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The obvious way to use several admissible heuristics in searching for an optimal solution 
is to take their maximum. In this paper, we aim to reduce the time spent on computing 
heuristics within the context of A∗ and I D A∗. We discuss Lazy A∗ and Lazy I D A∗, variants 
of A∗ and I D A∗, respectively, where heuristics are evaluated lazily: only when they are 
essential to a decision to be made in the search process. While these lazy algorithms 
outperform naive maximization, we can do even better by intelligently deciding when to 
compute the more expensive heuristic. We present a new rational metareasoning based 
scheme which decides whether to compute the more expensive heuristics at all, based 
on a myopic regret estimate. This scheme is used to create rational lazy A∗ and rational 
lazy I D A∗. We also present different methods for estimating the parameters necessary for 
making such decisions. An empirical evaluation in several domains supports the theoretical 
results, and shows that the rational variants, rational lazy A∗ and rational lazy I D A∗, are 
better than their non-rational counterparts.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Introducing rational metareasoning techniques [1] into search is a research direction that has recently proved worth-
while. All search algorithms have decision points about which search actions to perform. Traditionally, tailored rules are 
hard-coded into the algorithms. However, applying metareasoning techniques based on value of information or other ideas 
can significantly speed up the search. This was shown for depth-first search in CSPs [2] as well as for Monte-Carlo tree 
search [3]. In the heuristic search literature, the greatest speedups using metareasoning techniques have been achieved 
when they were used to trade off solution quality for search time [4–6], where the search algorithm attempts to choose a 
node which will also minimize expected search effort, rather than just expected solution cost.

Taking advantage of metareasoning when the search is for an optimal solution is different than in satisficing planning, 
as the time vs. quality tradeoff is not available. Nevertheless, optimal search algorithms use heuristics, and when more 
than one such heuristic is available, metareasoning can be used to speed up search, trading off different aspects of search 
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time, such as time spent for computing heuristics vs. time spent in node expansion, to achieve an overall speedup without 
jeopardizing optimality. In this paper, we examine how this can be done for A∗ and I D A∗ .

The A∗ algorithm [7] and its derivatives, such as I D A∗ [8] and RBFS [9] are best-first heuristic search algorithms guided 
by the cost function f (n) = g(n) + h(n). A∗ is often described as being ‘optimal’, in that it expands the minimum number of 
unique nodes. If the heuristic h(n) is consistent1 then the set of nodes expanded by A∗ is both necessary and sufficient to 
find the optimal path to the goal with a unidirectional search [11].2

This paper examines the case where we have several available admissible heuristics. Clearly, we can evaluate all these 
heuristics, and use their maximum as an admissible heuristic. The problem with naive maximization is that all the heuristics 
are computed for all the generated nodes. In order to reduce the time spent on heuristic computations, Lazy A∗ (or L A∗ , for 
short) evaluates the heuristics one at a time, lazily. When a node n is generated, L A∗ only computes one heuristic, h1(n), 
and adds n to Open. Only when n re-emerges as the top of Open is another heuristic, h2(n), evaluated; if this results in an 
increased heuristic estimate, n is re-inserted into Open. This scheme can be repeated as needed if we have more than two 
heuristics. L A∗ expands no more nodes than A∗ using the maximum. While L A∗ may have the extra overhead of inserting 
a node into Open more than once, it has the potential to significantly reduce search time, as we may bypass computation 
of h2 for many nodes. L A∗ was briefly mentioned in the context of the MAXSAT heuristic for planning domains [12].

One major drawback for using A∗ is that its memory consumption is linear in the number of generated nodes, which is 
typically exponential in the problem description size, and that may be unacceptable. In contrast to A∗ , I D A∗ is a linear-space 
algorithm which emulates A∗ by performing a series of depth-first searches from the root, each with increasing costs, thus 
re-expanding nodes multiple times. I D A∗ is typically used in domains and problem instances where A∗ requires more than 
the available memory and thus cannot be run to completion. Similarly to A∗ , the first thing to consider for I D A∗ is lazy 
evaluation of the heuristics. In order to reduce the time spent on heuristic computations, Lazy I D A∗ evaluates the heuristics 
one at a time, lazily. When h1 causes a cutoff there is no need to evaluate h2. Unlike Lazy A∗ , where lazy evaluation must 
pay an overhead (re-inserting into the OPEN list), Lazy I D A∗ (LI D A∗) is straightforward and has no immediate overhead.

As our goal is to reduce search time, it may be better to compute a fast heuristic on several nodes, rather than to compute 
a slow but informed heuristic on only one node. Selective max (Sel-MAX), an online learning scheme which chooses one 
heuristic to compute at each node, is based on this idea [13]. Sel-MAX chooses to compute the more expensive heuristic 
h2 for node n when its classifier predicts that h2(n) − h1(n) is greater than some threshold, which is a function of the 
computation times of the heuristics and of the average branching factor.

Similarly, previous work showed that randomizing a heuristic and applying bidirectional pathmax (BPMX) might some-
times be faster than evaluating all heuristics and taking the maximum [10]. This technique is only useful in undirected 
search spaces, and is therefore not applicable to some of the domains we examine in this paper. Both Selective max and 
Random compute the resulting heuristic once, before each node is added to Open, while L A∗ and LI D A∗ compute the 
heuristic lazily, in different steps of the search. In addition, both randomization and Sel-MAX save heuristic computations 
and thus reduce search time in many cases. However, they might be less informed than pure maximization and as a result 
expand a larger number of nodes.

In this paper, we combine the ideas of lazy heuristic evaluation and of trading off more node expansions for less heuris-
tic computation time. We introduce a new variant of L A∗ called Rational Lazy A∗ (RL A∗), as well as a new variant of 
LI D A∗ called Rational Lazy I D A∗ (RLI D A∗). These new rational algorithms are based on rational metareasoning in the 
sense of [1], and use a myopic regret criterion to decide whether to compute h2(n) or to bypass the computation of h2 and 
expand n instead. They aim to reduce search time, even at the expense of more node expansions than A∗ or I D A∗ with 
the maximum of the heuristics. Empirical results on several heuristic search problems, as well as on numerous planning 
domains demonstrate that RL A∗ and RLI D A∗ lead to better performance than their non-rational versions in many cases.

Perhaps the most closely related work, the RA∗ [14] and GHS [15] algorithms, have a similar objective — minimizing 
search time when given access to multiple heuristics. However they approach this problem in a different way, by choosing 
a subset of the heuristics to maximize over during search. On the other hand, we assume there are exactly two heuris-
tics given, and attempt to minimize search time using these heuristics. An interesting direction for future work would be 
choosing a set of heuristics to combine using RL A∗ or RLI D A∗ .

Preliminary papers appeared on these ideas, introducing the A* variants [16] and the IDA* variants [17]. This paper 
unifies the presentation of RL A∗ and RLI D A∗ into one coherent whole, while providing more experimental results. In 
addition, this paper further describes several technical optimizations for L A∗ and LI D A∗ . Finally, we extend the previous 
versions of RL A∗ and RLI D A∗ by relaxing one of the assumptions originally made, as well as describing new techniques for 
estimating the parameters used in deciding when to compute the more expensive heuristic.

This paper is organized as follows. We begin (Section 2) by reintroducing L A∗ and LI D A∗ , and analyze the potential 
savings of L A∗ over A∗ and of LI D A∗ over I D A∗ . We then consider the effects of some common additional enhancements 
to L A∗ and LI D A∗ (Section 3). The main contribution of the paper is Section 4, which introduces the principles behind 
the decisions made by Rational L A∗ and Rational LI D A∗ , and Section 5, which presents different methods of using these 

1 A heuristic (in undirected graphs) is consistent if for any two nodes n and m, |h(n) − h(m)| ≤ cost(n, m) [10].
2 A∗ has similar guarantees on the set of nodes expanded with an inconsistent heuristic but may perform many unnecessary re-expansions [10]. In 

addition, we are neglecting the tie breaking in the last f -layer.
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principles in practice. Our approach is then extensively evaluated empirically in Section 6, in several puzzle domains as well 
as in numerous domains from past planning competitions. We then discuss possible directions for future work in section 7, 
and conclude in section 8.

2. Lazy A∗ and I D A∗

In this section we study L A∗ and LI D A∗ . The idea behind these algorithms is simple and was probably used by others. 
In fact, it was specifically mentioned in work on using the MAXSAT heuristic for planning [12]. Nevertheless, we study this 
technique in more depth in the context of A* and IDA*, and point out its strengths and weaknesses. Additionally, L A∗ and 
LI D A∗ serve as a basis for our enhanced algorithms, RL A∗ and RLI D A∗ , which add metareasoning to the lazy technique.

2.1. Definitions and assumptions

Throughout this paper we assume for clarity that we have two available admissible heuristics, h1 and h2.

• Unless stated otherwise, we assume that h1 is faster to compute than h2 but that h2 is weakly more informed, i.e., 
h1(n) ≤ h2(n) for the majority of the nodes n, although counter cases where h1(n) > h2(n) are possible. We say that h2
dominates h1, if such counter cases do not exist and h2(n) ≥ h1(n) for all nodes n.

• We use f1(n) to denote g(n) +h1(n). Likewise, f2(n) denotes g(n) +h2(n), and fmax(n) denotes g(n) +max(h1(n), h2(n)). 
We denote the cost of the optimal solution by C∗ .

• We denote the computation time of h1 and of h2 by t1 and t2, respectively, and denote the overhead of an insert/pop
operation in Open by to . Unless stated otherwise we assume that t2 is much greater than t1 + to . Thus, our main 
objective is to reduce computations of h2. Note that t1, t2, and to are not necessarily constants, as heuristic computation 
times could vary between different nodes, and to could depend on the size of Open. Nevertheless, treating them as 
constants is sometimes a useful approximation, and has been done before [13].

2.2. Lazy A∗

Algorithm 1: Rational lazy A∗ .

1 Apply all heuristics to Start
2 Insert Start into Open

3 while Open not empty do
4 n ← best node from Open (update statistics)
5 if Goal(n) then
6 return trace(n)

7 if h2 was not applied to n and opt-cond then
8 Apply h2 to n (update statistics)
9 insert n into Open

10 continue //next node in OPEN

11 foreach child c of n do
12 Delete-duplicates(c, Open, Closed)
13 Apply h1 to c (update statistics)
14 insert c into Open

15 Insert n into Closed

16 return FAILURE

We begin with a formal treatment of L A∗ . The pseudo-code for L A∗ is depicted as Algorithm 1, and is very similar 
to A∗ . In fact, without lines 7–10, L A∗ would be identical to A∗ using the h1 heuristic. When a node n is generated we 
only compute h1(n) and n is added to Open (Lines 11–14), without computing h2(n) yet. When n is first removed from
Open (Lines 7–10), we compute h2(n) and reinsert it into Open, this time with fmax(n). The optional condition, opt-cond
in Line 7, as well as the statistics collected by update statistics in Lines 4, 8, and 13, are used by the Rational variant of 
L A∗ which is introduced in Section 4. For the basic variant of L A∗ discussed in this section opt-cond is simply assumed to 
be always TRUE, and thus ignored.

We use A∗
M A X to denote the variant of A* which evaluates both heuristics and uses their maximum. It is easy to see 

that L A∗ is as informed as A∗
M A X , in the sense that a node n is expanded both by A∗

M A X and by L A∗ only if fmax(n) is the 
best f -value in Open. Therefore, L A∗ and A∗

M A X generate and expand the same set of nodes, up to differences caused by 
tie-breaking.

In its general form A∗ generates many nodes that it does not expand. These nodes, called surplus nodes [18,19], are 
in Open when we expand the goal node with f = C∗ . All nodes in Open with f > C∗ are surely surplus but some nodes 
with f = C∗ may also be surplus. The number of surplus nodes in OPEN can grow exponentially in the size of the domain, 
resulting in significant costs.
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Table 1
Time spent on each node for A∗

M A X and for L A∗ .

Alg ER SR SG

A∗
M A X t1 + t2 + 2to t1 + t2 + to t1 + t2 + to

L A∗ t1 + t2 + 4to t1 + t2 + 3to t1 + to

L A∗ avoids h2 computations for many of these surplus nodes. Consider a node n that is generated with f1(n) > C∗ . This 
node is inserted into Open but will never reach the top of Open, as the goal node will be found with f = C∗ . In fact, if ties 
are broken in Open in favor of small h-values, the goal node with f = C∗ could be expanded as soon as it is generated, 
and such savings of h2 will be obtained for some nodes with f1 = C∗ too. We refer to such nodes where we saved the 
computation of h2 as good nodes (from the view point of saving computation time). Other nodes, those with f1(n) < C∗
(and some with f1(n) = C∗) are called regular nodes, as we need to compute both heuristics for them.

A∗
M A X computes both h1 and h2 for all generated nodes, spending time t1 + t2 on all generated nodes, as well as the 

time spent on inserting all nodes into the open list (to ), and an extra to spent on removing the nodes that were expanded 
from the open list. In contrast, for good nodes L A∗ only spends t1 time computing heuristic estimates (saving t2 time), as 
well as extra overhead on open list operations. In the basic implementation of L A∗ (as in Algorithm 1) regular nodes are 
inserted into OPEN twice, first for h1 (Line 13) and then for h2 (Line 9) while good nodes only enter Open once (Line 13). 
Thus, L A∗ has some extra overhead of Open operations for regular nodes. We distinguish between 3 classes of nodes:

• (1) expanded regular (ER) — nodes that were expanded after both heuristics were computed. Both A∗
M A X and L A∗ spend 

t1 + t2 time computing heuristic estimates for each of these nodes. A∗
M A X inserts and removes each of these nodes from 

the open list, for an extra 2to time, while L A∗ inserts and removes each of these nodes from the open list twice, for an 
extra 4to time.

• (2) surplus regular (SR) — nodes for which h2 was computed but are still in Open when the goal was found. Both 
A∗

M A X and L A∗ spend t1 + t2 time computing heuristic estimates for each of these nodes. A∗
M A X inserts each of these 

nodes to the open list, for an extra to time, while L A∗ inserts each of these nodes into the open list twice, and removes 
them once, for an extra 3to time.

• (3) surplus good (SG) — nodes for which only h1 was computed when the goal was found. A∗
M A X spends t1 + t2 time 

computing heuristic estimates for each of these nodes, and to time inserting each of them into the open list. On the 
other hand, L A∗ only spends t1 time computing heuristic estimates for each of these nodes, as well as an extra to time 
inserting each of them into the open list.

The time overhead of A∗
M A X and L A∗ is summarized in Table 1.

L A∗ incurs more Open operations overhead, but saves h2 computations for the SG nodes. When t2 (boldface in Table 1) 
is significantly greater than both t1 and to then, as seen in the SG column, there is a clear advantage for L A∗ . This advantage 
grows when the number of SG nodes increases.

2.3. Lazy I D A∗

We now present LI D A∗ , the lazy variant of I D A∗ . Recall that I D A∗ works in iterations, with an increasing cutoff thresh-
old T at each iteration. After h(n) is evaluated, if f (n) = g(n) + h(n) > T , then n is pruned and I D A∗ backtracks to n’s 
parent. Given both h1 and h2, a naive implementation of I D A∗ , denoted as I D A∗

M A X , will evaluate them both and use their 
maximum in comparing against T . Lazy I D A∗ (LI D A∗) is based on the simple fact that when you have an or condition 
in the form of cond1 or cond2 then if cond1 = T rue then cond2 becomes irrelevant (“don’t-care”) and does not need to 
be computed, as the entire or condition is surely true. In the context of I D A∗ , if f1(n) > T then the search can backtrack 
without the need to compute h2. This simple observation is probably recognized by most implementers of I D A∗ . Thus, it is 
likely that LI D A∗ is already a popular way to implement I D A∗ when more than one heuristic is present.

