Rational deployment of multiple heuristics in optimal state-space search

Erez Karpas ${ }^{\text {a,* }}$, Oded Betzalel ${ }^{\text {b }}$, Solomon Eyal Shimony ${ }^{\text {b }}$, David Tolpin ${ }^{\text {b }}$, Ariel Felner ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel
${ }^{\mathrm{b}}$ CS Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
${ }^{\text {c }}$ ISE Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel

A R T I C L E I N F O

Article history:

Received 21 August 2016
Received in revised form 9 October 2017
Accepted 3 November 2017
Available online xxxx

Keywords:

Heuristic search
A^{*}
Admissible heuristics
Rational metareasoning

Abstract

The obvious way to use several admissible heuristics in searching for an optimal solution is to take their maximum. In this paper, we aim to reduce the time spent on computing heuristics within the context of A^{*} and IDA*. We discuss Lazy A* and Lazy IDA*, variants of A^{*} and $I D A^{*}$, respectively, where heuristics are evaluated lazily: only when they are essential to a decision to be made in the search process. While these lazy algorithms outperform naive maximization, we can do even better by intelligently deciding when to compute the more expensive heuristic. We present a new rational metareasoning based scheme which decides whether to compute the more expensive heuristics at all, based on a myopic regret estimate. This scheme is used to create rational lazy A^{*} and rational lazy IDA*. We also present different methods for estimating the parameters necessary for making such decisions. An empirical evaluation in several domains supports the theoretical results, and shows that the rational variants, rational lazy A^{*} and rational lazy $I D A^{*}$, are better than their non-rational counterparts.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Introducing rational metareasoning techniques [1] into search is a research direction that has recently proved worthwhile. All search algorithms have decision points about which search actions to perform. Traditionally, tailored rules are hard-coded into the algorithms. However, applying metareasoning techniques based on value of information or other ideas can significantly speed up the search. This was shown for depth-first search in CSPs [2] as well as for Monte-Carlo tree search [3]. In the heuristic search literature, the greatest speedups using metareasoning techniques have been achieved when they were used to trade off solution quality for search time [4-6], where the search algorithm attempts to choose a node which will also minimize expected search effort, rather than just expected solution cost.

Taking advantage of metareasoning when the search is for an optimal solution is different than in satisficing planning, as the time vs. quality tradeoff is not available. Nevertheless, optimal search algorithms use heuristics, and when more than one such heuristic is available, metareasoning can be used to speed up search, trading off different aspects of search

[^0]https://doi.org/10.1016/j.artint.2017.11.001
0004-3702/© 2017 Elsevier B.V. All rights reserved.
time, such as time spent for computing heuristics vs. time spent in node expansion, to achieve an overall speedup without jeopardizing optimality. In this paper, we examine how this can be done for A^{*} and $I D A^{*}$.

The A^{*} algorithm [7] and its derivatives, such as $I D A^{*}$ [8] and RBFS [9] are best-first heuristic search algorithms guided by the cost function $f(n)=g(n)+h(n) . A^{*}$ is often described as being 'optimal', in that it expands the minimum number of unique nodes. If the heuristic $h(n)$ is consistent ${ }^{1}$ then the set of nodes expanded by A^{*} is both necessary and sufficient to find the optimal path to the goal with a unidirectional search [11]. ${ }^{2}$

This paper examines the case where we have several available admissible heuristics. Clearly, we can evaluate all these heuristics, and use their maximum as an admissible heuristic. The problem with naive maximization is that all the heuristics are computed for all the generated nodes. In order to reduce the time spent on heuristic computations, Lazy A^{*} (or $L A^{*}$, for short) evaluates the heuristics one at a time, lazily. When a node n is generated, $L A^{*}$ only computes one heuristic, $h_{1}(n)$, and adds n to Open. Only when n re-emerges as the top of Open is another heuristic, $h_{2}(n)$, evaluated; if this results in an increased heuristic estimate, n is re-inserted into Open. This scheme can be repeated as needed if we have more than two heuristics. $L A^{*}$ expands no more nodes than A^{*} using the maximum. While $L A^{*}$ may have the extra overhead of inserting a node into Open more than once, it has the potential to significantly reduce search time, as we may bypass computation of h_{2} for many nodes. $L A^{*}$ was briefly mentioned in the context of the MAXSAT heuristic for planning domains [12].

One major drawback for using A^{*} is that its memory consumption is linear in the number of generated nodes, which is typically exponential in the problem description size, and that may be unacceptable. In contrast to $A^{*}, I D A^{*}$ is a linear-space algorithm which emulates A^{*} by performing a series of depth-first searches from the root, each with increasing costs, thus re-expanding nodes multiple times. $I D A^{*}$ is typically used in domains and problem instances where A^{*} requires more than the available memory and thus cannot be run to completion. Similarly to A^{*}, the first thing to consider for $I D A^{*}$ is lazy evaluation of the heuristics. In order to reduce the time spent on heuristic computations, Lazy ID A^{*} evaluates the heuristics one at a time, lazily. When h_{1} causes a cutoff there is no need to evaluate h_{2}. Unlike Lazy A^{*}, where lazy evaluation must pay an overhead (re-inserting into the OPEN list), Lazy $I D A^{*}\left(L I D A^{*}\right)$ is straightforward and has no immediate overhead.

As our goal is to reduce search time, it may be better to compute a fast heuristic on several nodes, rather than to compute a slow but informed heuristic on only one node. Selective max (Sel-MAX), an online learning scheme which chooses one heuristic to compute at each node, is based on this idea [13]. Sel-MAX chooses to compute the more expensive heuristic h_{2} for node n when its classifier predicts that $h_{2}(n)-h_{1}(n)$ is greater than some threshold, which is a function of the computation times of the heuristics and of the average branching factor.

Similarly, previous work showed that randomizing a heuristic and applying bidirectional pathmax (BPMX) might sometimes be faster than evaluating all heuristics and taking the maximum [10]. This technique is only useful in undirected search spaces, and is therefore not applicable to some of the domains we examine in this paper. Both Selective max and Random compute the resulting heuristic once, before each node is added to Open, while $L A^{*}$ and LIDA* compute the heuristic lazily, in different steps of the search. In addition, both randomization and Sel-MAX save heuristic computations and thus reduce search time in many cases. However, they might be less informed than pure maximization and as a result expand a larger number of nodes.

In this paper, we combine the ideas of lazy heuristic evaluation and of trading off more node expansions for less heuristic computation time. We introduce a new variant of $L A^{*}$ called Rational Lazy $A^{*}\left(R L A^{*}\right)$, as well as a new variant of LIDA* called Rational Lazy IDA* (RLIDA*). These new rational algorithms are based on rational metareasoning in the sense of [1], and use a myopic regret criterion to decide whether to compute $h_{2}(n)$ or to bypass the computation of h_{2} and expand n instead. They aim to reduce search time, even at the expense of more node expansions than A^{*} or $I D A^{*}$ with the maximum of the heuristics. Empirical results on several heuristic search problems, as well as on numerous planning domains demonstrate that RLA* and RLIDA* lead to better performance than their non-rational versions in many cases.

Perhaps the most closely related work, the RA* [14] and GHS [15] algorithms, have a similar objective - minimizing search time when given access to multiple heuristics. However they approach this problem in a different way, by choosing a subset of the heuristics to maximize over during search. On the other hand, we assume there are exactly two heuristics given, and attempt to minimize search time using these heuristics. An interesting direction for future work would be choosing a set of heuristics to combine using RLA* or RLIDA*.

Preliminary papers appeared on these ideas, introducing the A* variants [16] and the IDA* variants [17]. This paper unifies the presentation of $R L A^{*}$ and $R L I D A^{*}$ into one coherent whole, while providing more experimental results. In addition, this paper further describes several technical optimizations for $L A^{*}$ and $L I D A^{*}$. Finally, we extend the previous versions of RLA* and RLIDA* by relaxing one of the assumptions originally made, as well as describing new techniques for estimating the parameters used in deciding when to compute the more expensive heuristic.

