi〉
Each agent i has some plan πi which solves Πi

Plans are merged by a scheduler:
Scheduler chooses which agent acts next
The agent which is chosen then executes the next action in its plan
Scheduler must choose an agent with a next action whose waitfor
preconditions are satisfied in the current state
No other assumptions about fairness of the scheduler



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Two Types of Errors

Collision: agent executes an ac-
tion whose precondition does not
hold

Deadlock: all agents are waiting
for some precondition (or finished)



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Robustness

A social law l for multi agent setting Π = 〈F ,{Ai}n
i=1, I,{Gi}n

i=1〉
is robust to:

rational iff for all agents i = 1 . . .n, for all individual
solutions πi for Πi , for all possible action
sequences π resulting from any arbitrary
interleaving of {πi}n

i=1 which respects waitfor
preconditions, π achieves G1∪ . . .∪Gn

adversarial against i iff for all individual solutions πi for Πi , for all
possible action sequences π resulting from an
arbitrary interleaving of πi which respects waitfor
preconditions with any valid action sequence of all
other agents, π achieves Gi

adversarial iff it is robust to adversarial against i for all
i = 1 . . .n



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Robustness: Rational vs. Adversarial

Rational — assumes all agents want to achieve their goal

Adversarial — assumes nothing about the other agents
Easy to see:

Adversarial robustness⇒ Rational robustness

Lemma 1:
VERIFY-RATIONAL ≥p VERIFY-ADVERSARIAL

Intuition: to verify if agent i is robust to adversarial, treat all other
agents as a single “virtual” agent, with an empty goal



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Verifying Robustness

Verify if social law l is rationally robust for multi-agent setting Π by
compilation to classical planning:

Planner can choose plan for each agent and controls scheduler
Scheduler is adversarial

Objective: choose plans and find some interleaving of actions
(which respects waitfor) which causes an error
Caveat: each individual plan must work by itself

n+1 copies of each fact: local copy for each agent, and global copy
Create 3 copies of each action: success, fail, deadlock
Each action affects local copy as if it succeeds
Success version also succeeds in global copy
Fail version achieves failure — goal in global copy
Deadlock version (waiting for global fact f ) must guarantee that f
does not hold at the end

No solution⇒ rationally robust
Exact excruciating details in the paper



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 1

Social law: empty

Verification result: collision



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 1

Social law: empty

Verification result: collision



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 2

Social law: do not drive into non-clear location

Verification result: deadlock



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 2

Social law: do not drive into non-clear location

Verification result: deadlock



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 3

Social law: yield to car coming from right

Verification result: deadlock



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 3

Social law: yield to car coming from right

Verification result: deadlock



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 4

Social law: cars coming from north or south yield to cars coming
from their right

Verification result: robust



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Intersection Example 4

Social law: cars coming from north or south yield to cars coming
from their right

Verification result: robust



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

CoDMAP Benchmarks

We also used CoDMAP benchmarks

To convert them from cooperative planning to coordination
problems, we need to have a goal for each agent,
Assign each goal fact to an agent

If goal fact mentions an agent i as first argument, assign it to i
Otherwise, assign it to a random agent

We only kept instances for which all agents could solve their
individual problem

Used FF planner with 5 minute timeout

No surprise: very few are rationally robust



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

CoDMAP Benchmarks: Planning Time Results

BLOCKSWORLD

Instance Time (s)
9-0 0.1
9-1 0.09
9-2 0.11
10-0 0.1
10-1 0.08
10-2 0.09
11-0 0.17
11-1 0.18
11-2 0.11
12-0 0.18
12-1 0.26
13-0 0.32
13-1 0.48
14-0 0.44
14-1 0.19
15-0 4.17
15-1 1.83
16-1 1.83
16-2 0.43
17-0 8.23

DRIVERLOG

Instance Time (s)
pfile1 0
pfile2 0
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0
pfile11 0.01
pfile12 0.01
pfile13 0.02
pfile14 0.04
pfile15 0.17
pfile16 1.25
pfile17 28.63
pfile18 23.53
pfile19 88.06
pfile20 111.54

ZENOTRAVEL

Instance Time (s)
pfile3 0
pfile4 0
pfile5 0
pfile6 0
pfile7 0
pfile8 0
pfile9 0
pfile10 0.01
pfile12 0
pfile13 0.04
pfile14 0.1
pfile15 0.22
pfile16 0.12
pfile17 0.61
pfile18 1.04
pfile19 5.26
pfile20 2.77
pfile21 3.85
pfile22 5.46
pfile23 15.06

SATELLITES

Instance Time (s)
p05 0.11
p07 0.24
p21 243.38
p24 —
p25 —

SOKOBAN

Instance Time (s)
p06-1 —



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Summary

Contributions
Connected social laws to multi-agent planning
Defined notions of robustness
Showed how to check robustness by compilation to classical
planning, and showed this works quickly on benchmarks

Future Work
Automatically synthesize social laws
Apply to robots



Introduction Social Laws Execution Model and Robustness Verification Empirical Evaluation

Thank You

Questions?


	Introduction
	Social Laws
	Execution Model and Robustness
	Verification
	Empirical Evaluation