The pseudo-code for LI D A∗ (and its enhanced version, Rational LI D A∗ , which is discussed in Section 4), is depicted as 
Algorithm 2. In Lines 8–10 we check whether f1 is already above the threshold, in which case search backtracks. h2 is only 
calculated (in Lines 13–14) if f1(n) ≤ T . The “optional condition” in Line 13, as well as the updating of statistics in Lines 8
and 14, are needed for the Rational Lazy I D A∗ algorithm, and will be explained in Section 4. In the standard version of Lazy 
I D A∗ , the “optional condition” in line 13 is always true, and the respective heuristics are always evaluated at this juncture.

While Lazy A∗ was always as informed as A∗ using the maximum of the heuristics, this is not the case for Lazy I D A∗ . 
This is because, in rare cases, LI D A∗ can cause extra iterations of the algorithm compared to I D A∗ . Suppose that the current 
threshold is T and the current value of the next threshold (NT) is T + 3 as some node m seen in the current iteration has 
f (m) = T +3. Now we generate node n with f1(n) = T +1 and thus set NT = T +1 and bypass h2. However, if f2(n) = T +2
then consulting h2 would have caused NT = T + 2. With LI D A∗ , we may now start a new and redundant iteration with 
threshold T + 1, rather than with T + 2 — which would have been the case with I D A∗

M A X .
However, in order for an extra iteration #i with value v to happen, all nodes that have an h2 value of v in iteration #i −1

have to be pruned by their h1 value. As the number of nodes grows between iterations (potentially exponentially), this case 
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Algorithm 2: Rational lazy I D A∗ .

1 Lazy-I D A∗(root) {
2 Thresh ← max(h1(root), h2(root))
3 solution ← null
4 while solution = null and Thresh < ∞ do
5 solution, Thresh = Lazy-DFS(root, Thresh)

6 return solution

7 Lazy-DFS(n, Thresh) {
8 Compute h1 and update statistics
9 if g(n) + h1(n) > Thresh then

10 return null, g(n) + h1(n)

11 if goal-test(n) then
12 return n, Thresh

13 if opt-cond then
14 Compute h2 and update statistics
15 if g(n) + h2(n) > Thresh then
16 return null, g(n) + h2(n)

17 next-Thresh ← ∞
18 for n′ in successors(n) do
19 solution, temp-Thresh ← Lazy-DFS(n′ , Thresh)
20 if solution �= null then
21 return solution, temp-Thresh

22 else
23 next-Thresh ← min(temp-Thresh, next-Thresh)

24 return null, next-Thresh

Fig. 1. Example of HBP.

becomes less likely in later iterations. Our empirical evaluation (Section 6.2.4 in particular), where Lazy I D A∗ outperforms 
regular I D A∗ , corroborates this. Furthermore, experiments on various domains where a random heuristic was selected (out 
of several heuristics) showed that such cases are very rare [10].

3. Enhancements to Lazy A∗ and Lazy I D A∗

Having described the basic lazy algorithms (L A∗ and LI D A∗), we now describe two enhancements of these algorithms. 
These enhancements are effective especially if t1 and to are not negligible.

3.1. Heuristic bypassing

Heuristic bypassing (HBP) is a technique that allows us to compute the maximum, max(h1(n), h2(n)), without evaluating 
one of the two heuristics for some nodes. HBP is probably used by many implementers of A∗

M A X , although to the best of 
our knowledge, it never appeared in the literature. HBP works for a node n under the following two conditions: (1) the 
operator between n and its parent p is bidirectional, and (2) both heuristics are consistent.

Let C be the cost of the operator. Since the heuristic is consistent we know that |h(p) − h(n)| ≤ C . Therefore, h(p)

provides the following upper- and lower-bounds on h(n): h(p) − C ≤ h(n) ≤ h(p) + C . We thus denote h(n) = h(p) − C and 
h(n) = h(p) + C .

To exploit HBP in A∗
M A X , we simply skip the computation of h1(n) if h1(n) ≤ h2(n), or similarly, we skip the computation 

of h2 if h2(n) ≤ h1(n). For example, consider node a in Fig. 1, where all operators cost 1, h1(a) = 6, and h2(a) = 10. Based 
on our bounds h1(b) ≤ 7 and h2(b) ≥ 9. Thus, there is no need to compute h1(b) as h2(b) will surely be the maximum. We 
can propagate these bounds further to node c. h2(c) = 8 while h1(c) ≤ 8 and again there is no need to evaluate h1(c). Only 
in the last node d we get that h2(d) = 8 but since h1(d) ≤ 9 then h1(d) can potentially return the maximum and should 
thus be evaluated.

HBP can be applied in L A∗ in a number of ways. We describe the variant we used. L A∗ aims to avoid needless compu-
tations of h2. Thus, when h1(n) < h2(n), we add n to Open with f (n) = g(n) + h2(n) and continue as in L A∗ . In this case, 
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we saved t1 time by not computing h1, used h2(n) which is more informative than h1(n), while still having the option to 
compute h2 later, if needed. If, however, h1(n) ≥ h2(n), then we compute h1(n) and continue regularly.

HBP can also be applied in LI D A∗ , where one only needs to know whether the f -value is below or above the thresh-
old T . Again, assume that node n was generated, that p is the parent of n, and that the cost of the edge is C . If it happens 
to be the case that f1(p) + C ≤ f2(p), then we can deduce that f1(p) + C ≤ T . This is because p was expanded, and thus 
f2(p) ≤ T . Since the heuristics are consistent, we know that f1(n) ≤ f1(p) + C ≤ T . Thus, in such cases, one can skip the 
computation of h1(n) and go directly to h2.

While HBP can save some computation of h1, note that HBP incurs the time and memory overheads of computing and 
storing four bounds and should only be applied if there is enough memory and if t1 and especially t2 are very large. Finally, 
we remark that when the heuristic is inconsistent then a mechanism called bidirectional pathmax (BPMX) [10] can be used 
to propagate heuristic values from parents to children and vice versa. Using exhaustive evaluations of all heuristics, even 
if h1(n) already exceeded the threshold, can potentially help in propagating larger heuristic values to the neighborhood 
of n. Nevertheless, experiments showed that even in this context, lazy evaluation of heuristics is faster than exhaustive 
evaluation [10].

3.2. Open bypassing

Another optimization, which is relevant only for L A∗ , is called Open bypassing (OB). Suppose that node n was just gen-
erated, and let fbest denote the best f -value currently in Open. L A∗ evaluates h1(n) and then inserts n into Open. However, 
if f1(n) < fbest , then n can immediately reach the top of Open and h2 will be computed. In such cases where f1(n) < fbest
we can choose to compute h2(n) right away (after Line 13 in Algorithm 1), thus saving the overhead of inserting n into
Open and popping it again at the next step (= 2 × to).3 For such nodes, L A∗ is identical to A∗

M A X , as both heuristics are 
computed before the node is added to Open. This enhancement is reminiscent of the immediate expand technique applied 
to a generated node [20,21]. The same technique can be applied when n again reaches the top of Open when evaluating 
h2(n); if f2(n) < fbest , expand n right away and bypass open. When applying OB, L A∗ will incur the extra overhead of two
Open cycles only for nodes n where both f1(n) > fbest and then later f2(n) > fbest . As LI D A∗ does not keep an open list, 
this enhancement is only applicable to L A∗ .

In our earlier paper [16] we showed that on some unit-edge cost domains such as the 15-puzzle, if t1 and t2 are very 
similar then HBP and OB are particularly useful, and they save heuristic computation for many of the nodes. For example, 
the number of good nodes dropped from 38% to 11% when adding HBP on top of L A∗ . This leaves little room for further 
improvement for L A∗ . Thus, timing results did not show a significant difference between the different versions.

3.3. Extending lazy A∗ and I D A∗ to multiple heuristics

Given a set {h1, h2, ..., hn} of heuristics, it is straightforward to extend either Lazy A∗ or Lazy I D A∗ to handle multiple 
heuristics. Simply repeat the code snippet used for h2 in either algorithm, and apply it to each hi , for all 3 ≤ i ≤ n. This 
assumes that we have already ordered the heuristics in some reasonable way, although this ordering itself is far from trivial, 
as discussed in Section 7.

4. Rational lazy A∗ and I D A∗

L A∗ provides a very strong guarantee, of expanding the same set of nodes as A∗
M A X . While LI D A∗ can potentially result 

in extra iterations, it is also guaranteed to expand the same set of nodes as I D A∗ with the maximum of the two heuristics. 
However, often we would prefer to expand more nodes, if it means reducing search time [13]. This will be possible, for 
example, if we skip the computation of h2 for a given node n and expand it whenever we believe that expanding it and 
generating its children will consume less CPU time than calculating h2(n). We now present Rational Lazy A∗ (RL A∗) as well 
as Rational Lazy I D A∗ (RLI D A∗) — two algorithms which attempt to optimally manage this tradeoff, based on the principle 
of rational metareasoning.

We begin by reviewing rational metareasoning in the context of optimal search in Section 4.1. We then discuss how we 
can compute the regret of our possible meta-level decisions in Section 4.2. Using these regret values, we derive a rational 
meta-level policy in Section 4.3. Finally, in Section 5 we describe some techniques for implementing this policy in practice.

4.1. Rational metareasoning for optimal search

Previous work has presented a general theory of rational metareasoning in search [1]. In rational metareasoning, theo-
retically every computational action (heuristic function evaluation, node expansion, open list operation) should be treated 

3 The only “risk” in this enhancement is that n might have a sibling node n′ with an even lower f value; in this case, n′ would have been removed from
Open before n by basic L A∗ . However, this does not affect the optimality of the solution returned, as both h1 and h2 are admissible heuristics, so n still 
ends up in Open with an admissible estimate.



JID:ARTINT AID:3039 /FLA [m3G; v1.224; Prn:13/11/2017; 12:33] P.7 (1-30)

E. Karpas et al. / Artificial Intelligence ••• (••••) •••–••• 7
as an action in a sequential decision-making meta-level problem: actions should be chosen so as to achieve the greatest 
expected utility (hence the term “rational”). For algorithms guaranteed to deliver an optimal solution, maximizing expected 
utility translates into minimizing the expected search time. However, the appropriate general metareasoning problem is 
extremely hard to parametrize precisely, and when fully parametrized, results in an intractable metareasoning problem. 
Therefore, typically simplifying assumptions of two types are made in order to allow for a practical approximation to ratio-
nal metareasoning: myopic assumptions and independence assumptions [1].

In this paper we focus on just one decision type, made in the context of L A∗ and LI D A∗— that of deciding whether 
to evaluate or to bypass the computation of h2 for some node n. We have two options: (1) Evaluate the second heuristic 
h2(n), and proceed using the value fmax(n), or (2) bypass the computation of h2(n) and use f1(n), thereby saving time by 
not computing h2, at the risk of additional expansions and evaluations of h1.

In the context of L A∗ , we must make this decision when n first emerges from Open (Line 7 in Algorithm 1). This is done 
by the optional condition opt-cond. If we choose to bypass the computation of h2(n) (opt-cond=FALSE), n is expanded right 
away. Otherwise (opt-cond=TRUE) h2(n) is computed, and n is enqueued back in Open with fmax(n).

In the context of LI D A∗ , we must make this decision when we evaluate a node n and f1(n) was within the current 
I D A∗ threshold T (Line 13 in Algorithm 2). If we choose to bypass the computation of h2(n) (opt-cond=FALSE), n is 
expanded right away. Otherwise (opt-cond=TRUE), h2(n) is evaluated and I D A∗ proceeds with fmax(n), that is, the search 
backtracks if fmax(n) > T .

We would like the algorithm to make the decision on whether to evaluate h2 rationally. Therefore, we define a criterion 
based on the regret for bypassing h2(n) in this context. We define regret here as the value lost (in terms of expected 
increased run time) due to bypassing the computation of h2(n), i.e., how much runtime is increased due to bypassing the 
computation. We wish to compute h2(n) only if this regret is positive. Next, we estimate the regret for each of these possible 
decisions.

4.2. Computing the regret

Let us now consider our two possible decisions (compute h2 or bypass h2). Suppose that we choose to compute h2 — 
this results in one of the following outcomes:

h2 helpful: That is, the computation of h2(n) will prevent the expansion of n. For L A∗, this means that n is re-inserted into
Open, and the goal is found without ever expanding n, which is only possible if fmax(n) ≥ C∗ . For LI D A∗ , since 
we already know that g(n) + h1(n) ≤ T , “helpful” means g(n) + h2(n) > T , and therefore n is not expanded in the 
current I D A∗ iteration.

h2 not helpful: n is still expanded despite the computation of h2(n). For L A∗ , this means either now or eventually, while 
for LI D A∗ this means n is expanded in the current iteration.

In estimating the gain due to the computation of h2, we rely on the subtree independence assumption [1] — that a 
computation in one node contributes information only to itself or one of its ancestors, which is tantamount to assuming 
that the search space is a tree, and that there is no dependency between nodes at different branches of the tree. Thus, we 
assume that the information gathered by computing h2 for node n is used solely for pruning n.

Under these assumptions, computing h2 could be beneficial only in the first outcome, where the potential time savings 
due to computing h2 are due to pruning a search subtree, at the expense of time t2. However, for a given node n, which 
outcome will take place after evaluating h2(n) is not known to the algorithm when it makes that decision, and thus it must 
decide whether to evaluate h2(n) according to what it believes to be the probability of each of the outcomes.

In order to estimate the regret, we make the following additional simplifying assumptions:

I The decision is made myopically: we work under the assumption that the algorithm continues to behave like Lazy A∗ or 
Lazy I D A∗ starting with the children of n, and will never bypass another h2 computation after the current decision is 
made (i.e., opt-cond=TRUE for all future decisions).

II h2 is consistent. Thus, if evaluating h2 is helpful on n, it is also helpful on any successor of n, due to the fact that f
(specifically, f2) increases monotonically for consistent heuristics.

III As a first approximation (relaxed later on), we also assume that all successors of n would be expanded if we used only 
h1 for them.

Note that these metareasoning assumptions are made in order to derive decisions, and as is common in research on 
metareasoning, the assumptions do not actually hold in practice [1]. Nevertheless, if the violation of the assumptions is 
not “too severe”, the resulting algorithms still show significant improvements over their non-rational counterparts. Without 
such assumptions the model becomes far too complicated and one cannot move ahead at all. Nevertheless, the assumptions 
make sense: if our rational algorithms (RL A∗ and RLI D A∗) are better than their lazy (non-rational) counterparts (L A∗ and 
LI D A∗ , respectively), the first assumption results in an upper bound on the regret, because regret considers future runtime, 
and the rational algorithm should be faster than its non-rational version. Unfortunately, we can not provide such a statement 
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Table 2
Regret in rational lazy A∗ .

Compute h2 Bypass h2

h2 helpful 0 te + (b(n) − 1)td

h2 not helpful td 0

regarding the two other assumptions, and in fact Assumption III is clearly off the mark in certain domains and we attempt 
to relax it later on.