This paper is organized as follows. We begin (Section 2) by reintroducing $L A^{*}$ and LIDA*, and analyze the potential savings of $L A^{*}$ over A^{*} and of $L I D A^{*}$ over $I D A^{*}$. We then consider the effects of some common additional enhancements to $L A^{*}$ and LIDA* (Section 3). The main contribution of the paper is Section 4, which introduces the principles behind the decisions made by Rational $L A^{*}$ and Rational $L I D A^{*}$, and Section 5, which presents different methods of using these

[^1]principles in practice. Our approach is then extensively evaluated empirically in Section 6, in several puzzle domains as well as in numerous domains from past planning competitions. We then discuss possible directions for future work in section 7 , and conclude in section 8.

2. Lazy A^{*} and ID A^{*}

In this section we study $L A^{*}$ and $L I D A^{*}$. The idea behind these algorithms is simple and was probably used by others. In fact, it was specifically mentioned in work on using the MAXSAT heuristic for planning [12]. Nevertheless, we study this technique in more depth in the context of A^{*} and IDA*, and point out its strengths and weaknesses. Additionally, $L A^{*}$ and LIDA* serve as a basis for our enhanced algorithms, RLA* and RLIDA*, which add metareasoning to the lazy technique.

2.1. Definitions and assumptions

Throughout this paper we assume for clarity that we have two available admissible heuristics, h_{1} and h_{2}.

- Unless stated otherwise, we assume that h_{1} is faster to compute than h_{2} but that h_{2} is weakly more informed, i.e., $h_{1}(n) \leq h_{2}(n)$ for the majority of the nodes n, although counter cases where $h_{1}(n)>h_{2}(n)$ are possible. We say that h_{2} dominates h_{1}, if such counter cases do not exist and $h_{2}(n) \geq h_{1}(n)$ for all nodes n.
- We use $f_{1}(n)$ to denote $g(n)+h_{1}(n)$. Likewise, $f_{2}(n)$ denotes $g(n)+h_{2}(n)$, and $f_{\max }(n)$ denotes $g(n)+\max \left(h_{1}(n), h_{2}(n)\right)$. We denote the cost of the optimal solution by C^{*}.
- We denote the computation time of h_{1} and of h_{2} by t_{1} and t_{2}, respectively, and denote the overhead of an insert/pop operation in Open by t_{0}. Unless stated otherwise we assume that t_{2} is much greater than $t_{1}+t_{0}$. Thus, our main objective is to reduce computations of h_{2}. Note that t_{1}, t_{2}, and t_{0} are not necessarily constants, as heuristic computation times could vary between different nodes, and t_{0} could depend on the size of Open. Nevertheless, treating them as constants is sometimes a useful approximation, and has been done before [13].

2.2. $\operatorname{Lazy}^{\text {A }}$

```
Algorithm 1: Rational lazy \(A^{*}\).
    Apply all heuristics to Start
    Insert Start into Open
    while Open not empty do
        \(n \leftarrow\) best node from Open (update statistics)
        if \(\operatorname{Goal}(n)\) then
            return trace(n)
        if \(h_{2}\) was not applied to \(n\) and opt-cond then
            Apply \(h_{2}\) to \(n\) (update statistics)
            insert \(n\) into Open
            continue //next node in OPEN
        foreach child \(c\) of \(n\) do
            Delete-duplicates(c, Open, Closed)
            Apply \(h_{1}\) to \(c\) (update statistics)
            insert \(c\) into Open
        Insert \(n\) into Closed
    return FAILURE
```

We begin with a formal treatment of $L A^{*}$. The pseudo-code for $L A^{*}$ is depicted as Algorithm 1, and is very similar to A^{*}. In fact, without lines $7-10, L A^{*}$ would be identical to A^{*} using the h_{1} heuristic. When a node n is generated we only compute $h_{1}(n)$ and n is added to Open (Lines 11-14), without computing $h_{2}(n)$ yet. When n is first removed from Open (Lines 7-10), we compute $h_{2}(n)$ and reinsert it into Open, this time with $f_{\max }(n)$. The optional condition, opt-cond in Line 7, as well as the statistics collected by update statistics in Lines 4,8 , and 13 , are used by the Rational variant of $L A^{*}$ which is introduced in Section 4. For the basic variant of $L A^{*}$ discussed in this section opt-cond is simply assumed to be always TRUE, and thus ignored.

We use $A_{M A X}^{*}$ to denote the variant of A^{*} which evaluates both heuristics and uses their maximum. It is easy to see that $L A^{*}$ is as informed as $A_{M A X}^{*}$, in the sense that a node n is expanded both by $A_{M A X}^{*}$ and by $L A^{*}$ only if $f_{\max }(n)$ is the best f-value in Open. Therefore, $L A^{*}$ and $A_{M A X}^{*}$ generate and expand the same set of nodes, up to differences caused by tie-breaking.

In its general form A^{*} generates many nodes that it does not expand. These nodes, called surplus nodes [18,19], are in Open when we expand the goal node with $f=C^{*}$. All nodes in Open with $f>C^{*}$ are surely surplus but some nodes with $f=C^{*}$ may also be surplus. The number of surplus nodes in OPEN can grow exponentially in the size of the domain, resulting in significant costs.

Table 1
$\underline{\text { Time spent on each node for } A_{M A X}^{*} \text { and for } L A^{*} \text {. }}$

Alg	ER	SR	SG
$A_{M A X}^{*}$	$t_{1}+\mathbf{t}_{2}+2 t_{o}$	$t_{1}+\mathbf{t}_{\mathbf{2}}+t_{o}$	$t_{1}+\mathbf{t}_{\mathbf{2}}+t_{0}$
$L A^{*}$	$t_{1}+\mathbf{t}_{2}+4 t_{o}$	$t_{1}+\mathbf{t}_{\mathbf{2}}+3 t_{o}$	$t_{1}+t_{o}$

$L A^{*}$ avoids h_{2} computations for many of these surplus nodes. Consider a node n that is generated with $f_{1}(n)>C^{*}$. This node is inserted into Open but will never reach the top of Open, as the goal node will be found with $f=C^{*}$. In fact, if ties are broken in Open in favor of small h-values, the goal node with $f=C^{*}$ could be expanded as soon as it is generated, and such savings of h_{2} will be obtained for some nodes with $f_{1}=C^{*}$ too. We refer to such nodes where we saved the computation of h_{2} as good nodes (from the view point of saving computation time). Other nodes, those with $f_{1}(n)<C^{*}$ (and some with $f_{1}(n)=C^{*}$) are called regular nodes, as we need to compute both heuristics for them.
$A_{M A X}^{*}$ computes both h_{1} and h_{2} for all generated nodes, spending time $t_{1}+t_{2}$ on all generated nodes, as well as the time spent on inserting all nodes into the open list $\left(t_{0}\right)$, and an extra t_{0} spent on removing the nodes that were expanded from the open list. In contrast, for good nodes $L A^{*}$ only spends t_{1} time computing heuristic estimates (saving t_{2} time), as well as extra overhead on open list operations. In the basic implementation of $L A^{*}$ (as in Algorithm 1) regular nodes are inserted into OPEN twice, first for h_{1} (Line 13) and then for h_{2} (Line 9) while good nodes only enter Open once (Line 13). Thus, $L A^{*}$ has some extra overhead of Open operations for regular nodes. We distinguish between 3 classes of nodes:

- (1) expanded regular (ER) - nodes that were expanded after both heuristics were computed. Both $A_{M A X}^{*}$ and $L A^{*}$ spend $t_{1}+t_{2}$ time computing heuristic estimates for each of these nodes. $A_{M A X}^{*}$ inserts and removes each of these nodes from the open list, for an extra $2 t_{o}$ time, while $L A^{*}$ inserts and removes each of these nodes from the open list twice, for an extra $4 t_{o}$ time.
- (2) surplus regular (SR) - nodes for which h_{2} was computed but are still in Open when the goal was found. Both $A_{M A X}^{*}$ and $L A^{*}$ spend $t_{1}+t_{2}$ time computing heuristic estimates for each of these nodes. $A_{M A X}^{*}$ inserts each of these nodes to the open list, for an extra t_{0} time, while $L A^{*}$ inserts each of these nodes into the open list twice, and removes them once, for an extra $3 t_{0}$ time.
- (3) surplus good (SG) - nodes for which only h_{1} was computed when the goal was found. $A_{M A X}^{*}$ spends $t_{1}+t_{2}$ time computing heuristic estimates for each of these nodes, and t_{0} time inserting each of them into the open list. On the other hand, $L A^{*}$ only spends t_{1} time computing heuristic estimates for each of these nodes, as well as an extra t_{0} time inserting each of them into the open list.