In order to derive a rational policy, we begin by analyzing our two possible decisions: to compute h2 or to bypass h2, 
under the two (unknown) possible future outcomes: h2 is helpful or not. Table 2 summarizes the regret of each possible 
decision, for each possible future outcome; each column in the table represents a decision, while each row represents a 
future outcome.

In the table, td is the time to compute h2 and re-insert n into Open for RL A∗ , thus delaying the expansion of n. Note that 
if we use the Open bypassing optimization described in Section 3.2, td could be lower. For the sake of simplicity we assume 
this does not happen, although our analysis could be easily extended if the fraction of nodes for which this optimization 
applies is known (or estimated). te is the time to expand n, and evaluate h1 on each of its successors (as well as the time 
to remove n from Open and insert the successors into the open list for RL A∗). b(n) denotes the “local branching factor”, i.e., 
the number of successors of n, and tc the time to generate the children of n (i.e., to have a copy of the states representing 
the children at hand). We thus have:

td = t2 + to

te = to + tc + b(n)t1 + b(n)to (1)

Computing h2 needlessly wastes time td . Bypassing h2 computation when h2 would have been helpful means generating 
all successors of n, and computing h2 for them (assumption I). From assumption III, h1 is not going to be enough to prune 
any of these successors, but because h2 is consistent (assumption II) h2 will be helpful on the successors and prune them. 
Therefore, we have expanded one “extra” level of the search tree, and computed h1 and h2 on b(n) successors, instead of 
computing h2 for n only. This wastes te + b(n)td time, but because computing h2 would have cost td we need to subtract td
and thus the regret is te + (b(n) − 1)td . Using Table 2, we can now derive a rational policy for deciding whether to compute 
or bypass h2. Finally, for simplicity, we will assume to = 0 for RLI D A∗ .

4.3. Deriving a rational policy

Now that we have the regret of each possible action under each possible future outcome, we can derive a rational policy, 
which will tell us which decision we should make. Let us denote the probability that h2 is helpful by ph2 .4 The expected 
regret of computing h2 is thus (1 − ph2 )td . On the other hand, the expected regret of bypassing h2 is ph2 (te + (b(n) − 1)td). 
As we wish to minimize the expected regret, we should thus evaluate h2 (i.e., opt-cond = TRUE) just when:

(1 − ph2)td < ph2(te + (b(n) − 1)td) (2)

or equivalently when:

(1 − b(n)ph2)td < ph2te (3)

If b(n)ph2 ≥ 1, then the expected regret is minimized by always evaluating h2, regardless of the values of td and te . 
In these cases, the rational algorithms cannot be expected to do better than their lazy counterparts. For example, in the 
15-puzzle and its variants, the effective branching factor is ≈ 2. Therefore, if h2 is expected to be helpful for more than half 
of the nodes n on which the search algorithm evaluates h2(n), then one should simply use L A∗ or LI D A∗ .

For ph2 b(n) < 1, the decision of whether to evaluate h2 (i.e., opt-cond) depends on the values of td and te:

evaluate h2 if td <
ph2

1 − ph2 b(n)
te (4)

By substituting (1) into (4) we obtain the following opt-cond: evaluate h2(n) if:

t2 + to <
ph2

1 − ph2 b(n)
(tc + b(n)t1 + (b(n) + 1)to) (5)

The factor ph2
1−ph2 b(n)

depends on the potentially unknown probability ph2 , making it difficult to reach the optimum 
decision. However, if our goal is just to do better than L A∗ or LI D A∗ , then it is safe to replace ph2 by an upper bound 
on ph2 . In Section 5, we describe practical methods for estimating ph2 . However, we first describe a variant of our decision 
rule, which relaxes our third assumption.

4 This quantity was denoted by ph in previous papers.
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4.4. Relaxing Assumption III

Our third assumption, that all successors of n would not be pruned solely by h1, is obviously frequently violated, espe-
cially in the context of I D A∗ . A relaxation we use here is that there is some probability ph1 (n) that such pruning occurs, 
i.e., ph1(n) is the probability that h1 will prune each of n’s successors, thereby also making the simplifying assumption that 
these probabilities are i.i.d.

Under this relaxed assumption, the regret values are the same as in Table 2, except for that of bypassing h2 when it is 
helpful. In this case instead of “wasting” b(n) calculations of h2 in each successor of n, we only waste it with a probability 
of 1 − ph1 (n). Thus, the regret accounts for expanding the node, computing h1 on all b(n) children and then h2 on the 
b(n)(1 − ph1 (n)) children which were not pruned by h1, less the time spent computing h2 on the parent node — yielding a 
regret of te + (b(n) − 1)(1 − ph1 (n))td . Note that if ph1 (n) = 0, i.e., calculation of h1 in n’s successors is never helpful, we get 
the same regret as in Table 2. Finally, we remark that using this more fine grained equation requires estimating both ph2

and ph1 . The next section describes several techniques for estimating ph2 , and one technique which can also estimate ph1 .

5. Using the rational policy in practice

Despite the simplicity of equation (5), it is still not clear how to use it in practice. This is because all of the quantities 
b(n), t1, t2, tc , to and especially ph1 (n) and ph2 (n) may actually be unknown. Furthermore, these quantities might change 
between different nodes, or as search progresses. Estimating the times t1, t2, tc , to is usually easy, as we can measure these 
during search and take the average measurement as the estimate. The number of successors, b(n), is also often readily 
available to the search algorithm. However, we must still also estimate ph2 and ph1 .

Note that RL A∗ and RLI D A∗ are meant to improve upon their non-rational counterparts, so we would like to be highly 
confident that we will not be worse than L A∗ and LI D A∗ , respectively. Since L A∗ and LI D A∗ always choose to compute h2, 
we can guarantee being no worse than them by always computing h2. Thus, we should only decide to skip h2 computation 
when we are highly confident it is the right decision. Using an upper bound on ph2 would mean we err on the side of 
caution, and might compute h2 in some cases where the right decision might be to skip h2. However, this achieves our 
purpose of not doing any worse than L A∗ and LI D A∗ with high probability.

One possible approach is to use concentration measures to derive such a probabilistic upper bound on ph2 [17,22]. 
However, in practice this bound is too loose, and our decision rule almost always chooses to compute h2. In the remainder 
of this section, we describe other approaches for estimating ph2 , which perform better in practice.

5.1. Domain-specific parameter settings

If we expect to only solve problems from one specific domain, we can treat ph2 and ph1 as setting-specific constants (that 
is, hyper-parameters), and tune them on a given set of benchmarks. Plugging those into the very crude model above is suf-
ficient to achieve improved performance in some cases, as shown in our experimental evaluation in Section 6. Furthermore, 
if we know something about the times t1, t2, and to , we can simplify the decision rule in Equation (5).

For example, if we are using RL A∗ in domains where evaluating h1 is cheap, (e.g., the Manhattan distance heuristic), to is 
the most significant part of te . Open in A∗ is frequently implemented as a priority queue, and thus we have, approximately, 
to = τ log No for some constant τ , where the size of Open is No . For such domains rule (5) can be approximated as:

evaluate h2 if t2 <
τ ph2

1 − ph2 b(n)
(b(n) + 1) log No (6)

Rule (6) recommends to evaluate h2 mostly at late stages of the search, when the open list is large, and in nodes with a 
higher branching factor.

In other domains, such as PDDL planning, both t1 and t2 are significantly greater than both to and tc , and terms not 
involving t1 or t2 can be dropped from (5), resulting in:

evaluate h2 if
t2

t1
<

ph2 b(n)

1 − ph2 b(n)
(7)

Note that the right hand side of (7) grows with b(n), and thus it is beneficial to evaluate h2 only for nodes with a sufficiently 
large branching factor. Also recall that if ph2 b(n) ≥ 1, then the expected regret is minimized by always evaluating h2 (as 
mentioned in Section 4.3), which is consistent with this conclusion.

5.2. Empirical frequencies

The above approach relies on a set of benchmarks on which we can tune ph2 and ph1 . However, such a set of benchmarks 
is not always available. Furthermore, often search problems are very different from each other, and even problem instances 
in the same domain are of varying size. Thus getting a single set of values for ph2 and ph1 which works well across many 
problems is difficult. Instead, we would like to adaptively estimate these parameters during search.
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The first adaptive method we present focuses on estimating ph2 from empirical frequencies (it is safe to assume ph1 = 0, 
as this will also result in an upper bound on regret). One important distinction between RL A∗ and RLI D A∗ is the immediacy 
of the feedback about whether h2 was helpful. RLI D A∗ can tell whether h2 was helpful immediately after evaluating it — 
h2 is helpful iff g(n) + h2(n) > T , thereby causing a cutoff. Thus, we simply estimate ph2 by the frequency of observed 
helpful evaluations of h2 so far.

For RL A∗ , things are a bit more complicated, as we do not have immediate feedback about whether h2 was helpful. 
Once a node for which we computed h2 is expanded, we know that h2 was not helpful on that node, which is why in the 
pseudo-code for RL A∗ , we call update statistics whenever a node is removed from Open (Line 4 in Algorithm 1). However, 
we can only be certain that h2 was helpful after search terminates.

Nevertheless, we can still estimate ph2 . First note that if n is a node at which h2 was helpful, then we computed h2 for n, 
but did not expand n. After the search completes, this is the exact definition of h2 being helpful, but during the search, this 
is a necessary condition for n to be potentially helpful. Let us denote by A the number of nodes for which we computed h2
that were not yet expanded, and are thus still in Open. Let us denote by B the number of nodes for which we computed 
h2. Then A

B can be used as an estimate of ph2 . In fact, this method will tend to overestimate ph2 , which is consistent with 
our goal of trying to use an upper bound to ensure we are no worse than L A∗ or LI D A∗ .

One minor issue is that using the empirical frequency is not likely to be a stable estimate at the beginning of the search, 
such as after seeing only 1 example. If we use this estimate directly, then we could get an estimate of ph2 = 0, which means 
we would never evaluate h2 again, and never learn that it might be helpful. To overcome this problem, we “imagine” we 
have observed k examples, which give us an estimate of ph2 = pinit , and use a weighted average between these k examples, 
and the observed examples — that is, we estimate ph2 by ( A

B · B + pinit · k)/(B + k). In our empirical evaluation, we used 
k = 1000 and pinit = 0.5.

5.3. Type systems

The approaches we used above only estimate ph2 , the probability that h2 is helpful. The final approach we present can 
estimate both ph2 and ph1 , and is based on the use of type systems [23]. A type system partitions the state-space nodes 
into “similar valued” classes of nodes, called types, according to some features of each node. Thus, each type system is 
defined by a set of features. Although type systems were originally used to predict the number of nodes generated by 
search algorithms, we use them in order to estimate ph2 and ph1 . In other words, we use a set of features to define a type 
system, and use that type system to compute conditional probabilities corresponding to ph2 and ph1 , as described below.

5.3.1. Estimating ph2

In order to estimate ph2 we learn a distribution of h2 values for each type. In every call to update statistics in Algo-
rithms 1 and 2, we compute the type of the current node, and update the distribution of h2 values for nodes of that type. 
We consider two type systems here:

Type System 1: (TS1) TS1 consists of one feature only, the value of h1.
Type System 2: (TS2) TS2 includes not just the value of h1, but also the value of h2 in the closest ancestor for which h2

was computed, and the distance to that ancestor.

In other words, TS1 simply learns the conditional distribution table of h2 as a function of h1. However, TS1 ignores 
important information, by assuming that the distribution of h2 given h1 is constant in the entire search tree, which is 
unlikely to be true. TS2 attempts to remedy that by also looking at the “closest” source of information regarding h2.

Both of the above type systems give us a distribution on the value of h2(n), conditioned on the values of the features of 
the type system. This distribution is learned online, and is updated as the search progresses. In RLI D A∗ , this distribution 
can be used with the threshold T to directly estimate ph2 , the probability that h2 will be helpful for the current node. Since 
we want g(n) + h2(n) > T , we simply want to estimate the probability that h2(n) > T − g(n), which is given by:

ph2(n) =
∞∑

i=T −g(n)+1

Pr(h2(n) = i) (8)

where Pr(h2(n) = i) is obtained from our type system.
Note that the threshold T plays a very important role here — it tells us exactly how high the value of h2(n) needs to be 

in order for h2 to be helpful. However, for RL A∗ , the threshold is not available. In order to apply this estimation method 
with RL A∗ , we must use some other quantity instead of T . We use the highest f -value expanded so far during search, 
which, like the current threshold T , serves as a lower-bound on the cost of an optimal solution. If f2(n) is less than the 
highest f -value expanded so far, then h2 is definitely not helpful. On the other hand, it could be the case that f2(n) is 
greater than the highest f -value expanded so far, and h2 still turns out not to be helpful. This is a conservative estimate, 
which is again consistent with trying to guarantee we do not do worse than L A∗ or LI D A∗ . Nevertheless, the empirical 
results show that is useful.
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5.3.2. Estimating ph1

We have come up with only one viable technique to estimate ph1 . This technique is also based on a type system, which 
we call Type System 3 (TS3). Recall that ph1(n) is the probability that h1 will be helpful for n’s successors. Thus, TS3 keeps 
a distribution of the h1 values of a node’s successors, as a function of the node’s h1 value and distance to the last h2
computation.

In order to use TS3, whenever we compute h1 for some node n with parent p, we update the distribution of h1 val-
ues of p’s successors. We estimate the probability that h1 is helpful on the successors of n, using an equation similar to 
Equation (8), except that the g value of the successors is g(n) + 15:

ph1(n) =
∞∑

i=T −g(n)

Pr(h1(succn) = i) (9)

Where Pr(h1(succn) = i) is the probability that the successors of n will have an h1 value of i, which is obtained from the 
statistics table we keep. We remark that we tried several other type systems for estimating ph1 that yielded similar results.

Finally, note that TS3 is only used to estimate ph1 . In order to use RL A∗ or RLI D A∗ , we must also estimate ph2 . Thus, 
we combine TS3 with either TS1 or TS2, and refer to these combinations as TS1+TS3 or TS2+TS3, respectively. For example, 
in TS1+TS3, TS1 is used to estimate ph2 and TS3 is used to estimate ph1 .

6. Empirical evaluation

We have described two new algorithms, RL A∗ and RLI D A∗ , which are based on rational metareasoning. These algorithms 
have a decision rule based on some parameters, most importantly ph2 (the probability that h2 is helpful) and ph1 (the 
probability that h1 is helpful). We have also described different ways of estimating these parameters in practice:

• Domain-specific parameter estimation (Section 5.1)
• Estimation from empirical frequencies (Section 5.2)
• Estimation using type systems (Section 5.3). We presented three different type systems (TS1, TS2, and TS3), and four 

different ways to combine them: TS1, TS2, TS1+TS3, and TS2+TS3.

We now examine these algorithms and their different parameter estimation methods empirically. As these two algo-
rithms are very different from each other (for example, in their memory requirements), we divide our empirical evaluation 
into two parts: one comparing RL A∗ to A∗ and its variants, and the other comparing RLI D A∗ to I D A∗ and its variants. We 
evaluate all of our algorithms on a large set of pddl planning domains from all previous International Planning Competitions 
(IPC), as well as on some combinatorial puzzles.

6.1. Evaluation of RL A∗

We begin with an empirical evaluation of RL A∗ , which we compare to A∗-based search algorithms. Results are for a set 
of planning domains, as well as for two variants of the 15-puzzle.