The time overhead of $A_{M A X}^{*}$ and $L A^{*}$ is summarized in Table 1.
$L A^{*}$ incurs more Open operations overhead, but saves h_{2} computations for the SG nodes. When t_{2} (boldface in Table 1) is significantly greater than both t_{1} and t_{0} then, as seen in the SG column, there is a clear advantage for $L A^{*}$. This advantage grows when the number of SG nodes increases.

2.3. Lazy ID **

We now present $L I D A^{*}$, the lazy variant of $I D A^{*}$. Recall that $I D A^{*}$ works in iterations, with an increasing cutoff threshold T at each iteration. After $h(n)$ is evaluated, if $f(n)=g(n)+h(n)>T$, then n is pruned and $I D A^{*}$ backtracks to n 's parent. Given both h_{1} and h_{2}, a naive implementation of $I D A^{*}$, denoted as $I D A_{M A X}^{*}$, will evaluate them both and use their maximum in comparing against T. Lazy $I D A^{*}\left(L I D A^{*}\right)$ is based on the simple fact that when you have an or condition in the form of cond1 or cond2 then if cond1 = True then cond2 becomes irrelevant ("don't-care") and does not need to be computed, as the entire or condition is surely true. In the context of $I D A^{*}$, if $f_{1}(n)>T$ then the search can backtrack without the need to compute h_{2}. This simple observation is probably recognized by most implementers of $I D A^{*}$. Thus, it is likely that $L I D A^{*}$ is already a popular way to implement $I D A^{*}$ when more than one heuristic is present.

The pseudo-code for LIDA* (and its enhanced version, Rational LID A^{*}, which is discussed in Section 4), is depicted as Algorithm 2. In Lines $8-10$ we check whether f_{1} is already above the threshold, in which case search backtracks. h_{2} is only calculated (in Lines 13-14) if $f_{1}(n) \leq T$. The "optional condition" in Line 13, as well as the updating of statistics in Lines 8 and 14, are needed for the Rational Lazy IDA* algorithm, and will be explained in Section 4. In the standard version of Lazy $I D A^{*}$, the "optional condition" in line 13 is always true, and the respective heuristics are always evaluated at this juncture.

While Lazy A^{*} was always as informed as A^{*} using the maximum of the heuristics, this is not the case for Lazy IDA*. This is because, in rare cases, LIDA* can cause extra iterations of the algorithm compared to IDA*. Suppose that the current threshold is T and the current value of the next threshold (NT) is $T+3$ as some node m seen in the current iteration has $f(m)=T+3$. Now we generate node n with $f_{1}(n)=T+1$ and thus set $N T=T+1$ and bypass h_{2}. However, if $f_{2}(n)=T+2$ then consulting h_{2} would have caused $N T=T+2$. With LIDA*, we may now start a new and redundant iteration with threshold $T+1$, rather than with $T+2$ - which would have been the case with ID $A_{M A X}^{*}$.

However, in order for an extra iteration $\# i$ with value v to happen, all nodes that have an h_{2} value of v in iteration $\# i-1$ have to be pruned by their h_{1} value. As the number of nodes grows between iterations (potentially exponentially), this case

```
Algorithm 2: Rational lazy IDA*.
    Lazy-ID \(A^{*}\) (root) \{
        Thresh \(\leftarrow \max \left(h_{1}\right.\) (root), \(h_{2}\) (root))
        solution \(\leftarrow\) null
        while solution \(=\) null and Thresh \(<\infty\) do
            solution, Thresh \(=\) Lazy-DFS(root, Thresh)
        return solution
    Lazy-DFS( \(n\), Thresh) \{
        Compute \(h_{1}\) and update statistics
        if \(g(n)+h_{1}(n)>\) Thresh then
            return null, \(g(n)+h_{1}(n)\)
        if goal-test( \(n\) ) then
            return \(n\), Thresh
        if opt-cond then
            Compute \(h_{2}\) and update statistics
            if \(g(n)+h_{2}(n)>\) Thresh then
            return null, \(g(n)+h_{2}(n)\)
        next-Thresh \(\leftarrow \infty\)
        for \(n^{\prime}\) in successors( \(n\) ) do
            solution, temp-Thresh \(\leftarrow\) Lazy-DFS( \(n^{\prime}\), Thresh)
            if solution \(\neq\) null then
                return solution, temp-Thresh
            else
                next-Thresh \(\leftarrow \min (\) temp-Thresh, next-Thresh)
        return null, next-Thresh
```


Fig. 1. Example of HBP.
becomes less likely in later iterations. Our empirical evaluation (Section 6.2.4 in particular), where Lazy IDA* outperforms regular $I D A^{*}$, corroborates this. Furthermore, experiments on various domains where a random heuristic was selected (out of several heuristics) showed that such cases are very rare [10].

3. Enhancements to Lazy A^{*} and Lazy ID A^{*}

Having described the basic lazy algorithms ($L A^{*}$ and $L I D A^{*}$), we now describe two enhancements of these algorithms. These enhancements are effective especially if t_{1} and t_{0} are not negligible.

3.1. Heuristic bypassing

Heuristic bypassing (HBP) is a technique that allows us to compute the maximum, $\max \left(h_{1}(n), h_{2}(n)\right)$, without evaluating one of the two heuristics for some nodes. HBP is probably used by many implementers of $A_{M A X}^{*}$, although to the best of our knowledge, it never appeared in the literature. HBP works for a node n under the following two conditions: (1) the operator between n and its parent p is bidirectional, and (2) both heuristics are consistent.

Let C be the cost of the operator. Since the heuristic is consistent we know that $|h(p)-h(n)| \leq C$. Therefore, $h(p)$ provides the following upper- and lower-bounds on $h(n): h(p)-C \leq h(n) \leq h(p)+C$. We thus denote $\underline{h(n)}=h(p)-C$ and $\overline{h(n)}=h(p)+C$.

To exploit HBP in $A_{M A X}^{*}$, we simply skip the computation of $h_{1}(n)$ if $\overline{h_{1}(n)} \leq \underline{h_{2}(n)}$, or similarly, we skip the computation of h_{2} if $\overline{h_{2}(n)} \leq \underline{h_{1}(n)}$. For example, consider node a in Fig. 1, where all operators cost $1, h_{1}(a)=6$, and $h_{2}(a)=10$. Based on our bounds $\overline{h_{1}(b)} \leq 7$ and $h_{2}(b) \geq 9$. Thus, there is no need to compute $h_{1}(b)$ as $h_{2}(b)$ will surely be the maximum. We can propagate these bounds further to node $c . h_{2}(c)=8$ while $h_{1}(c) \leq 8$ and again there is no need to evaluate $h_{1}(c)$. Only in the last node d we get that $h_{2}(d)=8$ but since $h_{1}(d) \leq 9$ then $h_{1}(d)$ can potentially return the maximum and should thus be evaluated.

HBP can be applied in $L A^{*}$ in a number of ways. We describe the variant we used. $L A^{*}$ aims to avoid needless computations of h_{2}. Thus, when $\overline{h_{1}(n)}<\underline{h_{2}(n)}$, we add n to OPEN with $f(n)=g(n)+\underline{h_{2}(n)}$ and continue as in $L A^{*}$. In this case,
we saved t_{1} time by not computing h_{1}, used $\underline{h_{2}(n)}$ which is more informative than $h_{1}(n)$, while still having the option to compute h_{2} later, if needed. If, however, $\overline{h_{1}(n)} \geq h_{2}(n)$, then we compute $h_{1}(n)$ and continue regularly.

HBP can also be applied in LIDA*, where one only needs to know whether the f-value is below or above the threshold T. Again, assume that node n was generated, that p is the parent of n, and that the cost of the edge is C. If it happens to be the case that $f_{1}(p)+C \leq f_{2}(p)$, then we can deduce that $f_{1}(p)+C \leq T$. This is because p was expanded, and thus $f_{2}(p) \leq T$. Since the heuristics are consistent, we know that $f_{1}(n) \leq f_{1}(p)+C \leq T$. Thus, in such cases, one can skip the computation of $h_{1}(n)$ and go directly to h_{2}.

While HBP can save some computation of h_{1}, note that HBP incurs the time and memory overheads of computing and storing four bounds and should only be applied if there is enough memory and if t_{1} and especially t_{2} are very large. Finally, we remark that when the heuristic is inconsistent then a mechanism called bidirectional pathmax (BPMX) [10] can be used to propagate heuristic values from parents to children and vice versa. Using exhaustive evaluations of all heuristics, even if $h_{1}(n)$ already exceeded the threshold, can potentially help in propagating larger heuristic values to the neighborhood of n. Nevertheless, experiments showed that even in this context, lazy evaluation of heuristics is faster than exhaustive evaluation [10].

3.2. Open bypassing

Another optimization, which is relevant only for $L A^{*}$, is called Open bypassing (OB). Suppose that node n was just generated, and let $f_{\text {best }}$ denote the best f-value currently in Open. $L A^{*}$ evaluates $h_{1}(n)$ and then inserts n into Open. However, if $f_{1}(n)<f_{\text {best }}$, then n can immediately reach the top of Open and h_{2} will be computed. In such cases where $f_{1}(n)<f_{\text {best }}$ we can choose to compute $h_{2}(n)$ right away (after Line 13 in Algorithm 1), thus saving the overhead of inserting n into OPEN and popping it again at the next step $\left(=2 \times t_{0}\right) .^{3}$ For such nodes, $L A^{*}$ is identical to $A_{M A X}^{*}$, as both heuristics are computed before the node is added to Open. This enhancement is reminiscent of the immediate expand technique applied to a generated node $[20,21]$. The same technique can be applied when n again reaches the top of Open when evaluating $h_{2}(n)$; if $f_{2}(n)<f_{\text {best }}$, expand n right away and bypass open. When applying $O B, L A^{*}$ will incur the extra overhead of two OpEn cycles only for nodes n where both $f_{1}(n)>f_{\text {best }}$ and then later $f_{2}(n)>f_{\text {best }}$. As LIDA* does not keep an open list, this enhancement is only applicable to $L A^{*}$.

In our earlier paper [16] we showed that on some unit-edge cost domains such as the 15 -puzzle, if t_{1} and t_{2} are very similar then HBP and OB are particularly useful, and they save heuristic computation for many of the nodes. For example, the number of good nodes dropped from 38% to 11% when adding HBP on top of $L A^{*}$. This leaves little room for further improvement for $L A^{*}$. Thus, timing results did not show a significant difference between the different versions.

3.3. Extending lazy A^{*} and ID A* to multiple heuristics

Given a set $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of heuristics, it is straightforward to extend either Lazy A^{*} or Lazy ID A^{*} to handle multiple heuristics. Simply repeat the code snippet used for h_{2} in either algorithm, and apply it to each h_{i}, for all $3 \leq i \leq n$. This assumes that we have already ordered the heuristics in some reasonable way, although this ordering itself is far from trivial, as discussed in Section 7.

4. Rational lazy A^{*} and ID A^{*}

$L A^{*}$ provides a very strong guarantee, of expanding the same set of nodes as $A_{M A X}^{*}$. While LID A* can potentially result in extra iterations, it is also guaranteed to expand the same set of nodes as $I D A^{*}$ with the maximum of the two heuristics. However, often we would prefer to expand more nodes, if it means reducing search time [13]. This will be possible, for example, if we skip the computation of h_{2} for a given node n and expand it whenever we believe that expanding it and generating its children will consume less CPU time than calculating $h_{2}(n)$. We now present Rational Lazy $A^{*}\left(R L A^{*}\right)$ as well as Rational Lazy ID $A^{*}\left(R L I D A^{*}\right)$ - two algorithms which attempt to optimally manage this tradeoff, based on the principle of rational metareasoning.

We begin by reviewing rational metareasoning in the context of optimal search in Section 4.1. We then discuss how we can compute the regret of our possible meta-level decisions in Section 4.2. Using these regret values, we derive a rational meta-level policy in Section 4.3. Finally, in Section 5 we describe some techniques for implementing this policy in practice.

4.1. Rational metareasoning for optimal search

Previous work has presented a general theory of rational metareasoning in search [1]. In rational metareasoning, theoretically every computational action (heuristic function evaluation, node expansion, open list operation) should be treated

[^2]as an action in a sequential decision-making meta-level problem: actions should be chosen so as to achieve the greatest expected utility (hence the term "rational"). For algorithms guaranteed to deliver an optimal solution, maximizing expected utility translates into minimizing the expected search time. However, the appropriate general metareasoning problem is extremely hard to parametrize precisely, and when fully parametrized, results in an intractable metareasoning problem. Therefore, typically simplifying assumptions of two types are made in order to allow for a practical approximation to rational metareasoning: myopic assumptions and independence assumptions [1].

In this paper we focus on just one decision type, made in the context of $L A^{*}$ and $L I D A^{*}$ - that of deciding whether to evaluate or to bypass the computation of h_{2} for some node n. We have two options: (1) Evaluate the second heuristic $h_{2}(n)$, and proceed using the value $f_{\max }(n)$, or (2) bypass the computation of $h_{2}(n)$ and use $f_{1}(n)$, thereby saving time by not computing h_{2}, at the risk of additional expansions and evaluations of h_{1}.

In the context of $L A^{*}$, we must make this decision when n first emerges from Open (Line 7 in Algorithm 1). This is done by the optional condition opt-cond. If we choose to bypass the computation of $h_{2}(n)$ (opt-cond=FALSE), n is expanded right away. Otherwise (opt-cond $=$ TRUE) $h_{2}(n)$ is computed, and n is enqueued back in OPEN with $f_{\max }(n)$.

In the context of LIDA*, we must make this decision when we evaluate a node n and $f_{1}(n)$ was within the current $I D A^{*}$ threshold T (Line 13 in Algorithm 2). If we choose to bypass the computation of $h_{2}(n)$ (opt-cond=FALSE), n is expanded right away. Otherwise (opt-cond=TRUE), $h_{2}(n)$ is evaluated and ID A^{*} proceeds with $f_{\max }(n)$, that is, the search backtracks if $f_{\max }(n)>T$.

We would like the algorithm to make the decision on whether to evaluate h_{2} rationally. Therefore, we define a criterion based on the regret for bypassing $h_{2}(n)$ in this context. We define regret here as the value lost (in terms of expected increased run time) due to bypassing the computation of $h_{2}(n)$, i.e., how much runtime is increased due to bypassing the computation. We wish to compute $h_{2}(n)$ only if this regret is positive. Next, we estimate the regret for each of these possible decisions.

4.2. Computing the regret

Let us now consider our two possible decisions (compute h_{2} or bypass h_{2}). Suppose that we choose to compute $h_{2}-$ this results in one of the following outcomes:
h_{2} helpful: That is, the computation of $h_{2}(n)$ will prevent the expansion of n. For $L A^{*}$, this means that n is re-inserted into OPEN, and the goal is found without ever expanding n, which is only possible if $f_{\max }(n) \geq C^{*}$. For LID A^{*}, since we already know that $g(n)+h_{1}(n) \leq T$, "helpful" means $g(n)+h_{2}(n)>T$, and therefore n is not expanded in the current $I D A^{*}$ iteration.
h_{2} not helpful: n is still expanded despite the computation of $h_{2}(n)$. For $L A^{*}$, this means either now or eventually, while for $L I D A^{*}$ this means n is expanded in the current iteration.

In estimating the gain due to the computation of h_{2}, we rely on the subtree independence assumption [1] - that a computation in one node contributes information only to itself or one of its ancestors, which is tantamount to assuming that the search space is a tree, and that there is no dependency between nodes at different branches of the tree. Thus, we assume that the information gathered by computing h_{2} for node n is used solely for pruning n.

Under these assumptions, computing h_{2} could be beneficial only in the first outcome, where the potential time savings due to computing h_{2} are due to pruning a search subtree, at the expense of time t_{2}. However, for a given node n, which outcome will take place after evaluating $h_{2}(n)$ is not known to the algorithm when it makes that decision, and thus it must decide whether to evaluate $h_{2}(n)$ according to what it believes to be the probability of each of the outcomes.

In order to estimate the regret, we make the following additional simplifying assumptions:
I The decision is made myopically: we work under the assumption that the algorithm continues to behave like Lazy A^{*} or Lazy $I D A^{*}$ starting with the children of n, and will never bypass another h_{2} computation after the current decision is made (i.e., opt-cond=TRUE for all future decisions).
II h_{2} is consistent. Thus, if evaluating h_{2} is helpful on n, it is also helpful on any successor of n, due to the fact that f (specifically, f_{2}) increases monotonically for consistent heuristics.
III As a first approximation (relaxed later on), we also assume that all successors of n would be expanded if we used only h_{1} for them.