6.1.1. Planning domains
We implemented L A∗ and RL A∗ on top of the Fast Downward planning system [24], and used two state-of-the-art 

heuristics: the admissible landmarks heuristic hL A (as h1) [25], and the landmark cut heuristic hLMC U T [26] (as h2). On 
average, hLMC U T computation is about 8 times more expensive than that of hL A . We did not implement HBP in the planning 
domains as the heuristics we use are not consistent and in general the operators are not invertible. We also did not imple-
ment OB, as the cost of Open operations in planning is negligible compared to the cost of heuristic evaluations, especially 
with the heuristics we used.

We experimented with 57 planning domains: the optimal versions of all IPC planning domains in the Fast Downward 
repository, as well some of those from IPC 2014. We had to exclude the CityCar domain and most (17 out of 20) instances 
of the CaveDiving domain, because they included conditional effects, and the heuristics we used did not support condi-
tional effects in the version of Fast Downward we used.6 We compare the performance of A∗ using each of the heuristics 
individually (where lm denotes hL A and lmcut denotes hLMC U T ), as well as with their maximum (denoted by max). We 
also evaluate selective max (selmax) [13], L A∗ (denoted lazy), and RL A∗ using two different methods of estimating ph2 : 
empirical frequencies (emp), and the TS1 type system (T1).

We did not implement the TS2 and TS3 type systems, as they require the value of h2 in the closest ancestor for which 
h2 was computed, and the distance to it. There are two ways to obtain this information for each node: either follow the 

5 With non-uniform action costs, we can either generate the successors to get their exact g-values, or use an estimate of the average action cost.
6 It is worth noting that the Fast Downward translator managed to get rid of conditional effects in the 3 instances of cavediving as well as in the

maintenance domain, even though they were present in the pddl domain.
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Table 3
Results for A∗ algorithms in planning domains.

Algorithm Coverage Avg search time score Expansions Total memory (KB) h2 ratio

lm 797 32.98 12,057.25 106,135,188
lmcut 826 33.87 1,978.56 17,626,512
max 859 34.18 1,551.71 29,415,652
selmax 873 34.61 3,581.64 57,311,016
lazy 875 35.55 1,564.77 30,464,880 0.66
emp 874 35.74 1,640.27 38,113,656 0.59
T1 872 35.35 2,028.68 50,850,408 0.54

parent pointers until you find a node for which h2 was computed (requiring time overhead), or store this extra information 
for each node (requiring memory overhead). Using the first approach would hinder our objective of speeding up the search, 
while using the second approach would increase the memory overhead. We also did not use domain-specific parameter 
settings, because we believe the other approaches are better equipped to handle the diversity of IPC domains we used. The 
search was limited to 3GB memory, and 30 minutes of CPU time on a single core of an Intel E5-2680 CPU with 64-bit Linux 
OS.

Table 3 summarizes the results of our empirical evaluation across all domains. Detailed tables including the results for 
each domain are relegated to the appendix, but references to these tables are provided here.

We will first examine the coverage — the number of problems solved by each search algorithm in 30 minutes (Table A.14
provides detailed, per-domain, coverage results). First, note that all of the intelligent combination methods (selective max, 
L A∗ , and the 2 variants of RL A∗) solve over 870 problems, while each heuristic alone solves less than 830, and A∗

M A X solves 
less than 860. This indicates that selectively choosing which heuristic to compute has demonstrable benefits. L A∗ solves one 
more problem than RL A∗ with empirical frequencies, which is due to the extra overhead required by RL A∗ .

Furthermore, looking at search time, we see the benefits of using RL A∗ . We compare time score (Table A.15 provides 
per-domain results), which is computed from the time it took an algorithm to solve a problem. If the search time is less than 
1 second, then the score is the maximum possible score — 100. The score then decreases logarithmically, until it reaches 
0 at 1800 seconds. Note that the time score is a standard measure computed by downward-lab [27], Fast Downward’s 
experiment running tool. Thus, the time score rewards fast solutions, and does not distinguish between solving a problem 
in 1800 seconds and a timeout. As the results show, RL A∗ with empirical frequencies achieves a better (higher) time score 
than all other algorithms.

Fig. 2 shows the anytime performance of the different algorithms — the number of instances solved under different time 
limits. Note that both axes are in logscale. As the figure shows, the advantage of the RL A∗ variants is even more evident for 
shorter timeouts, and L A∗ only becomes the better algorithm for longer planning times (at 1773 seconds, to be exact).

To further understand the differences between the search algorithms, we compare the geometric mean of the number 
of expanded nodes in each search algorithm (Table A.16 shows per-domain results). As expected, A∗

M A X has the fewest 
expanded nodes, and L A∗ is very close (the differences are due to tie-breaking). The two variants of RL A∗ have more 
expanded nodes, while selective max expands more nodes than all of the RL A∗ variants. This shows that these algorithms 
do behave differently.

We also compare peak memory usage for these algorithms (Table A.17 shows per-domain results). The results show that 
using only hLMC U T is the most memory efficient. This is due to the extra memory overhead involved with using the hL A

heuristic, which is necessary to keep track of the achieved landmarks at each state. However, when looking at the different 
ways of combining both of these heuristics, the results are very similar to those in Table A.16 — A∗

M A X uses the least 
memory, L A∗ is very close, the variants of RL A∗ use more memory, and selective max uses almost twice the memory as 
A∗

M A X .
Fig. 3 shows the speedup vs. memory overhead for RL A∗ vs. L A∗ . Each point in the plots represents an instance, solved 

by RL A∗ and L A∗ . The x-coordinate of the instance is the relative speedup of RL A∗ vs. L A∗ , and the y-coordinate is the 
ratio of expanded states of RL A∗ vs. L A∗ , i.e., the extra memory. Points to the right of the dotted line at x = 1 are the 
instances where RL A∗ is faster. Fig. 3a compares RL A∗(emp) to L A∗ , while Fig. 3b compares RL A∗(T1) to L A∗ . As these 
plots show, RL A∗ is typically faster (more points to the right of the dotted line), but comes at the price of an increased 
number of expanded nodes (except for 4 instances in Fig. 3b, which are due to tie-breaking). The plots also show that 
RL A∗(T1) differs more from L A∗ than RL A∗(emp). Finally, we can see that an increase in speedup does not necessarily 
correlate to an increase in the number of expanded nodes.

To complete the picture, we look at the fraction of nodes for which h2 (hLMC U T in this case) was computed for L A∗ and 
RL A∗ (per-domain results are in Table A.18). We do not include selective max here, as selective max can choose not to 
compute h1 for some nodes, while the algorithms we compare all do. Unsurprisingly, L A∗ has the highest numbers here. 
Finally, note the correlation between a high proportion of h2 computations with decreasing number of expanded nodes.

Another important conclusion of this empirical evaluation is that RL A∗ with empirical frequency estimation beats using 
type system TS1. Recall that TS1 relies on a threshold in the decision rule, which is only available in RLI D A∗ . In RL A∗ we 
use the highest f -value expanded so far instead of the threshold, while empirical frequency estimation does not rely on a 
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Fig. 2. Anytime plot for A∗ algorithms in planning domains (both axes are in logscale).

threshold. One possible explanation for these results is that our estimate of the threshold is too conservative. In future work 
we will examine a better proxy for the threshold.

6.1.2. Weighted 15 puzzle
We now provide an empirical evaluation on the weighted 15-puzzle [4], a variant of the 15-puzzle where the cost of 

moving each tile is equal to the number on the tile. For consistency of comparison, we used a subset of 36 problem instances 
out of the set of 100 instances by [8], keeping the problems which could be solved with 2Gb of RAM and 15 minutes 
timeout using the Weighted Manhattan Distance heuristic (WMD) for h1. As the expensive and informative heuristic h2 we 
use a heuristic based on lookaheads [20]. Given a bound d we applied a bounded depth-first search from a node n and 
backtracked when we reached leaf nodes l for which g(l) + W M D(l) > g(n) + W M D(n) + d. f -values from leaves were 
propagated to n.

Table 4 presents the results averaged on all instances solved. The runtimes are reported relative to the time of A∗ with 
WMD (with no lookahead), which generated 1,886,397 nodes (not reported in the table). The first 3 columns of Table 4 show 
the results for A∗ with the lookahead heuristic for different lookahead depths. The best time is achieved for lookahead 
6 (0.588 compared to A∗ with WMD). The fact that the time does not continue to decrease with deeper lookaheads is 
clearly due to the fact that although the resulting heuristic improves as a function of lookahead depth (expanding and 
generating fewer nodes), the increasing overhead of computing the heuristic eventually outweighs the savings achieved by 
fewer expansions.

The next 4 columns show the results for L A∗ with WMD as h1, lookahead as h2, for different lookahead depths. The 
Good1 column presents the number of nodes where L A∗ saved the computation of h2 while the h2 column presents the 
number of nodes where h2 was computed. Roughly 28% of nodes were Good1 and since t2 was the most dominant time 
cost, most of this saving is reflected in the timing results. The best results are achieved for lookahead 8, with a runtime of 
0.527 compared to A∗ with WMD.

The final columns show the results of RL A∗ . We used domain-specific parameter estimation to set good values for 
τ , ph2 , t2 for each lookahead depth.

The parameters were tuned manually on a small subset of problem instances. The Good2 column counts the number of 
times that RL A∗ decided to bypass the h2 computation. Observe that RL A∗ outperforms L A∗ , which in turn outperforms 
A∗ , for most lookahead depths. The lowest time with RL A∗ (0.371 of A∗ with WMD) was obtained for lookahead 10. That 
is achieved as the more expensive h2 heuristic is computed less often, reducing its effective computational overhead, with 
some adverse effect in the number of expanded nodes. Although L A∗ expanded fewer nodes, RL A∗ performed much fewer 
h2 computations, as can be seen in the table, resulting in decreased overall runtimes.
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Fig. 3. Speedup vs. memory overhead for RL A∗ vs. L A∗ .
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Table 4
Weighted 15 puzzle: comparison of A∗

max, lazy A∗ , and rational lazy A∗ .

Lookahead A∗ L A∗ RL A∗ (using Eq. (6))

generated time generated Good1 h2 time generated Good1 Good2 h2 time

2 1,206,535 0.707 1,206,535 391,313 815,213 0.820 1,309,574 475,389 394,863 439,314 0.842
4 1,066,851 0.634 1,066,851 333,047 733,794 0.667 1,169,020 411,234 377,019 380,760 0.650
6 889,847 0.588 889,847 257,506 632,332 0.533 944,750 299,470 239,320 405,951 0.464
8 740,464 0.648 740,464 196,952 543,502 0.527 793,126 233,370 218,273 341,476 0.377
10 611,975 0.843 611,975 145,638 466,327 0.671 889,220 308,426 445,846 134,943 0.371
12 454,130 0.927 454,130 95,068 359,053 0.769 807,846 277,778 428,686 101,378 0.429

Table 5
Summary of results for I D A∗ algorithms in planning domains.

Algorithm Coverage Avg search time score Expansions h2 ratio

lm 440 15.9 10,614.63
lmcut 467 18.52 1,574.53
max 497 19.24 999.24
selmax 461 17.05 3,951.16
lazy 505 20.09 999.86 0.54
emp 501 19.92 1,055.68 0.46
T1 508 20.19 1,009.96 0.48

6.2. Evaluation of RLI D A∗

We now turn to RLI D A∗ , which we compare to I D A∗ based search algorithms. We provide results for a set of planning 
domains, as well as for sliding tile puzzles (including the 15-puzzle) and for a container relocation problem.

6.2.1. Planning domains
As in the evaluation for RL A∗ , we implemented LI D A∗ and RLI D A∗ on top of the Fast Downward planning system [24], 

and experimented with the admissible landmarks heuristic hL A (used as h1) [25], and the landmark cut heuristic hLMC U T

[26] (used as h2). We also used the same set of domains.
We compare the performance of I D A∗ using each of the heuristics individually (where lm denotes hL A and lm-

cut denoted hLMC U T ), as well as with their maximum (denoted by max). We also evaluate selective max (selmax) [13], 
LI D A∗ (denoted lazy), and RLI D A∗ using the same methods of estimating ph2 : empirical frequencies (emp), and the TS1 
type system (T1). The search was limited to 3GB memory, and 30 minutes of CPU time on a single core of an Intel E5-2680 
CPU with 64-bit Linux OS.

Table 5 provides a summary of the results, while per-domain results appear in the appendix, and are referenced here. 
We begin by looking at coverage — the number of planning problems solved by each algorithm in 30 minutes (per-domain 
results in Table A.19). These results show that RLI D A∗ using the TS1 type system solves more problems than any other 
search algorithm. Furthermore, LI D A∗ as well as RLI D A∗ using both parameter estimation methods solve more problems 
than any other approach. Note that selmax does extremely poorly here. As the decision rule that selmax uses was built for 
A∗ , it is not surprising that it does not perform well in I D A∗ .7 Finally, it is worth mentioning that I D A∗ and its variants 
are ill suited for the IPC benchmark domains, solving around 500 problems compared to over 800 solved by A∗ and its 
variants. This is due to the large number of paths which reach the same state, which make I D A∗ explore the same subtree 
repeatedly.

Next, we look at the time score for each search algorithm (per-domain results are available in Table A.20). Recall that the 
time score is computed from the time it took an algorithm to solve a problem. If the search time is less than 1 second, then 
the score is the maximum possible score — 100. The score then decreases logarithmically, until it reaches 0 at 1800 seconds. 
As the results show, RL A∗ with the TS1 type system achieves a better (higher) time score than all other algorithms.

Fig. 4 shows the anytime performance of the different algorithms — the number of instances solved under different time 
limits. Note that both axes are in logscale. As the figure shows, the advantage of the RLI D A∗ variants is even more evident 
for shorter timeouts.

Examining the geometric mean of the number of expanded nodes in each search algorithm (Table A.21 provides per-
domain results), we can see that, I D A∗

M A X has the fewest expanded nodes, and LI D A∗ is very close. The two variants of 
RLI D A∗ have more expanded nodes.

Finally, we look at the fraction of nodes for which h2 (hLMC U T in this case) was computed for LI D A∗ and RLI D A∗ (Ta-
ble A.22 shows the per-domain results). Unsurprisingly, LI D A∗ has the highest numbers here.

7 Adapting the decision rule of selmax to I D A∗ is a non-trivial task, and is outside the scope of this paper.
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Fig. 4. Anytime plot for I D A∗ algorithms in planning domains (both axes are in logscale).

Table 6
IDA* variants: results for 15 puzzle.

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (MD) 58.84 268,163,969
I D A∗ (LC) 40.08 30,185,881
LI D A∗ 32.85 30,185,881 21,886,093 6,561,972 30%
RLI D A∗ (ph2 = 0.3) 20.09 47,783,019 8,106,832 4,413,050 54%
Clairvoyant 12.66 30,185,881 6,561,972 6,561,972 100%

RLI D A∗+TS1 33.90 49,314,132 14,265,984 9,315,480 65%
RLI D A∗+TS2 27.49 39,466,460 11,508,429 7,313,390 64%
RLI D A∗+TS1+TS3 35.08 65,269,319 7,908,331 5,351,080 68%
RLI D A∗+TS2+TS3 30.23 57,518,574 6,719,180 4,625,750 69%

Note that, unlike with RL A∗ , the more informative parameter estimation method — using the TS1 type system — does 
better than the others. This is likely because with I D A∗ we do have the exact threshold needed, and can exploit this 
information better.