Note that these metareasoning assumptions are made in order to derive decisions, and as is common in research on metareasoning, the assumptions do not actually hold in practice [1]. Nevertheless, if the violation of the assumptions is not "too severe", the resulting algorithms still show significant improvements over their non-rational counterparts. Without such assumptions the model becomes far too complicated and one cannot move ahead at all. Nevertheless, the assumptions make sense: if our rational algorithms ($R L A^{*}$ and $R L I D A^{*}$) are better than their lazy (non-rational) counterparts ($L A^{*}$ and $L I D A^{*}$, respectively), the first assumption results in an upper bound on the regret, because regret considers future runtime, and the rational algorithm should be faster than its non-rational version. Unfortunately, we can not provide such a statement

Table 2
Regret in rational lazy A^{*}.

	Compute h_{2}	Bypass h_{2}
h_{2} helpful	0	$t_{e}+(b(n)-1) t_{d}$
h_{2} not helpful	t_{d}	0

regarding the two other assumptions, and in fact Assumption III is clearly off the mark in certain domains and we attempt to relax it later on.

In order to derive a rational policy, we begin by analyzing our two possible decisions: to compute h_{2} or to bypass h_{2}, under the two (unknown) possible future outcomes: h_{2} is helpful or not. Table 2 summarizes the regret of each possible decision, for each possible future outcome; each column in the table represents a decision, while each row represents a future outcome.

In the table, t_{d} is the time to compute h_{2} and re-insert n into Open for $R L A^{*}$, thus delaying the expansion of n. Note that if we use the Open bypassing optimization described in Section 3.2, t_{d} could be lower. For the sake of simplicity we assume this does not happen, although our analysis could be easily extended if the fraction of nodes for which this optimization applies is known (or estimated). t_{e} is the time to expand n, and evaluate h_{1} on each of its successors (as well as the time to remove n from Open and insert the successors into the open list for $\left.R L A^{*}\right) . b(n)$ denotes the "local branching factor", i.e., the number of successors of n, and t_{c} the time to generate the children of n (i.e., to have a copy of the states representing the children at hand). We thus have:

$$
\begin{align*}
& t_{d}=t_{2}+t_{0} \\
& t_{e}=t_{o}+t_{c}+b(n) t_{1}+b(n) t_{o} \tag{1}
\end{align*}
$$

Computing h_{2} needlessly wastes time t_{d}. Bypassing h_{2} computation when h_{2} would have been helpful means generating all successors of n, and computing h_{2} for them (assumption I). From assumption III, h_{1} is not going to be enough to prune any of these successors, but because h_{2} is consistent (assumption II) h_{2} will be helpful on the successors and prune them. Therefore, we have expanded one "extra" level of the search tree, and computed h_{1} and h_{2} on $b(n)$ successors, instead of computing h_{2} for n only. This wastes $t_{e}+b(n) t_{d}$ time, but because computing h_{2} would have cost t_{d} we need to subtract t_{d} and thus the regret is $t_{e}+(b(n)-1) t_{d}$. Using Table 2 , we can now derive a rational policy for deciding whether to compute or bypass h_{2}. Finally, for simplicity, we will assume $t_{0}=0$ for RLIDA*.

4.3. Deriving a rational policy

Now that we have the regret of each possible action under each possible future outcome, we can derive a rational policy, which will tell us which decision we should make. Let us denote the probability that h_{2} is helpful by $p_{h_{2}} .{ }^{4}$ The expected regret of computing h_{2} is thus $\left(1-p_{h_{2}}\right) t_{d}$. On the other hand, the expected regret of bypassing h_{2} is $p_{h_{2}}\left(t_{e}+(b(n)-1) t_{d}\right)$. As we wish to minimize the expected regret, we should thus evaluate h_{2} (i.e., opt-cond $=$ TRUE) just when:

$$
\begin{equation*}
\left(1-p_{h_{2}}\right) t_{d}<p_{h_{2}}\left(t_{e}+(b(n)-1) t_{d}\right) \tag{2}
\end{equation*}
$$

or equivalently when:

$$
\begin{equation*}
\left(1-b(n) p_{h_{2}}\right) t_{d}<p_{h_{2}} t_{e} \tag{3}
\end{equation*}
$$

If $b(n) p_{h_{2}} \geq 1$, then the expected regret is minimized by always evaluating h_{2}, regardless of the values of t_{d} and t_{e}. In these cases, the rational algorithms cannot be expected to do better than their lazy counterparts. For example, in the 15 -puzzle and its variants, the effective branching factor is ≈ 2. Therefore, if h_{2} is expected to be helpful for more than half of the nodes n on which the search algorithm evaluates $h_{2}(n)$, then one should simply use LA* or LID A^{*}.

For $p_{h_{2}} b(n)<1$, the decision of whether to evaluate h_{2} (i.e., opt-cond) depends on the values of t_{d} and t_{e} :

$$
\begin{equation*}
\text { evaluate } h_{2} \text { if } t_{d}<\frac{p_{h_{2}}}{1-p_{h_{2}} b(n)} t_{e} \tag{4}
\end{equation*}
$$

By substituting (1) into (4) we obtain the following opt-cond: evaluate $h_{2}(n)$ if:

$$
\begin{equation*}
t_{2}+t_{0}<\frac{p_{h_{2}}}{1-p_{h_{2}} b(n)}\left(t_{c}+b(n) t_{1}+(b(n)+1) t_{0}\right) \tag{5}
\end{equation*}
$$

The factor $\frac{p_{h_{2}}}{1-p_{h_{2}} b(n)}$ depends on the potentially unknown probability $p_{h_{2}}$, making it difficult to reach the optimum decision. However, if our goal is just to do better than $L A^{*}$ or $L I D A^{*}$, then it is safe to replace $p_{h_{2}}$ by an upper bound on $p_{h_{2}}$. In Section 5, we describe practical methods for estimating $p_{h_{2}}$. However, we first describe a variant of our decision rule, which relaxes our third assumption.

[^3]
4.4. Relaxing Assumption III

Our third assumption, that all successors of n would not be pruned solely by h_{1}, is obviously frequently violated, especially in the context of $I D A^{*}$. A relaxation we use here is that there is some probability $p_{h_{1}}(n)$ that such pruning occurs, i.e., $p_{h_{1}}(n)$ is the probability that h_{1} will prune each of n 's successors, thereby also making the simplifying assumption that these probabilities are i.i.d.

Under this relaxed assumption, the regret values are the same as in Table 2, except for that of bypassing h_{2} when it is helpful. In this case instead of "wasting" $b(n)$ calculations of h_{2} in each successor of n, we only waste it with a probability of $1-p_{h_{1}}(n)$. Thus, the regret accounts for expanding the node, computing h_{1} on all $b(n)$ children and then h_{2} on the $b(n)\left(1-p_{h_{1}}(n)\right)$ children which were not pruned by h_{1}, less the time spent computing h_{2} on the parent node - yielding a regret of $t_{e}+(b(n)-1)\left(1-p_{h_{1}}(n)\right) t_{d}$. Note that if $p_{h_{1}}(n)=0$, i.e., calculation of h_{1} in n 's successors is never helpful, we get the same regret as in Table 2. Finally, we remark that using this more fine grained equation requires estimating both $p_{h_{2}}$ and $p_{h_{1}}$. The next section describes several techniques for estimating $p_{h_{2}}$, and one technique which can also estimate $p_{h_{1}}$.

5. Using the rational policy in practice

Despite the simplicity of equation (5), it is still not clear how to use it in practice. This is because all of the quantities $b(n), t_{1}, t_{2}, t_{c}, t_{o}$ and especially $p_{h_{1}}(n)$ and $p_{h_{2}}(n)$ may actually be unknown. Furthermore, these quantities might change between different nodes, or as search progresses. Estimating the times $t_{1}, t_{2}, t_{c}, t_{0}$ is usually easy, as we can measure these during search and take the average measurement as the estimate. The number of successors, $b(n)$, is also often readily available to the search algorithm. However, we must still also estimate $p_{h_{2}}$ and $p_{h_{1}}$.

Note that RLA* and RLIDA* are meant to improve upon their non-rational counterparts, so we would like to be highly confident that we will not be worse than $L A^{*}$ and $L I D A^{*}$, respectively. Since $L A^{*}$ and $L I D A^{*}$ always choose to compute h_{2}, we can guarantee being no worse than them by always computing h_{2}. Thus, we should only decide to skip h_{2} computation when we are highly confident it is the right decision. Using an upper bound on $p_{h_{2}}$ would mean we err on the side of caution, and might compute h_{2} in some cases where the right decision might be to skip h_{2}. However, this achieves our purpose of not doing any worse than $L A^{*}$ and $L I D A^{*}$ with high probability.

One possible approach is to use concentration measures to derive such a probabilistic upper bound on $p_{h_{2}}$ [17,22]. However, in practice this bound is too loose, and our decision rule almost always chooses to compute h_{2}. In the remainder of this section, we describe other approaches for estimating $p_{h_{2}}$, which perform better in practice.

5.1. Domain-specific parameter settings

If we expect to only solve problems from one specific domain, we can treat $p_{h_{2}}$ and $p_{h_{1}}$ as setting-specific constants (that is, hyper-parameters), and tune them on a given set of benchmarks. Plugging those into the very crude model above is sufficient to achieve improved performance in some cases, as shown in our experimental evaluation in Section 6. Furthermore, if we know something about the times t_{1}, t_{2}, and t_{0}, we can simplify the decision rule in Equation (5).

For example, if we are using $R L A^{*}$ in domains where evaluating h_{1} is cheap, (e.g., the Manhattan distance heuristic), t_{0} is the most significant part of t_{e}. OPEN in A^{*} is frequently implemented as a priority queue, and thus we have, approximately, $t_{0}=\tau \log N_{o}$ for some constant τ, where the size of OPEN is N_{o}. For such domains rule (5) can be approximated as:

$$
\begin{equation*}
\text { evaluate } h_{2} \text { if } t_{2}<\frac{\tau p_{h_{2}}}{1-p_{h_{2}} b(n)}(b(n)+1) \log N_{o} \tag{6}
\end{equation*}
$$

Rule (6) recommends to evaluate h_{2} mostly at late stages of the search, when the open list is large, and in nodes with a higher branching factor.

In other domains, such as PDDL planning, both t_{1} and t_{2} are significantly greater than both t_{0} and t_{c}, and terms not involving t_{1} or t_{2} can be dropped from (5), resulting in:

$$
\begin{equation*}
\text { evaluate } h_{2} \text { if } \frac{t_{2}}{t_{1}}<\frac{p_{h_{2}} b(n)}{1-p_{h_{2}} b(n)} \tag{7}
\end{equation*}
$$

Note that the right hand side of (7) grows with $b(n)$, and thus it is beneficial to evaluate h_{2} only for nodes with a sufficiently large branching factor. Also recall that if $p_{h_{2}} b(n) \geq 1$, then the expected regret is minimized by always evaluating h_{2} (as mentioned in Section 4.3), which is consistent with this conclusion.

5.2. Empirical frequencies

The above approach relies on a set of benchmarks on which we can tune $p_{h_{2}}$ and $p_{h_{1}}$. However, such a set of benchmarks is not always available. Furthermore, often search problems are very different from each other, and even problem instances in the same domain are of varying size. Thus getting a single set of values for $p_{h_{2}}$ and $p_{h_{1}}$ which works well across many problems is difficult. Instead, we would like to adaptively estimate these parameters during search.

The first adaptive method we present focuses on estimating $p_{h_{2}}$ from empirical frequencies (it is safe to assume $p_{h_{1}}=0$, as this will also result in an upper bound on regret). One important distinction between RLA* and RLIDA* is the immediacy of the feedback about whether h_{2} was helpful. RLIDA* can tell whether h_{2} was helpful immediately after evaluating it h_{2} is helpful iff $g(n)+h_{2}(n)>T$, thereby causing a cutoff. Thus, we simply estimate $p_{h_{2}}$ by the frequency of observed helpful evaluations of h_{2} so far.

For $R L A^{*}$, things are a bit more complicated, as we do not have immediate feedback about whether h_{2} was helpful. Once a node for which we computed h_{2} is expanded, we know that h_{2} was not helpful on that node, which is why in the pseudo-code for $R L A^{*}$, we call update statistics whenever a node is removed from Open (Line 4 in Algorithm 1). However, we can only be certain that h_{2} was helpful after search terminates.

Nevertheless, we can still estimate $p_{h_{2}}$. First note that if n is a node at which h_{2} was helpful, then we computed h_{2} for n, but did not expand n. After the search completes, this is the exact definition of h_{2} being helpful, but during the search, this is a necessary condition for n to be potentially helpful. Let us denote by A the number of nodes for which we computed h_{2} that were not yet expanded, and are thus still in Open. Let us denote by B the number of nodes for which we computed h_{2}. Then $\frac{A}{B}$ can be used as an estimate of $p_{h_{2}}$. In fact, this method will tend to overestimate $p_{h_{2}}$, which is consistent with our goal of trying to use an upper bound to ensure we are no worse than $L A^{*}$ or $L I D A^{*}$.

One minor issue is that using the empirical frequency is not likely to be a stable estimate at the beginning of the search, such as after seeing only 1 example. If we use this estimate directly, then we could get an estimate of $p_{h_{2}}=0$, which means we would never evaluate h_{2} again, and never learn that it might be helpful. To overcome this problem, we "imagine" we have observed k examples, which give us an estimate of $p_{h_{2}}=p_{\text {init }}$, and use a weighted average between these k examples, and the observed examples - that is, we estimate $p_{h_{2}}$ by $\left(\frac{A}{B} \cdot B+p_{\text {init }} \cdot k\right) /(B+k)$. In our empirical evaluation, we used $k=1000$ and $p_{\text {init }}=0.5$.

5.3. Type systems

The approaches we used above only estimate $p_{h_{2}}$, the probability that h_{2} is helpful. The final approach we present can estimate both $p_{h_{2}}$ and $p_{h_{1}}$, and is based on the use of type systems [23]. A type system partitions the state-space nodes into "similar valued" classes of nodes, called types, according to some features of each node. Thus, each type system is defined by a set of features. Although type systems were originally used to predict the number of nodes generated by search algorithms, we use them in order to estimate $p_{h_{2}}$ and $p_{h_{1}}$. In other words, we use a set of features to define a type system, and use that type system to compute conditional probabilities corresponding to $p_{h_{2}}$ and $p_{h_{1}}$, as described below.

5.3.1. Estimating $p_{h_{2}}$

In order to estimate $p_{h_{2}}$ we learn a distribution of h_{2} values for each type. In every call to update statistics in Algorithms 1 and 2, we compute the type of the current node, and update the distribution of h_{2} values for nodes of that type. We consider two type systems here:

Type System 1: (TS1) TS1 consists of one feature only, the value of h_{1}.
Type System 2: (TS2) TS2 includes not just the value of h_{1}, but also the value of h_{2} in the closest ancestor for which h_{2} was computed, and the distance to that ancestor.

In other words, TS1 simply learns the conditional distribution table of h_{2} as a function of h_{1}. However, TS1 ignores important information, by assuming that the distribution of h_{2} given h_{1} is constant in the entire search tree, which is unlikely to be true. TS2 attempts to remedy that by also looking at the "closest" source of information regarding h_{2}.

Both of the above type systems give us a distribution on the value of $h_{2}(n)$, conditioned on the values of the features of the type system. This distribution is learned online, and is updated as the search progresses. In RLIDA*, this distribution can be used with the threshold T to directly estimate $p_{h_{2}}$, the probability that h_{2} will be helpful for the current node. Since we want $g(n)+h_{2}(n)>T$, we simply want to estimate the probability that $h_{2}(n)>T-g(n)$, which is given by:

$$
\begin{equation*}
p_{h_{2}}(n)=\sum_{i=T-g(n)+1}^{\infty} \operatorname{Pr}\left(h_{2}(n)=i\right) \tag{8}
\end{equation*}
$$

where $\operatorname{Pr}\left(h_{2}(n)=i\right)$ is obtained from our type system.
Note that the threshold T plays a very important role here - it tells us exactly how high the value of $h_{2}(n)$ needs to be in order for h_{2} to be helpful. However, for $R L A^{*}$, the threshold is not available. In order to apply this estimation method with $R L A^{*}$, we must use some other quantity instead of T. We use the highest f-value expanded so far during search, which, like the current threshold T, serves as a lower-bound on the cost of an optimal solution. If $f_{2}(n)$ is less than the highest f-value expanded so far, then h_{2} is definitely not helpful. On the other hand, it could be the case that $f_{2}(n)$ is greater than the highest f-value expanded so far, and h_{2} still turns out not to be helpful. This is a conservative estimate, which is again consistent with trying to guarantee we do not do worse than $L A^{*}$ or LIDA*. Nevertheless, the empirical results show that is useful.