6.2.2. Sliding-tile puzzles
We now examine the results on the 15-puzzle. We used as test instances the 98 out of Korf’s 100 instances [8] that were 

solved in less than 20 minutes with standard I D A∗ using the Manhattan Distance (MD) heuristic. As using the lookahead 
heuristic saves time only on OPEN list insertions and deletions, using it in I D A∗ won’t reduce runtime at all (as there is no 
OPEN list and nodes are expanded in a DFS manner). Thus the h2 heuristic was the linear-conflict heuristic (LC) [28] which 
adds a value of 2 to MD for pairs of tiles that are in the same row (or the same column) as their respective goals but in a 
reversed order. One of these tiles will need to move away from the row (or column) to let the other pass.

Results for this problem set are shown in Table 6, listing average runtime in seconds, number of generated nodes, number 
of h2 evaluations, number of helpful h2 evaluations and the prediction accuracy (PA), which is the percentage of times 
calculating h2 was indeed helpful. For RLI D A∗ we found the domain-specific parameter setting of ph2 = 0.3 by manually 
testing different values for ph2 on a set of problems and choosing the best one. Indeed, RLI D A∗ (ph2 = 0.3) outperforms 
all other algorithms, an exception being the unrealizable “Clairvoyant” algorithm, which (using hindsight) evaluates h2 only 
if it turned out to be helpful (the results for this “algorithm” are obtained by subtracting the time spent on non-helpful 
h2 evaluations from the total time). The reason for presenting the clairvoyant algorithm is methodological: it is meant as a 
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Table 7
Weighted 15 puzzle.

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (WMD) 184.46 822,898,188
I D A∗ (WLC) 155.35 104,943,867
I D A∗

M A X 149.50 104,943,867
LI D A∗ 112.74 104,943,890 65,660,207 12,549,104 19%
RLI D A∗ (ph2 = 0.3) 63.08 137,881,842 21,564,188 8,871,727 41%
Clairvoyant 40.36 104,943,890 12,549,104 12,549,104 100%

Table 8
Weighted 3 by 5 puzzle.

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (WMD) 134.27 518,625,911
I D A∗ (WLC) 68.65 53,073,488
I D A∗

M A X 71.28 53,073,488
LI D A∗ 59.89 53,073,499 36,000,253 8,218,490 23%
RLI D A∗ (ph2 = 0.3) 38.31 77,199,730 12,104,449 6,564,049 54%
Clairvoyant 27.99 53,073,499 8,218,490 8,218,490 100%

Table 9
Weighted 3 by 6 puzzle.

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (WMD) 17.76 66,655,434
I D A∗ (WLC) 30.11 17,098,738
I D A∗

M A X 31.08 17,098,738
LI D A∗ 21.99 17,098,746 10,308,664 1,473,548 14%
RLI D A∗ (ph2 = 0.3) 10.68 21,053,303 2,882,141 1,007,129 35%
Clairvoyant 7.17 17,098,746 1,473,548 1,473,548 100%

yardstick for measuring performance of RLI D A∗ variants; once performance approaches that of an algorithm with perfect 
foreknowledge, there is presumably little room for further improvement.

Using type systems in RLI D A∗ increases the fraction of helpful evaluations of h2 (Table 6), but the overhead and the 
added number of generated nodes results in an overall worse runtime performance. The additional improvements are there-
fore contra-indicated for the sliding tile problem. The rule used by RLI D A∗ with ph2 = 0.3 was tantamount to having
opt-cond being true only for nodes with b(n) = 4, which is in essence a very simple type system based on the branching 
factor. A more complicated type system is not justified here.

We have also experimented with the weighted version of the 15-puzzle, where the cost of moving each tile is equal 
to the number on the tile [4]. Table 7 shows similar results for 82 of the previous problem instances of the weighted 15 
puzzle that were solved in 20 minutes by I D A∗ (the weighted 15 puzzle is harder). In this domain, Rational Lazy I D A∗ also 
achieves a significant speedup of a factor of 2 and is much closer to Clairvoyant than to LI D A∗ . Attempts to improve upon 
this by adding a more complicated type system and relaxing Assumption III did not achieve any improvement, as shown in 
[29]. A complication in this variant compared to the unweighted version is that there are too many types, as the number of 
possible values of h1 and h2 is very large, but even limiting this number by binning did not achieve good results.

Finally, we ran the same algorithms on sliding tile puzzles with a different fraction of b(n) = 4 nodes, by “flattening” the 
15-puzzle into a 3 by 5 puzzle (a “14-puzzle”), and into a 3 by 6 puzzle (a “17-puzzle”). Results for these variants of the 
weighted 15-puzzle (Tables 8, 9) show similar improvements for RLI D A∗ .

6.2.3. Container relocation problem
The container relocation problem is an abstraction of a planning problem encountered in retrieving stacked containers for 

loading onto a ship in sea-ports [30]. We are given S stacks of containers, where each stack consists of up to T containers. 
The initial state has N ≤ S × T containers, arbitrarily numbered from 1 to N . The rules of stacking and of moving containers 
are the same as for blocks in the blocks-world domain. The goal is to “retrieve” all containers in order of number, from 1 
to N , i.e., to place them on a freight truck that takes the container away to be loaded onto a ship. The objective function to 
minimize is the number of container moves until all containers are gone. The complication comes from the fact that we can 
only “retrieve” a container if it is at the top of one of the stacks. Optimally solving this problem is NP-hard [30]. We use 
the version of the problem where each container (“block” in blocks-world terminology) is uniquely numbered, that a stack 
s that currently has T containers is “full” and no additional containers can be placed on s until some container is moved 
away from the top of s.

We used the LB1 and LB3 heuristics [30] as h1 and h2, respectively. For the sake of completeness, we review these 
heuristics here: Every container numbered X which is above at least one container Y with a number smaller than X must 
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Table 10
Container relocation: 49 “small” instances.

Small instances

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (LB1) 336 853,094,579
I D A∗ (LB3) 967 128,798,338
LI D A∗ 366 128,798,338 44,527,029 19,564,237 44%
RLI D A∗ (ph2 = 0.3) 337 233,077,220 27,628,566 13,575,017 49%
Clairvoyant 228 128,798,338 19,564,237 19,564,237 100%

RLI D A∗+TS1 327 166,781,023 35,931,245 21,292,089 59%
RLI D A∗+TS2 292 159,923,334 29,460,335 19,250,841 65%
RLI D A∗+TS1+TS3 207 318,146,242 9,001,091 6,653,964 74%
RLI D A∗+TS2+TS3 201 300,623,173 8,751,578 6,876,705 79%
Enhanced clairvoyant 138 182,659,873 44,527,029 9,737,977 22%

Table 11
Container relocation: all 63 instances.

All instances

Algorithm Time Generated h2 total h2 helpful PA

I D A∗ (LB1) 1641 3,811,296,602
I D A∗ (LB3) 5761 715,385,239
LI D A∗ 2770 1,050,197,101 262,718,267 108,780,900 41%
RLI D A∗ (ph2 = 0.3) 2764 1,073,191,297 254,291,856 106,366,804 42%
Clairvoyant 1656 1,050,197,101 108,780,900 108,780,900 100%

RLI D A∗+TS1 1924 1,502,283,957 138,031,927 87,720,923 64%
RLI D A∗+TS2 1967 1,337,796,749 146,545,466 94,988,940 65%
RLI D A∗+TS1+TS3 1311 2,378,791,883 24,727,136 17,317,818 70%
RLI D A∗+TS2+TS3 1304 2,342,370,343 23,816,116 18,299,499 77%
Enhanced clairvoyant 989 1,498,935,597 43,431,488 43,431,488 100%

be moved from its stack in order to allow Y to be retrieved. The number of such containers in a state can be computed 
quickly, and forms an admissible heuristic called LB1. LB3 adds one relocation for each container that must be relocated 
a second time as any place to which it is moved will block some other container. Computing LB3 requires much more 
computation time (at least quadratic in the number of containers) than LB1 (roughly linear time), and additionally its 
runtime depends heavily on the state.

In the experiments, we used the hardest tests out of those that were solved in less than 20 minutes with the LB1 heuris-
tic, from the CVS test suite described in [31,32].8 Results are shown in Table 10. In this domain Rational Lazy I D A∗ shows 
some performance improvement over Lazy I D A∗ , even when ph2 was assumed to be constant with ph2 = 0.3. Furthermore, 
as these results show, using type systems to estimate ph2 and ph1 yields even better results. Specifically, the most significant 
improvement in this domain results from estimating ph1 , which is only possible due to relaxing Assumption III.

We then conjectured that the timing differences should increase when we include harder problem instances, and added 
an additional 14 instances with a runtime greater than 20 minutes in I D A∗ . The results (Table 11), including both the 
smaller and larger instances, were quite surprising, in some respects. First, RLI D A∗ was better than LI D A∗ as before, but 
now was actually substantially worse than just using I D A∗ with only h1. The reason is evident from examining the line 
“I D A∗(LB3)”.9 Although h2 drastically reduces generated node numbers, its runtime with these larger problem instances 
outweighed its usefulness to such an extent that RLI D A∗ can at best approach I D A∗ by evaluating h2 very rarely.

But lifting Assumption III, that h1 does not cause a cutoff in the children, achieves further speedup and the best perfor-
mance of all. The difference between TS1 and TS2 does not appear significant: TS2 achieves better accuracy, but has higher 
overhead for metareasoning, so in the overall runtime performance TS2 is usually only slightly better than TS1, and some-
times slightly worse. An important thing to notice is that the PA also increases from 41% for LI D A∗ to 65% for TS2 and to 
77% for TS2+TS3. That means that RLI D A∗ indeed makes “better” decisions than LI D A∗ and that relaxing Assumption III
leads to even better decisions.

Note that in both container relocation results RLI D A∗ with the TS3 type system performs better than the clairvoyant 
scheme, which seems surprising. However, upon deeper examination, it turns out that even if h2 cuts off a node n after h1
fails to do so, it does not follow that one should evaluate h2. For example, consider a node n with b(n) children, where h2
cuts off the search at node n, where h1 would cut off the search at all of its b(n) children. Then, if evaluating h2(n) is more 
expensive than computing h1 for all b(n) children, then bypassing h2 may be better than evaluating it. RLI D A∗ takes such 

8 Retrieved from http://iwi.econ.uni-hamburg.de/IWIWeb/Default.aspx?tabId=1083&tabindex=4.
9 In the larger instances, there appears to be a discrepancy in number of generated node numbers in the table. The discrepancy is due to timeouts when 

running “I D A∗(LB3)”.

http://iwi.econ.uni-hamburg.de/IWIWeb/Default.aspx?tabId=1083&tabindex=4
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Table 12
Weighted 15 puzzle – number of extra iterations in LI D A∗ .

Number of extra iterations Number of instances

0 49
1 19
2 5
3 7
4 2

Table 13
Weighted 15 puzzle – locations of extra iterations in LI D A∗ .

Part/16 Percentage of locations

1 31%
2 76%
4 100%

cases into account, whereas the clairvoyant scheme does not. In other words, knowing the future alone is insufficient if you 
do not use the information to reduce search time (rather than only to evaluate h2 iff it is helpful), and this version of the 
clairvoyant algorithm fails to provide the needed yardstick.

We thus implemented an enhanced clairvoyant algorithm, which computes h2 if it is helpful and if it is faster than 
computing h1 for all of n’s successors and h1 will prune the successors. In other words, the enhanced clairvoyant applies 
the rational decision rule given perfect knowledge of not just node n but also its successors, that is, a 1-step lookahead. 
This new clairvoyant algorithm is a better yardstick for measuring performance of RLI D A∗ .

6.2.4. Extra iterations for LI D A∗
In Section 2.3, we mentioned that LI D A∗ can lead to performing more iterations than I D A∗

M A X , although we expect this 
to happen rarely and have little impact. We now examine this claim empirically. We compared the number of iterations 
and threshold values between a problem solved by LI D A∗ and a problem solved by I D A∗

M A X . For the 15-puzzle and the 
container relocation problems, the number of iterations was equal, and the iteration thresholds were identical between the 
solvers (if a solver timed out we only compared threshold values up to that point). This is not surprising, as the threshold 
values in these problems are all relatively small integers, and therefore “gaps” resulting in potential additional iterations are 
unlikely to occur.

However, for the weighted 15-puzzle the number of iterations was different, as expected, due to the much larger number 
of possible threshold values. Table 12 shows the difference in the number of iterations between the two algorithms. As one 
can see in most of the instances there were no extra iterations, yet in a significant number of instances, there was at least 
one extra iteration.

It is important to know in which part of the search such extra iterations took place, as this tends to have a major impact 
on the runtime. We analyzed all the extra iterations – iterations with thresholds that did not exist in I D A∗ but did exist 
in LI D A∗ . It is worth mentioning that other than these iterations, all other threshold values were identical, i.e., there were 
no threshold values that existed in LI D A∗ but did not exist in I D A∗ . Table 13 shows the extra iteration locations. 31% of 
the extra iterations were in the first 1/16 of the search (if a search process has 96 iterations, the first 1/16 of the search is 
the first 6 iterations), almost all of the extra iterations were in the first 1/8 of the search (76%), and all the extra iterations 
were in the first 1/4 of the search.

As previously mentioned in Section 2.3, in order for an extra iteration #i with value v to happen, all nodes that have 
an h2 value of v in iteration #i − 1 have to be pruned by their h1 value. The extra iterations did not appear to result in 
significant additional runtime, likely because the number of nodes grows exponentially between iterations in the problem 
we considered here.

7. Future work

A natural direction to extend the work done in this paper is to handle more than two heuristics, as done for the Lazy 
algorithms in Section 3.3. Non trivial issues arise, and multiple heuristics deserve a study beyond the scope of this paper.

Consider the simple setting, where we are actually committed to doing L A∗ , but are free to choose the order of evaluating 
the heuristics. Suppose further that we know the exact runtime ti of each heuristic, and the probability phi that it will be 
helpful, given the current state of the search (including, possibly, results obtained by previous evaluations of heuristics). 
Suppose furthermore that the time to insert and remove a node from the open list is negligible. Under all these simplifying 
assumptions, the problem of optimally ordering the heuristics is equivalent to optimal test ordering, which is NP-hard [33,
34]. However, if we additionally restrict the distribution over helpfulness of heuristics to be independent, only then is there 
a simple optimal ordering, which is to compute the heuristics in non-increasing order of 

phi
ti

. This latter scheme is what we 
recommend when running L A∗ with multiple heuristics.



JID:ARTINT AID:3039 /FLA [m3G; v1.224; Prn:13/11/2017; 12:33] P.20 (1-30)

20 E. Karpas et al. / Artificial Intelligence ••• (••••) •••–•••
The above discussion on ordering heuristics is relevant in two ways. First, trying to define a meta-level optimized 
RL A∗ and RLI D A∗ in such settings will result in metareasoning problems harder than the optimal test ordering prob-
lem, which is already NP-hard. Thus, ad-hoc schemes such as the naive one just suggested may be the only practical way 
to proceed. Second, note how the optimal ordering argument may affect even the case of two heuristics. We assumed 
that t1 < t2, and that ph1 < ph2 . Then we stated that it makes sense to start off with h1. However, it is still possible that 
ph2
t2

>
ph1
t1

, in which case it is better to start with h2 if they are independent, as well as in cases where h2 dominates h1.
One naive way of generalizing RL A∗ and RLI D A∗ to multiple heuristics is to use the same rational decision rule on pairs 

of consecutive heuristics, where heuristics are ordered according to their runtime. Once one of the heuristics is bypassed, 
we automatically bypass all the more expensive heuristics. It is important to note that in such a simple setting our decision 
rule must now consider that bypassing a heuristic could lead to potential losses from bypassing an even more expensive 
(and, most likely, informative) heuristic down the line.