5.3.2. Estimating $p_{h_{1}}$

We have come up with only one viable technique to estimate $p_{h_{1}}$. This technique is also based on a type system, which we call Type System 3 (TS3). Recall that $p_{h_{1}}(n)$ is the probability that h_{1} will be helpful for n 's successors. Thus, TS3 keeps a distribution of the h_{1} values of a node's successors, as a function of the node's h_{1} value and distance to the last h_{2} computation.

In order to use TS3, whenever we compute h_{1} for some node n with parent p, we update the distribution of h_{1} values of p 's successors. We estimate the probability that h_{1} is helpful on the successors of n, using an equation similar to Equation (8), except that the g value of the successors is $g(n)+1^{5}$:

$$
\begin{equation*}
p_{h_{1}}(n)=\sum_{i=T-g(n)}^{\infty} \operatorname{Pr}\left(h_{1}\left(\text { succ }_{n}\right)=i\right) \tag{9}
\end{equation*}
$$

Where $\operatorname{Pr}\left(h_{1}\left(\operatorname{succ}_{n}\right)=i\right)$ is the probability that the successors of n will have an h_{1} value of i, which is obtained from the statistics table we keep. We remark that we tried several other type systems for estimating $p_{h_{1}}$ that yielded similar results.

Finally, note that TS3 is only used to estimate $p_{h_{1}}$. In order to use $R L A^{*}$ or $R L I D A^{*}$, we must also estimate $p_{h_{2}}$. Thus, we combine TS3 with either TS1 or TS2, and refer to these combinations as TS1 + TS3 or TS2 + TS3, respectively. For example, in TS1+TS3, TS1 is used to estimate $p_{h_{2}}$ and TS3 is used to estimate $p_{h_{1}}$.

6. Empirical evaluation

We have described two new algorithms, $R L A^{*}$ and $R L I D A^{*}$, which are based on rational metareasoning. These algorithms have a decision rule based on some parameters, most importantly $p_{h_{2}}$ (the probability that h_{2} is helpful) and $p_{h_{1}}$ (the probability that h_{1} is helpful). We have also described different ways of estimating these parameters in practice:

- Domain-specific parameter estimation (Section 5.1)
- Estimation from empirical frequencies (Section 5.2)
- Estimation using type systems (Section 5.3). We presented three different type systems (TS1, TS2, and TS3), and four different ways to combine them: TS1, TS2, TS1+TS3, and TS2+TS3.

We now examine these algorithms and their different parameter estimation methods empirically. As these two algorithms are very different from each other (for example, in their memory requirements), we divide our empirical evaluation into two parts: one comparing $R L A^{*}$ to A^{*} and its variants, and the other comparing $R L I D A^{*}$ to $I D A^{*}$ and its variants. We evaluate all of our algorithms on a large set of pddL planning domains from all previous International Planning Competitions (IPC), as well as on some combinatorial puzzles.

6.1. Evaluation of RLA*

We begin with an empirical evaluation of $R L A^{*}$, which we compare to A^{*}-based search algorithms. Results are for a set of planning domains, as well as for two variants of the 15-puzzle.

6.1.1. Planning domains

We implemented $L A^{*}$ and $R L A^{*}$ on top of the Fast Downward planning system [24], and used two state-of-the-art heuristics: the admissible landmarks heuristic $h_{L A}$ (as h_{1}) [25], and the landmark cut heuristic $h_{L M C U T}$ [26] (as h_{2}). On average, $h_{L M C U T}$ computation is about 8 times more expensive than that of $h_{L A}$. We did not implement HBP in the planning domains as the heuristics we use are not consistent and in general the operators are not invertible. We also did not implement OB, as the cost of OPEN operations in planning is negligible compared to the cost of heuristic evaluations, especially with the heuristics we used.

We experimented with 57 planning domains: the optimal versions of all IPC planning domains in the Fast Downward repository, as well some of those from IPC 2014. We had to exclude the CITYCAR domain and most (17 out of 20) instances of the CaveDiving domain, because they included conditional effects, and the heuristics we used did not support conditional effects in the version of Fast Downward we used. ${ }^{6}$ We compare the performance of A^{*} using each of the heuristics individually (where lm denotes $h_{L A}$ and lmcut denotes $h_{L M C U T}$), as well as with their maximum (denoted by max). We also evaluate selective max (selmax) [13], $L A^{*}$ (denoted lazy), and $R L A^{*}$ using two different methods of estimating $p_{h_{2}}$: empirical frequencies (emp), and the TS1 type system (T1).

We did not implement the TS2 and TS3 type systems, as they require the value of h_{2} in the closest ancestor for which h_{2} was computed, and the distance to it. There are two ways to obtain this information for each node: either follow the

[^4]Table 3
Results for A^{*} algorithms in planning domains.

Algorithm	Coverage	Avg search time score	Expansions	Total memory (KB)
lm	797	32.98	$12,057.25$	$106,135,188$
lmcut	826	33.87	$1,978.56$	$\mathbf{1 7 , 6 2 6 , 5 1 2}$
max	859	34.18	$\mathbf{1 , 5 5 1 . 7 1}$	$29,415,652$
selmax	873	34.61	$3,581.64$	$57,311,016$
lazy	$\mathbf{8 7 5}$	35.55	$1,564.77$	$30,464,880$
emp	874	$\mathbf{3 5 . 7 4}$	$1,640.27$	$38,113,656$
T1	372	35.35	$2,028.68$	$50,850,408$

parent pointers until you find a node for which h_{2} was computed (requiring time overhead), or store this extra information for each node (requiring memory overhead). Using the first approach would hinder our objective of speeding up the search, while using the second approach would increase the memory overhead. We also did not use domain-specific parameter settings, because we believe the other approaches are better equipped to handle the diversity of IPC domains we used. The search was limited to 3GB memory, and 30 minutes of CPU time on a single core of an Intel E5-2680 CPU with 64-bit Linux OS.

Table 3 summarizes the results of our empirical evaluation across all domains. Detailed tables including the results for each domain are relegated to the appendix, but references to these tables are provided here.

We will first examine the coverage - the number of problems solved by each search algorithm in 30 minutes (Table A. 14 provides detailed, per-domain, coverage results). First, note that all of the intelligent combination methods (selective max, $L A^{*}$, and the 2 variants of $R L A^{*}$) solve over 870 problems, while each heuristic alone solves less than 830 , and $A_{M A X}^{*}$ solves less than 860 . This indicates that selectively choosing which heuristic to compute has demonstrable benefits. $L A^{*}$ solves one more problem than $R L A^{*}$ with empirical frequencies, which is due to the extra overhead required by $R L A^{*}$.

Furthermore, looking at search time, we see the benefits of using $R L A^{*}$. We compare time score (Table A. 15 provides per-domain results), which is computed from the time it took an algorithm to solve a problem. If the search time is less than 1 second, then the score is the maximum possible score -100 . The score then decreases logarithmically, until it reaches 0 at 1800 seconds. Note that the time score is a standard measure computed by Downward-lab [27], Fast Downward's experiment running tool. Thus, the time score rewards fast solutions, and does not distinguish between solving a problem in 1800 seconds and a timeout. As the results show, $R L A^{*}$ with empirical frequencies achieves a better (higher) time score than all other algorithms.

Fig. 2 shows the anytime performance of the different algorithms - the number of instances solved under different time limits. Note that both axes are in logscale. As the figure shows, the advantage of the $R L A^{*}$ variants is even more evident for shorter timeouts, and $L A^{*}$ only becomes the better algorithm for longer planning times (at 1773 seconds, to be exact).