Furthermore, even if we were able to define a rational decision rule, other practical issues arise when trying to estimate 
parameters when there are n heuristics. For example, a naive generalization of our type systems based approach to n
heuristics would require n2 type systems. This could be alleviated by defining the type systems differently, for example by 
only using the value of h1 as a feature to predict whether h2 . . .hn are helpful, or using only hi−1 to predict whether hi will 
be helpful. However, it is not clear what the best solution would be, and whether there is significant benefit in allowing 
type systems to use multiple heuristics as features.

Another question is whether our methods can be effective if only one nontrivial admissible heuristic h is available. It 
seems possible, by using 0 as the value of h1, and h as h2, running RL A∗ this way would make it behave like uniform 
cost search (AKA Dijkstra’s algorithm) at some points in the search. This is actually in agreement with the known obser-
vation [35] that sometimes it is more efficient to start out with uniform cost search when using A∗ , thereby saving time 
needed to compute h in many nodes that would be expanded anyway, especially at the beginning of the search.

Some questions regarding possible improvements to RL A∗ include incorporating information about the memory limit 
into the decision rule, obtaining a better proxy for the threshold, incorporating cost predictors (e.g., [36,37]) into the decision 
rule, and looking at the problem of predicting whether h2 will be helpful as online learning with delayed feedback (e.g., 
[38]). Other interesting problems include using rational metareasoning to control decisions in other variants of A∗ , and 
adapting RA∗ [14] and GHS [15] to choose a set of heuristics to combine using RL A∗ or RLI D A∗ , instead of A∗

M A X .

8. Conclusions

We discussed two schemes for decreasing the computational resources used to evaluate heuristics. L A∗ and LI D A∗ are 
very simple to implement, and are as informed as A∗

M A X and I D A∗
M A X , respectively, with the caveat that LI D A∗ could 

lead to extra iterations. While these can significantly speed up the search in some cases, such as when t2 dominates the 
other time costs, additional benefit can be gained by using the rational metareasoning framework [1] to decide when 
computing the expensive heuristic is worth the time spent on it. The resulting algorithms, RL A∗ and RLI D A∗ , achieve 
better performance than their non-rational counterparts on many different problems.

In particular, RL A∗ is simpler to implement than its direct competitor, selective max, but its decision can be more 
informed. When RL A∗ has to decide whether to compute h2 for some node n, it already knows that f1(n) ≤ C∗ . In contrast, 
although selective max uses a much more complicated decision rule, it chooses which heuristic to compute when n is first 
generated, and does not know whether h1 will be informative enough to prune n. RL A∗ outperforms selective max in our 
planning experiments.

Furthermore, RLI D A∗ can make even better decisions than RL A∗ , because it knows the “target value” for f2 — the cur-
rent threshold, T , in addition to the value of f1(n). This also means that RLI D A∗ knows whether h2 is helpful immediately 
after evaluating it, while RL A∗ can only know that h2 was not helpful for a node it expands, but will know if h2 is helpful 
only when the search terminates.

Additionally, the decision rule for RL A∗ and RLI D A∗ only considers search time, not memory. This not an issue for 
RLI D A∗ , which only requires linear memory, but could cause RL A∗ to expand too many nodes and exhaust available 
memory.

Our analysis and empirical evaluation also shed some light on the question of when using rational metareasoning is 
worthwhile: Whenever we have multiple heuristics, where one of the heuristics is informative but expensive to compute, 
using rational metareasoning is likely a good idea. In fact, in some cases the informative heuristic is so expensive that 
using it only becomes beneficial in conjunction with rational metareasoning. However, if we only have heuristics which are 
relatively cheap to compute, the overhead of rational metareasoning, as well as the probability of making a mistake, are not 
worth the potential benefit. In such cases, L A∗ or LI D A∗ are probably better choices.
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Appendix A. Detailed empirical results for planning domains

Table A.14
Coverage for A∗ algorithms in planning domains.

coverage lm lmcut max selmax lazy emp T1

airport (50) 30 28 30 30 30 30 31
barman-opt11-strips (20) 4 4 4 4 4 4 4
blocks (35) 19 28 28 28 28 28 28
depot (22) 6 7 7 7 7 7 7
driverlog (20) 10 13 14 14 14 14 14
elevators-opt08-strips (30) 12 22 22 22 22 22 22
elevators-opt11-strips (20) 10 18 18 18 18 18 18
floortile-opt11-strips (20) 2 7 7 7 7 7 2
freecell (80) 61 15 43 59 49 49 61
grid (5) 2 2 2 2 2 2 2
gripper (20) 7 7 7 7 7 7 7
ipc2014-opt-Barman (14) 0 0 0 0 0 0 0
ipc2014-opt-CaveDiving (3) 3 3 3 3 3 3 3
ipc2014-opt-ChildSnack (20) 0 0 0 0 0 0 0
ipc2014-opt-Floortile (20) 0 5 5 5 5 5 0
ipc2014-opt-GED (20) 15 15 15 14 15 15 15
ipc2014-opt-Hiking (20) 11 9 9 9 9 9 10
ipc2014-opt-Maintenance (5) 5 5 5 5 5 5 5
ipc2014-opt-Openstacks (20) 3 3 3 3 3 3 3
ipc2014-opt-Parking (20) 0 3 3 3 4 4 4
ipc2014-opt-Tetris (17) 9 5 5 9 6 6 6
ipc2014-opt-Tidybot (20) 8 7 7 7 7 7 7
ipc2014-opt-Transport (20) 6 6 6 6 6 6 6
ipc2014-opt-Visitall (20) 4 5 5 5 5 5 5
logistics00 (28) 10 20 20 20 20 20 19
logistics98 (35) 2 6 6 6 6 6 6
miconic (150) 143 141 141 143 142 142 142
mprime (35) 21 22 22 22 22 22 22
mystery (30) 15 17 17 17 17 17 17
nomystery-opt11-strips (20) 18 14 18 18 18 18 19
openstacks-opt08-strips (30) 20 21 19 19 19 19 19
openstacks-opt11-strips (20) 15 16 14 15 14 14 14
openstacks-strips (30) 7 7 7 7 7 7 7
parcprinter-08-strips (30) 15 18 18 15 18 18 18
parcprinter-opt11-strips (20) 11 13 13 11 13 13 13
parking-opt11-strips (20) 1 2 2 3 4 3 3
pathways-noneg (30) 4 5 5 5 5 5 5
pegsol-08-strips (30) 27 27 27 27 27 27 27
pegsol-opt11-strips (20) 17 17 17 17 17 17 17
pipesworld-notankage (50) 19 17 17 19 17 17 17
pipesworld-tankage (50) 13 11 12 12 12 12 12
psr-small (50) 49 49 49 49 49 49 49
rovers (40) 8 7 8 8 9 8 8
satellite (36) 7 7 7 7 8 8 8
scanalyzer-08-strips (30) 9 15 15 13 15 15 15
scanalyzer-opt11-strips (20) 6 12 12 10 12 12 12
sokoban-opt08-strips (30) 24 28 29 29 29 30 25
sokoban-opt11-strips (20) 19 20 20 20 20 20 19
tidybot-opt11-strips (20) 14 14 14 14 14 14 14
tpp (30) 6 6 6 6 6 6 6
transport-opt08-strips (30) 11 11 11 11 11 11 11
transport-opt11-strips (20) 6 6 6 6 6 6 6
trucks-strips (30) 9 10 10 10 10 10 10
visitall-opt11-strips (20) 10 10 10 10 10 10 10
woodworking-opt08-strips (30) 15 16 16 15 17 17 17
woodworking-opt11-strips (20) 10 11 11 10 12 12 12
zenotravel (20) 9 13 12 12 13 13 13

Sum (1615) 797 826 859 873 875 874 872
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Table A.15
Search time score for A∗ algorithms in planning domains.

score lm lmcut max selmax lazy emp T1

airport (50) 51.23 44.38 45.61 49.96 47.62 47.45 50.79
barman-opt11-strips (20) 7.00 4.01 3.71 4.22 4.01 4.45 4.36
blocks (35) 49.97 65.38 64.93 65.18 65.25 64.99 65.15
depot (22) 14.78 18.09 18.40 18.18 19.96 19.86 20.19
driverlog (20) 43.87 53.84 54.70 54.35 56.95 56.88 56.82
elevators-opt08-strips (30) 26.88 38.89 38.09 38.66 42.77 42.70 42.60
elevators-opt11-strips (20) 30.25 45.83 44.69 45.78 51.27 50.92 50.72
floortile-opt11-strips (20) 7.16 18.48 17.94 18.16 18.09 18.07 8.97
freecell (80) 57.44 9.47 36.70 50.91 43.73 43.81 57.38
grid (5) 34.76 23.83 26.35 34.44 27.75 27.55 28.92
gripper (20) 27.96 23.72 23.76 27.12 23.90 23.99 24.54
ipc2014-opt-Barman (14) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-CaveDiving (3) 8.77 5.95 5.64 7.49 6.42 6.36 7.94
ipc2014-opt-ChildSnack (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Floortile (20) 0.00 7.82 7.24 7.58 7.37 7.27 0.00
ipc2014-opt-GED (20) 57.61 56.64 55.37 53.56 55.85 60.75 56.58
ipc2014-opt-Hiking (20) 38.01 28.48 28.87 32.59 31.07 30.85 31.98
ipc2014-opt-Maintenance (5) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ipc2014-opt-Openstacks (20) 3.80 4.19 2.67 3.22 2.95 2.93 2.92
ipc2014-opt-Parking (20) 0.00 2.04 2.55 5.21 4.60 4.55 4.41
ipc2014-opt-Tetris (17) 31.36 14.93 15.54 26.84 17.87 17.90 18.54
ipc2014-opt-Tidybot (20) 14.49 6.03 6.35 10.57 6.73 6.51 6.50
ipc2014-opt-Transport (20) 15.32 14.74 14.56 14.54 15.23 15.13 14.98
ipc2014-opt-Visitall (20) 16.14 17.54 17.17 17.51 17.43 17.48 17.50
logistics00 (28) 32.66 56.69 55.98 51.67 58.00 57.74 56.18
logistics98 (35) 5.03 13.23 13.08 12.89 13.71 13.73 11.82
miconic (150) 93.45 81.98 82.02 87.11 92.31 92.34 92.32
mprime (35) 53.25 51.95 53.16 55.69 54.84 54.87 54.77
mystery (30) 52.96 54.83 54.60 54.86 54.65 54.49 54.57
nomystery-opt11-strips (20) 78.18 56.87 67.26 77.54 75.30 75.23 77.10
openstacks-opt08-strips (30) 39.87 41.80 36.79 39.03 37.84 37.68 37.42
openstacks-opt11-strips (20) 34.92 38.20 30.25 32.95 32.07 31.54 31.39
openstacks-strips (30) 22.03 19.08 19.98 21.67 20.24 20.26 21.98
parcprinter-08-strips (30) 39.35 54.40 53.89 38.10 53.97 54.01 51.95
parcprinter-opt11-strips (20) 39.06 56.40 55.90 37.33 56.11 55.94 53.13
parking-opt11-strips (20) 2.74 2.77 3.22 4.34 5.06 5.17 5.06
pathways-noneg (30) 13.33 14.82 14.76 14.74 14.79 14.77 14.75
pegsol-08-strips (30) 78.20 78.52 76.66 77.43 76.70 77.43 76.53
pegsol-opt11-strips (20) 64.23 64.95 62.43 63.25 62.74 63.16 62.13
pipesworld-notankage (50) 28.73 22.91 23.60 25.98 24.43 24.50 24.56
pipesworld-tankage (50) 17.79 13.20 14.10 14.67 15.54 15.58 15.47
psr-small (50) 95.69 92.54 92.12 93.67 92.92 93.28 92.81
rovers (40) 16.89 15.31 15.44 16.28 16.34 16.27 16.49
satellite (36) 17.66 16.74 17.07 17.11 18.02 18.14 18.03
scanalyzer-08-strips (30) 22.10 36.08 35.76 29.13 36.82 35.90 36.43
scanalyzer-opt11-strips (20) 18.06 39.63 39.54 29.03 40.52 40.68 40.68
sokoban-opt08-strips (30) 54.45 64.19 63.88 64.56 64.16 68.29 59.16
sokoban-opt11-strips (20) 63.13 73.10 71.86 72.46 72.22 77.02 68.98
tidybot-opt11-strips (20) 49.39 35.34 35.11 41.52 36.19 35.99 35.81
tpp (30) 19.26 19.10 19.05 18.97 19.10 19.07 19.04
transport-opt08-strips (30) 30.28 30.39 30.49 29.76 30.79 30.78 30.87
transport-opt11-strips (20) 20.24 20.64 20.53 19.39 21.43 21.15 21.14
trucks-strips (30) 19.36 22.52 22.17 22.29 22.30 22.32 22.28
visitall-opt11-strips (20) 45.51 45.24 45.11 45.39 45.52 45.44 45.42
woodworking-opt08-strips (30) 36.95 41.34 40.98 35.93 42.29 42.20 42.33
woodworking-opt11-strips (20) 30.45 37.03 36.64 28.59 38.59 38.16 38.44
zenotravel (20) 40.68 48.21 47.95 48.13 49.39 49.57 49.46

Average (1615) 32.98 33.87 34.18 34.61 35.55 35.74 35.35
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Table A.16
Number of expansions for A∗ algorithms in planning domains.

expansions lm lmcut max selmax lazy emp T1

airport (28) 601.94 204.45 222.65 554.43 222.65 232.98 436.50
barman-opt11-strips (4) 5,621,156.49 1,265,904.14 1,263,198.17 1,420,926.76 1,263,186.90 1,459,457.38 1,872,354.58
blocks (19) 679.55 124.15 124.08 188.15 123.34 123.44 123.80
depot (6) 147,557.91 6,468.31 6,087.91 8,543.10 6,165.93 6,165.93 6,401.78
driverlog (10) 8,157.38 274.62 261.58 366.79 256.60 256.60 256.86
elevators-opt08-strips (12) 105,352.48 3,256.96 3,137.88 3,261.25 3,137.88 3,137.88 3,137.88
elevators-opt11-strips (10) 210,471.85 5,946.75 5,722.65 5,929.04 5,722.65 5,722.65 5,722.65
floortile-opt11-strips (2) 196,061.77 1,739.60 1,739.60 1,866.64 1,740.42 1,740.42 30,089.22
freecell (15) 19.43 16,361.15 19.40 100.25 19.40 19.40 19.43
grid (2) 2,946.87 2,039.90 1,210.33 2,946.87 1,209.75 1,210.31 1,269.65
gripper (7) 47,081.71 49,623.60 47,081.71 47,103.22 47,081.71 47,081.71 47,081.71
ipc2014-opt-CaveDiving (3) 1,229,877.94 502,662.88 502,662.88 1,229,877.94 502,662.88 714,798.94 1,187,293.37
ipc2014-opt-GED (14) 21,163.09 4,615.32 4,615.32 5,103.63 4,615.32 7,291.41 4,699.90
ipc2014-opt-Hiking (9) 21,633.25 20,455.50 17,845.41 20,372.84 17,845.50 17,849.29 18,468.61
ipc2014-opt-Maintenance (5) 39.91 33.15 30.15 36.37 32.12 32.12 38.78
ipc2014-opt-Openstacks (3) 3,300,439.58 2,346,255.21 2,346,255.21 2,968,191.35 2,346,255.21 2,346,255.21 2,346,255.21
ipc2014-opt-Tetris (5) 5,939.03 3,919.73 3,533.40 5,792.20 3,533.33 3,533.34 3,608.36
ipc2014-opt-Tidybot (7) 87,502.35 6,161.11 6,090.07 27,674.20 6,090.07 6,236.75 6,607.96
ipc2014-opt-Transport (6) 994,777.88 15,269.17 15,157.34 499,709.02 15,153.55 15,153.55 18,608.97
ipc2014-opt-Visitall (4) 132,624.53 24,900.35 22,183.60 32,363.17 22,183.51 22,183.51 25,416.35
logistics00 (10) 2,576.88 160.05 160.05 280.69 160.05 160.05 165.15
logistics98 (2) 6,153.31 89.85 89.85 106.99 89.85 89.85 89.85
miconic (141) 109.14 109.14 109.14 109.14 109.14 109.14 109.14
mprime (21) 670.81 78.70 47.52 78.89 55.13 55.13 55.13
mystery (18) 319.11 27.28 26.45 33.56 26.96 26.99 27.87
nomystery-opt11-strips (14) 247.44 423.16 162.61 234.35 165.12 166.11 176.03
openstacks-opt08-strips (19) 136,014.49 117,130.49 117,130.49 123,795.93 117,130.49 117,922.64 117,130.49
openstacks-opt11-strips (14) 606,248.94 503,402.68 503,402.68 548,449.83 503,402.68 504,085.78 503,402.68
openstacks-strips (7) 2,613.79 8,862.84 2,572.71 2,769.60 2,572.71 2,613.79 2,601.09
parcprinter-08-strips (15) 4,851.49 198.36 198.30 4,850.14 198.30 207.59 539.18
parcprinter-opt11-strips (11) 36,882.02 536.50 536.29 36,868.02 536.29 540.62 2,098.20
parking-opt11-strips (1) 57,211.00 3,391.00 2,420.00 5,603.00 2,420.00 2,420.00 2,586.00
pathways-noneg (4) 1,033.05 38.48 38.48 38.48 38.48 39.26 195.89
pegsol-08-strips (27) 18,162.30 4,590.93 4,567.51 4,895.04 4,562.72 7,384.24 5,124.26
pegsol-opt11-strips (17) 180,026.89 43,444.92 43,143.88 43,800.81 43,086.65 64,381.33 48,925.92
pipesworld-notankage (17) 8,064.14 3,339.01 2,092.49 6,470.42 2,115.62 2,119.18 2,381.33
pipesworld-tankage (11) 6,850.86 4,683.98 2,807.97 3,685.90 2,804.41 2,902.31 2,898.73
psr-small (49) 502.23 386.24 386.24 454.87 386.30 418.27 387.81
rovers (7) 657.09 439.94 302.98 351.82 289.88 289.88 289.88
satellite (7) 1,189.83 308.29 233.35 292.18 234.12 234.12 234.31
scanalyzer-08-strips (8) 8,370.39 158.49 158.23 286.11 158.23 158.23 158.79
scanalyzer-opt11-strips (5) 70,002.61 1,095.74 1,092.91 1,742.76 1,092.91 1,092.91 1,099.10
sokoban-opt08-strips (23) 171,029.66 11,097.34 11,070.85 23,182.92 11,070.81 12,773.15 53,072.97
sokoban-opt11-strips (19) 354,406.00 20,290.70 20,239.81 41,511.12 20,239.73 23,735.55 126,902.32
tidybot-opt11-strips (14) 11,766.14 1,729.18 1,694.68 5,329.62 1,694.68 1,798.96 1,850.97
tpp (6) 107.20 63.15 63.15 72.96 63.15 63.15 63.15
transport-opt08-strips (11) 8,676.74 420.58 418.23 8,336.64 418.24 418.24 433.61
transport-opt11-strips (6) 225,933.52 3,687.90 3,650.25 231,426.07 3,650.36 3,650.36 3,898.44
trucks-strips (9) 152,021.34 4,556.40 4,493.97 4,677.25 4,477.82 4,477.82 4,496.86
visitall-opt11-strips (10) 466.77 256.85 204.74 259.06 204.76 204.76 216.96
woodworking-opt08-strips (14) 7,029.98 146.60 146.60 6,711.05 153.88 153.88 150.66
woodworking-opt11-strips (9) 46,944.68 618.39 618.39 46,921.77 657.37 657.37 636.12
zenotravel (9) 402.49 39.65 39.63 57.51 45.50 45.83 45.51

Geometric mean (726) 12,057.25 1,978.56 1,551.71 3,581.64 1,564.77 1,640.27 2,028.68
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Table A.17
Peak memory usage (in KB) for A∗ algorithms in planning domains.

memory lm lmcut max selmax lazy emp T1

airport (28) 1,201,096 209,432 417,628 1,205,824 419,932 432,144 1,035,472
barman-opt11-strips (4) 1,909,588 391,292 621,032 792,180 655,676 879,732 1,086,840
blocks (19) 3,482,060 64,980 77,224 85,088 77,960 81,516 81,540
depot (6) 5,365,860 120,320 175,076 308,028 182,212 227,356 230,892
driverlog (10) 846,320 35,460 41,012 44,396 41,552 43,384 43,460
elevators-opt08-strips (12) 5,362,360 106,284 147,412 151,676 151,124 181,940 182,044
elevators-opt11-strips (10) 5,351,576 99,436 139,888 144,148 143,300 174,124 174,304
floortile-opt11-strips (2) 135,392 7,620 9,060 9,348 9,104 9,864 35,496
freecell (15) 169,936 236,244 175,720 177,524 176,060 176,208 176,312
grid (2) 37,816 28,416 29,356 38,508 29,688 31,564 32,216
gripper (7) 1,084,240 637,468 1,083,980 1,083,252 1,132,916 1,480,576 1,481,440
ipc2014-opt-CaveDiving (3) 610,120 262,060 432,244 609,824 453,828 599,144 801,340
ipc2014-opt-GED (14) 2,794,896 535,776 880,840 918,804 923,472 1,564,792 1,182,096
ipc2014-opt-Hiking (9) 246,756 153,852 213,308 267,756 221,368 278,936 290,524
ipc2014-opt-Maintenance (5) 17,044 15,768 17,604 18,640 17,308 17,560 18,780
ipc2014-opt-Openstacks (3) 3,780,600 2,067,120 3,679,784 3,839,624 3,827,444 4,849,528 4,849,440
ipc2014-opt-Tetris (5) 163,488 88,860 151,884 170,596 153,080 161,020 162,328
ipc2014-opt-Tidybot (7) 958,576 342,440 835,960 895,520 836,668 839,496 840,084
ipc2014-opt-Transport (6) 4,467,016 90,284 127,740 4,466,648 131,172 157,676 190,680
ipc2014-opt-Visitall (4) 392,964 32,040 45,100 57,132 46,808 57,196 59,116
logistics00 (10) 102,004 31,036 33,964 34,880 34,096 34,468 34,592
logistics98 (2) 22,300 6,188 6,716 6,720 6,712 6,712 6,712
miconic (141) 828,924 609,820 848,984 851,928 858,916 923,008 923,604
mprime (21) 3,062,088 193,360 259,272 334,368 261,924 277,472 277,372
mystery (18) 1,653,804 162,984 259,388 282,732 265,860 300,300 364,232
nomystery-opt11-strips (14) 87,472 76,500 91,324 92,044 91,500 92,044 92,168
openstacks-opt08-strips (19) 6,254,764 3,317,952 5,906,772 6,075,136 6,150,576 7,837,824 7,837,760
openstacks-opt11-strips (14) 6,233,184 3,300,360 5,885,652 6,057,452 6,128,628 7,814,524 7,814,224
openstacks-strips (7) 49,520 76,920 50,256 52,264 51,164 58,768 58,812
parcprinter-08-strips (15) 3,421,360 156,164 207,964 3,420,940 213,760 242,588 862,748
parcprinter-opt11-strips (11) 3,408,036 144,060 194,540 3,407,496 200,292 229,172 849,672
parking-opt11-strips (1) 63,228 8,352 14,400 17,048 14,424 14,976 15,184
pathways-noneg (4) 20,632 12,364 13,164 13,288 13,284 13,288 15,808
pegsol-08-strips (27) 1,372,876 399,208 631,276 705,376 658,508 807,480 845,132
pegsol-opt11-strips (17) 1,390,852 379,348 614,008 689,960 641,876 802,972 839,100
pipesworld-notankage (17) 1,842,584 343,156 466,744 1,944,356 471,400 562,940 1,164,124
pipesworld-tankage (11) 955,832 236,704 321,432 494,656 332,688 433,348 420,508
psr-small (49) 1,090,280 600,972 936,316 1,048,060 968,844 1,231,136 1,212,084
rovers (7) 110,892 48,504 52,264 60,832 53,776 63,192 63,124
satellite (7) 241,328 80,984 61,024 139,300 62,924 74,572 74,532
scanalyzer-08-strips (8) 1,558,484 217,312 359,768 361,460 376,500 482,200 486,820
scanalyzer-opt11-strips (5) 1,543,008 207,180 347,300 348,888 363,920 469,596 474,292
sokoban-opt08-strips (23) 7,348,856 241,528 379,184 1,577,924 394,220 545,292 5,554,144
sokoban-opt11-strips (19) 5,691,372 222,652 354,444 1,473,264 369,348 516,840 5,520,228
tidybot-opt11-strips (14) 1,013,196 378,960 889,688 961,956 890,696 897,164 898,084
tpp (6) 60,188 23,248 28,276 46,020 28,824 31,860 31,840
transport-opt08-strips (11) 961,068 60,516 71,428 966,364 71,564 76,704 78,096
transport-opt11-strips (6) 942,420 44,360 54,228 947,820 54,148 59,228 60,556
trucks-strips (9) 3,464,788 109,348 171,288 173,772 178,900 221,696 221,824
visitall-opt11-strips (10) 752,476 93,964 123,560 227,144 128,448 157,472 221,140
woodworking-opt08-strips (14) 4,593,712 151,040 230,816 4,598,148 239,328 286,076 279,352
woodworking-opt11-strips (9) 4,573,672 135,308 212,352 4,577,964 220,772 267,600 260,852
zenotravel (9) 3,042,284 31,008 36,008 36,940 36,388 37,388 37,284

Sum (726) 106,135,188 17,626,512 29,415,652 57,311,016 30,464,880 38,113,656 50,850,408
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Table A.18
Fraction of nodes in which h2 was evaluated for A∗ algorithms in planning domains.

h2 ratio lazy emp T1

airport (30) 0.50 0.31 0.33
barman-opt11-strips (4) 1.00 0.79 0.65
blocks (28) 0.81 0.80 0.81
depot (7) 0.74 0.74 0.69
driverlog (14) 0.54 0.54 0.53
elevators-opt08-strips (22) 0.57 0.57 0.57
elevators-opt11-strips (18) 0.58 0.58 0.58
floortile-opt11-strips (2) 0.88 0.88 0.11
freecell (49) 0.18 0.17 0.05
grid (2) 0.64 0.64 0.54
gripper (7) 0.93 0.93 0.65
ipc2014-opt-CaveDiving (3) 0.69 0.55 0.04
ipc2014-opt-GED (15) 0.96 0.27 0.86
ipc2014-opt-Hiking (9) 0.71 0.71 0.49
ipc2014-opt-Maintenance (5) 0.16 0.16 0.13
ipc2014-opt-Openstacks (3) 0.61 0.61 0.61
ipc2014-opt-Parking (3) 0.37 0.37 0.26
ipc2014-opt-Tetris (6) 0.53 0.53 0.46
ipc2014-opt-Tidybot (7) 0.98 0.96 0.92
ipc2014-opt-Transport (6) 0.93 0.93 0.85
ipc2014-opt-Visitall (5) 0.87 0.87 0.77
logistics00 (19) 0.49 0.49 0.49
logistics98 (6) 0.54 0.54 0.62
miconic (142) 0.14 0.13 0.14
mprime (22) 0.42 0.42 0.42
mystery (21) 0.57 0.55 0.53
nomystery-opt11-strips (18) 0.29 0.28 0.22
openstacks-opt08-strips (19) 0.55 0.55 0.55
openstacks-opt11-strips (14) 0.56 0.56 0.56
openstacks-strips (7) 0.65 0.49 0.10
parcprinter-08-strips (18) 0.82 0.74 0.62
parcprinter-opt11-strips (13) 0.85 0.83 0.56
parking-opt11-strips (3) 0.35 0.35 0.34
pathways-noneg (5) 0.73 0.73 0.47
pegsol-08-strips (27) 0.97 0.55 0.85
pegsol-opt11-strips (17) 0.96 0.60 0.84
pipesworld-notankage (17) 0.56 0.56 0.51
pipesworld-tankage (12) 0.48 0.45 0.44
psr-small (49) 0.84 0.51 0.82
rovers (8) 0.33 0.33 0.29
satellite (8) 0.34 0.34 0.34
scanalyzer-08-strips (15) 0.95 0.95 0.95
scanalyzer-opt11-strips (12) 0.95 0.95 0.95
sokoban-opt08-strips (25) 0.95 0.61 0.27
sokoban-opt11-strips (19) 0.97 0.57 0.20
tidybot-opt11-strips (14) 0.90 0.85 0.83
tpp (6) 0.63 0.55 0.63
transport-opt08-strips (11) 0.82 0.82 0.80
transport-opt11-strips (6) 0.89 0.89 0.86
trucks-strips (10) 0.92 0.92 0.91
visitall-opt11-strips (10) 0.68 0.68 0.62
woodworking-opt08-strips (17) 0.44 0.44 0.43
woodworking-opt11-strips (12) 0.46 0.46 0.46
zenotravel (13) 0.55 0.53 0.55

Average (860) 0.66 0.59 0.54
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Table A.19
Coverage for I D A∗ algorithms in planning domains.

coverage lm lmcut max selmax lazy emp T1

airport (50) 18 21 21 19 21 21 21
barman-opt11-strips (20) 0 0 0 0 0 0 0
blocks (35) 18 19 19 19 19 19 19
depot (22) 2 2 2 2 2 2 2
driverlog (20) 6 8 8 8 8 8 8
elevators-opt08-strips (30) 0 0 0 0 0 0 0
elevators-opt11-strips (20) 0 0 0 0 0 0 0
floortile-opt11-strips (20) 0 1 1 1 1 1 0
freecell (80) 32 5 25 31 28 28 32
grid (5) 1 1 1 1 1 1 1
gripper (20) 3 2 2 3 2 2 3
ipc2014-opt-Barman (14) 0 0 0 0 0 0 0
ipc2014-opt-CaveDiving (3) 0 0 0 0 0 0 0
ipc2014-opt-ChildSnack (20) 0 0 0 0 0 0 0
ipc2014-opt-Floortile (20) 0 0 0 0 0 0 0
ipc2014-opt-GED (20) 12 13 13 12 13 13 13
ipc2014-opt-Hiking (20) 2 1 1 2 2 2 2
ipc2014-opt-Maintenance (5) 5 5 5 5 5 5 5
ipc2014-opt-Openstacks (20) 0 0 0 0 0 0 0
ipc2014-opt-Parking (20) 0 0 0 0 0 0 0
ipc2014-opt-Tetris (17) 2 2 2 2 2 2 2
ipc2014-opt-Tidybot (20) 0 0 0 0 0 0 0
ipc2014-opt-Transport (20) 0 0 0 0 0 0 0
ipc2014-opt-Visitall (20) 3 3 3 3 3 3 3
logistics00 (28) 8 7 7 8 8 8 8
logistics98 (35) 2 3 3 3 3 3 3
miconic (150) 138 138 138 138 138 138 138
mprime (35) 17 20 20 20 20 20 20
mystery (30) 12 16 16 16 16 16 16
nomystery-opt11-strips (20) 14 12 14 14 14 14 14
openstacks-opt08-strips (30) 4 4 4 4 4 4 4
openstacks-opt11-strips (20) 1 1 1 1 1 1 1
openstacks-strips (30) 5 0 5 5 5 5 5
parcprinter-08-strips (30) 6 13 13 6 13 13 13
parcprinter-opt11-strips (20) 2 8 8 2 8 8 8
parking-opt11-strips (20) 1 0 1 1 1 1 1
pathways-noneg (30) 2 4 4 2 4 4 4
pegsol-08-strips (30) 21 24 24 24 24 22 24
pegsol-opt11-strips (20) 7 14 14 14 14 12 14
pipesworld-notankage (50) 11 10 11 11 11 11 11
pipesworld-tankage (50) 7 5 6 6 7 7 7
psr-small (50) 29 28 28 28 28 28 28
rovers (40) 4 4 4 4 4 4 4
satellite (36) 4 5 5 4 6 6 6
scanalyzer-08-strips (30) 4 12 12 4 12 12 12
scanalyzer-opt11-strips (20) 1 9 9 1 9 9 9
sokoban-opt08-strips (30) 0 0 0 0 0 0 0
sokoban-opt11-strips (20) 0 0 0 0 0 0 0
tidybot-opt11-strips (20) 3 3 3 3 4 4 3
tpp (30) 5 5 5 5 5 5 5
transport-opt08-strips (30) 1 3 3 1 3 3 3
transport-opt11-strips (20) 0 0 0 0 0 0 0
trucks-strips (30) 2 3 3 1 3 3 3
visitall-opt11-strips (20) 9 9 9 9 9 9 9
woodworking-opt08-strips (30) 7 10 10 7 10 10 10
woodworking-opt11-strips (20) 2 5 5 2 5 5 5
zenotravel (20) 7 9 9 9 9 9 9

Sum (1615) 440 467 497 461 505 501 508
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Table A.20
Search time score for I D A∗ algorithms in planning domains.

coverage lm lmcut max selmax lazy emp T1

airport (50) 34.32 37.71 37.88 35.95 38.03 38.18 37.95
barman-opt11-strips (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
blocks (35) 44.77 45.57 45.09 45.46 46.00 45.76 46.10
depot (22) 6.28 9.09 9.00 8.93 9.09 9.09 9.09
driverlog (20) 18.56 29.14 29.52 29.53 32.32 32.20 32.39
elevators-opt08-strips (30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
elevators-opt11-strips (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
floortile-opt11-strips (20) 0.00 0.62 0.47 0.59 0.66 0.69 0.00
freecell (80) 32.18 1.65 27.77 31.90 30.14 30.12 32.14
grid (5) 20.00 18.52 19.22 20.00 20.00 20.00 20.00
gripper (20) 9.77 8.56 8.68 9.43 9.23 9.30 9.50
ipc2014-opt-Barman (14) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-CaveDiving (3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-ChildSnack (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Floortile (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-GED (20) 39.54 46.48 45.61 44.55 45.59 45.24 47.05
ipc2014-opt-Hiking (20) 3.00 2.09 1.97 2.60 3.76 3.81 3.81
ipc2014-opt-Maintenance (5) 81.99 88.47 87.05 80.70 88.21 88.19 88.37
ipc2014-opt-Openstacks (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Parking (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Tetris (17) 9.09 7.08 7.15 8.74 8.31 8.32 8.29
ipc2014-opt-Tidybot (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Transport (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ipc2014-opt-Visitall (20) 6.51 6.21 6.64 5.72 7.30 7.40 7.37
logistics00 (28) 21.79 20.18 19.22 21.09 21.06 21.02 21.24
logistics98 (35) 3.40 8.57 8.48 8.54 8.57 8.57 8.57
miconic (150) 90.12 76.11 76.20 89.81 89.03 89.09 89.01
mprime (35) 41.21 46.74 48.71 49.03 51.17 51.09 51.16
mystery (30) 40.85 48.98 49.58 49.93 50.41 50.33 50.26
nomystery-opt11-strips (20) 64.60 46.77 54.34 64.20 61.92 62.37 62.72
openstacks-opt08-strips (30) 13.33 13.33 13.33 13.33 13.33 13.33 13.33
openstacks-opt11-strips (20) 5.00 5.00 5.00 5.00 5.00 5.00 5.00
openstacks-strips (30) 14.20 0.00 10.55 13.44 12.00 12.03 13.74
parcprinter-08-strips (30) 17.62 43.33 43.33 20.00 43.33 43.33 43.33
parcprinter-opt11-strips (20) 6.45 40.00 40.00 10.00 40.00 40.00 40.00
parking-opt11-strips (20) 0.09 0.00 0.19 1.18 1.22 1.24 1.25
pathways-noneg (30) 6.67 13.33 13.33 6.67 13.33 11.05 12.93
pegsol-08-strips (30) 44.94 54.68 52.19 53.48 52.96 49.65 52.86
pegsol-opt11-strips (20) 12.88 25.68 22.60 23.62 23.36 19.38 23.41
pipesworld-notankage (50) 16.37 12.04 14.57 15.72 16.03 16.03 16.16
pipesworld-tankage (50) 10.37 7.65 9.07 9.92 10.35 10.34 10.35
psr-small (50) 50.04 48.60 47.96 48.22 49.38 49.45 49.51
rovers (40) 10.00 10.00 10.00 10.00 10.00 10.00 10.00
satellite (36) 10.30 13.83 13.77 9.99 13.88 13.85 13.88
scanalyzer-08-strips (30) 11.13 33.43 33.36 11.04 33.64 33.62 33.62
scanalyzer-opt11-strips (20) 5.00 35.25 34.94 5.00 35.34 35.36 35.42
sokoban-opt08-strips (30) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sokoban-opt11-strips (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tidybot-opt11-strips (20) 9.46 8.25 8.29 9.37 8.75 8.74 8.81
tpp (30) 14.04 16.52 16.44 13.81 16.53 16.49 16.49
transport-opt08-strips (30) 3.33 7.17 7.12 3.33 7.14 7.11 7.16
transport-opt11-strips (20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
trucks-strips (30) 2.52 7.85 7.59 2.35 7.59 7.61 7.50
visitall-opt11-strips (20) 37.18 38.66 38.86 36.51 39.34 39.36 39.43
woodworking-opt08-strips (30) 15.78 31.28 31.30 17.42 31.11 31.12 31.12
woodworking-opt11-strips (20) 5.87 21.97 21.90 5.48 21.63 21.66 21.67
zenotravel (20) 31.56 37.81 37.39 37.47 39.02 38.97 39.07

Average (1615) 15.90 18.52 19.24 17.05 20.09 19.92 20.19
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Table A.21
Number of expansions for I D A∗ algorithms in planning domains.

coverage lm lmcut max selmax lazy emp T1

airport (18) 163.76 130.84 130.84 163.76 130.84 143.92 131.19
blocks (18) 6,263.01 1,770.50 1,769.53 3,700.41 1,769.53 1,945.70 1,776.18
depot (2) 104,540.03 932.42 932.42 1,321.51 932.42 932.42 932.42
driverlog (6) 484,403.54 14,532.94 10,804.04 13,572.15 10,804.04 10,804.04 10,804.69
freecell (5) 16.69 529,646.82 16.69 16.69 16.69 16.69 16.69
grid (1) 6,560.00 1,678.00 1,283.00 6,555.00 1,283.00 1,295.00 1,297.00
gripper (2) 13,109.12 23,527.29 13,109.12 13,109.74 13,109.12 13,109.12 13,109.12
ipc2014-opt-GED (11) 58,997.60 6,682.47 6,682.47 8,806.94 6,682.47 8,675.63 6,682.47
ipc2014-opt-Hiking (1) 5,121,116.00 2,268,620.00 2,094,746.00 5,121,116.00 2,094,746.00 2,094,942.00 2,097,682.00
ipc2014-opt-Maintenance (5) 5,627.41 1,457.33 1,231.02 4,953.68 1,231.02 1,231.02 1,231.02
ipc2014-opt-Tetris (2) 26,190.46 17,510.38 16,381.08 26,190.46 16,381.08 16,381.08 16,381.08
ipc2014-opt-Visitall (3) 5,412,921.66 1,619,635.88 923,706.97 5,412,871.76 923,706.97 1,007,303.58 1,023,168.51
logistics00 (7) 37,055.43 36,900.09 36,900.09 37,055.43 36,900.09 36,900.09 36,900.09
logistics98 (2) 1,796,135.34 19,676.79 19,676.79 36,650.71 19,676.79 19,676.79 19,680.92
miconic (138) 1,807.37 1,807.37 1,807.37 1,807.37 1,807.37 1,807.37 1,807.37
mprime (17) 6,527.81 864.75 365.42 1,200.74 365.42 365.42 365.42
mystery (14) 420.74 41.08 32.29 46.89 32.29 32.29 32.29
nomystery-opt11-strips (12) 6,630.27 3,830.61 2,458.62 6,457.16 2,458.62 2,466.55 2,541.87
openstacks-opt08-strips (4) 235.34 208.85 208.85 235.34 208.85 208.85 208.85
openstacks-opt11-strips (1) 73.00 61.00 61.00 73.00 61.00 61.00 61.00
parcprinter-08-strips (6) 2,247.40 23.18 23.18 112.77 23.18 24.35 23.18
parcprinter-opt11-strips (2) 772,685.36 22.49 22.49 646.49 22.49 23.00 22.49
pathways-noneg (2) 1,221.91 32.76 32.76 890.23 32.76 32.76 32.76
pegsol-08-strips (21) 146,957.15 20,746.26 20,555.69 24,658.29 20,555.69 41,502.91 21,802.72
pegsol-opt11-strips (7) 3,224,793.17 325,747.05 319,776.43 328,031.15 319,776.43 702,021.95 327,586.91
pipesworld-notankage (10) 33,865.14 48,148.35 13,922.18 29,835.16 13,922.18 13,922.82 14,512.34
pipesworld-tankage (5) 8,492.64 14,063.65 4,272.29 6,999.00 4,272.29 4,273.40 4,325.75
psr-small (28) 23,054.69 19,329.28 19,329.28 22,490.74 19,386.26 19,767.85 19,465.97
rovers (4) 234.60 268.86 127.84 233.66 127.84 127.84 127.84
satellite (4) 4,427.88 233.24 215.18 4,411.43 215.18 215.18 215.18
scanalyzer-08-strips (4) 2,635.85 15.24 15.24 742.88 15.24 15.24 15.24
scanalyzer-opt11-strips (1) 184.00 10.00 10.00 34.00 10.00 10.00 10.00
tidybot-opt11-strips (3) 12,348.98 3,020.36 3,020.36 12,345.51 3,020.36 3,048.60 3,085.71
tpp (5) 327.29 86.16 86.16 327.29 86.16 86.16 86.16
transport-opt08-strips (1) 10.00 16.00 10.00 10.00 10.00 10.00 10.00
trucks-strips (1) 740,948.00 3,543.00 3,431.00 740,862.00 3,431.00 3,431.00 3,521.00
visitall-opt11-strips (9) 2,089.45 1,093.24 686.96 2,053.41 686.96 707.09 719.81
woodworking-opt08-strips (7) 218,483.05 106.19 106.19 66,241.56 108.56 108.56 109.89
woodworking-opt11-strips (2) 773,198.06 164.27 164.27 772,864.88 164.27 164.27 164.27
zenotravel (7) 4,527.89 202.32 202.32 483.75 202.32 203.13 202.32

Geometric mean (398) 10,614.63 1,574.53 999.24 3,951.16 999.86 1,055.68 1,009.96
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Table A.22
Fraction of nodes in which h2 was evaluated for I D A∗ algorithms in planning domains.

h2 ratio lazy emp T1

airport (21) 0.91 0.44 0.88
blocks (19) 0.63 0.54 0.55
depot (2) 0.63 0.63 0.62
driverlog (8) 0.36 0.36 0.35
freecell (28) 0.27 0.26 0.24
grid (1) 0.58 0.56 0.53
gripper (2) 0.25 0.25 0.13
ipc2014-opt-GED (13) 1.00 0.59 0.76
ipc2014-opt-Hiking (2) 0.10 0.10 0.09
ipc2014-opt-Maintenance (5) 0.20 0.20 0.20
ipc2014-opt-Tetris (2) 0.24 0.24 0.22
ipc2014-opt-Visitall (3) 0.59 0.54 0.51
logistics00 (8) 0.15 0.15 0.14
logistics98 (3) 0.34 0.34 0.34
miconic (138) 0.12 0.11 0.11
mprime (20) 0.56 0.56 0.55
mystery (18) 0.71 0.71 0.71
nomystery-opt11-strips (14) 0.24 0.23 0.20
openstacks-opt08-strips (4) 1.00 0.86 0.99
openstacks-opt11-strips (1) 1.00 0.66 0.98
openstacks-strips (5) 0.46 0.42 0.04
parcprinter-08-strips (13) 0.85 0.72 0.81
parcprinter-opt11-strips (8) 0.85 0.78 0.81
parking-opt11-strips (1) 0.19 0.19 0.19
pathways-noneg (4) 0.84 0.59 0.45
pegsol-08-strips (22) 0.87 0.43 0.78
pegsol-opt11-strips (12) 0.85 0.44 0.76
pipesworld-notankage (11) 0.29 0.29 0.26
pipesworld-tankage (7) 0.16 0.16 0.15
psr-small (28) 0.37 0.26 0.24
rovers (4) 0.22 0.22 0.18
satellite (6) 0.39 0.39 0.39
scanalyzer-08-strips (12) 0.85 0.85 0.80
scanalyzer-opt11-strips (9) 0.84 0.84 0.82
tidybot-opt11-strips (3) 0.57 0.56 0.55
tpp (5) 0.63 0.49 0.58
transport-opt08-strips (3) 0.78 0.78 0.69
trucks-strips (3) 0.83 0.83 0.81
visitall-opt11-strips (9) 0.65 0.63 0.57
woodworking-opt08-strips (10) 0.42 0.42 0.41
woodworking-opt11-strips (5) 0.39 0.39 0.38
zenotravel (9) 0.36 0.35 0.35

Average (501) 0.54 0.46 0.48
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