To further understand the differences between the search algorithms, we compare the geometric mean of the number of expanded nodes in each search algorithm (Table A. 16 shows per-domain results). As expected, $A_{M A X}^{*}$ has the fewest expanded nodes, and $L A^{*}$ is very close (the differences are due to tie-breaking). The two variants of $R L A^{*}$ have more expanded nodes, while selective max expands more nodes than all of the $R L A^{*}$ variants. This shows that these algorithms do behave differently.

We also compare peak memory usage for these algorithms (Table A. 17 shows per-domain results). The results show that using only $h_{L M C U T}$ is the most memory efficient. This is due to the extra memory overhead involved with using the $h_{L A}$ heuristic, which is necessary to keep track of the achieved landmarks at each state. However, when looking at the different ways of combining both of these heuristics, the results are very similar to those in Table A. $16-A_{M A X}^{*}$ uses the least memory, $L A^{*}$ is very close, the variants of $R L A^{*}$ use more memory, and selective max uses almost twice the memory as $A_{\text {MAX }}^{*}$.

Fig. 3 shows the speedup vs. memory overhead for $R L A^{*}$ vs. $L A^{*}$. Each point in the plots represents an instance, solved by $R L A^{*}$ and $L A^{*}$. The x-coordinate of the instance is the relative speedup of $R L A^{*}$ vs. $L A^{*}$, and the y-coordinate is the ratio of expanded states of $R L A^{*}$ vs. $L A^{*}$, i.e., the extra memory. Points to the right of the dotted line at $x=1$ are the instances where $R L A^{*}$ is faster. Fig. 3a compares $R L A^{*}(\mathrm{emp})$ to $L A^{*}$, while Fig. 3b compares $R L A^{*}(\mathrm{~T} 1)$ to $L A^{*}$. As these plots show, RLA* is typically faster (more points to the right of the dotted line), but comes at the price of an increased number of expanded nodes (except for 4 instances in Fig. 3b, which are due to tie-breaking). The plots also show that $R L A^{*}(\mathrm{~T} 1)$ differs more from $L A^{*}$ than $R L A^{*}(\mathrm{emp})$. Finally, we can see that an increase in speedup does not necessarily correlate to an increase in the number of expanded nodes.

To complete the picture, we look at the fraction of nodes for which h_{2} ($h_{L M C U T}$ in this case) was computed for $L A^{*}$ and $R L A^{*}$ (per-domain results are in Table A.18). We do not include selective max here, as selective max can choose not to compute h_{1} for some nodes, while the algorithms we compare all do. Unsurprisingly, $L A^{*}$ has the highest numbers here. Finally, note the correlation between a high proportion of h_{2} computations with decreasing number of expanded nodes.

Another important conclusion of this empirical evaluation is that $R L A^{*}$ with empirical frequency estimation beats using type system TS1. Recall that TS1 relies on a threshold in the decision rule, which is only available in RLIDA*. In RLA* we use the highest f-value expanded so far instead of the threshold, while empirical frequency estimation does not rely on a

Fig. 2. Anytime plot for A^{*} algorithms in planning domains (both axes are in logscale).
threshold. One possible explanation for these results is that our estimate of the threshold is too conservative. In future work we will examine a better proxy for the threshold.

6.1.2. Weighted 15 puzzle

We now provide an empirical evaluation on the weighted 15-puzzle [4], a variant of the 15 -puzzle where the cost of moving each tile is equal to the number on the tile. For consistency of comparison, we used a subset of 36 problem instances out of the set of 100 instances by [8], keeping the problems which could be solved with 2Gb of RAM and 15 minutes timeout using the Weighted Manhattan Distance heuristic (WMD) for h_{1}. As the expensive and informative heuristic h_{2} we use a heuristic based on lookaheads [20]. Given a bound d we applied a bounded depth-first search from a node n and backtracked when we reached leaf nodes l for which $g(l)+W M D(l)>g(n)+W M D(n)+d . f$-values from leaves were propagated to n.

Table 4 presents the results averaged on all instances solved. The runtimes are reported relative to the time of A^{*} with WMD (with no lookahead), which generated $1,886,397$ nodes (not reported in the table). The first 3 columns of Table 4 show the results for A^{*} with the lookahead heuristic for different lookahead depths. The best time is achieved for lookahead 6 (0.588 compared to A^{*} with WMD). The fact that the time does not continue to decrease with deeper lookaheads is clearly due to the fact that although the resulting heuristic improves as a function of lookahead depth (expanding and generating fewer nodes), the increasing overhead of computing the heuristic eventually outweighs the savings achieved by fewer expansions.

The next 4 columns show the results for $L A^{*}$ with WMD as h_{1}, lookahead as h_{2}, for different lookahead depths. The Good1 column presents the number of nodes where LA* saved the computation of h_{2} while the h_{2} column presents the number of nodes where h_{2} was computed. Roughly 28% of nodes were Good1 and since t_{2} was the most dominant time cost, most of this saving is reflected in the timing results. The best results are achieved for lookahead 8, with a runtime of 0.527 compared to A^{*} with WMD.

The final columns show the results of $R L A^{*}$. We used domain-specific parameter estimation to set good values for $\tau, p_{h_{2}}, t_{2}$ for each lookahead depth.

The parameters were tuned manually on a small subset of problem instances. The Good2 column counts the number of times that $R L A^{*}$ decided to bypass the h_{2} computation. Observe that $R L A^{*}$ outperforms $L A^{*}$, which in turn outperforms A^{*}, for most lookahead depths. The lowest time with $R L A^{*}$ (0.371 of A^{*} with WMD) was obtained for lookahead 10 . That is achieved as the more expensive h_{2} heuristic is computed less often, reducing its effective computational overhead, with some adverse effect in the number of expanded nodes. Although $L A^{*}$ expanded fewer nodes, $R L A^{*}$ performed much fewer h_{2} computations, as can be seen in the table, resulting in decreased overall runtimes.

(b) T 1

Fig. 3. Speedup vs. memory overhead for $R L A^{*}$ vs. $L A^{*}$.

Table 4
Weighted 15 puzzle: comparison of $A_{\max }^{*}$, lazy A^{*}, and rational lazy A^{*}.

Lookahead	A^{*}		$\underline{L A^{*}}$				$R L A^{*}$ (using Eq. (6))				
	generated	time	generated	Good1	h_{2}	time	generated	Good1	Good2	h_{2}	time
2	1,206,535	0.707	1,206,535	391,313	815,213	0.820	1,309,574	475,389	394,863	439,314	0.842
4	1,066,851	0.634	1,066,851	333,047	733,794	0.667	1,169,020	411,234	377,019	380,760	0.650
6	889,847	0.588	889,847	257,506	632,332	0.533	944,750	299,470	239,320	405,951	0.464
8	740,464	0.648	740,464	196,952	543,502	0.527	793,126	233,370	218,273	341,476	0.377
10	611,975	0.843	611,975	145,638	466,327	0.671	889,220	308,426	445,846	134,943	0.371
12	454,130	0.927	454,130	95,068	359,053	0.769	807,846	277,778	428,686	101,378	0.429

Table 5
Summary of results for $I D A^{*}$ algorithms in planning domains.

Algorithm	Coverage	Avg search time score	Expansions	h_{2} ratio
lm	440	15.9	$10,614.63$	
lmcut	467	18.52	$1,574.53$	
max	497	19.24	$\mathbf{9 9 9 . 2 4}$	
selmax	461	17.05	$9,951.16$	
lazy	505	20.09	999.86	0.54
emp	501	19.92	$1,055.68$	0.46
T1	$\mathbf{5 0 8}$	$\mathbf{2 0 . 1 9}$	$1,09.96$	0.48

6.2. Evaluation of RLIDA*

We now turn to RLIDA*, which we compare to $I D A^{*}$ based search algorithms. We provide results for a set of planning domains, as well as for sliding tile puzzles (including the 15 -puzzle) and for a container relocation problem.

6.2.1. Planning domains

As in the evaluation for RLA*, we implemented LIDA* and RLIDA* on top of the Fast Downward planning system [24], and experimented with the admissible landmarks heuristic $h_{L A}$ (used as h_{1}) [25], and the landmark cut heuristic $h_{L M C U T}$ [26] (used as h_{2}). We also used the same set of domains.

We compare the performance of $I D A^{*}$ using each of the heuristics individually (where lm denotes $h_{L A}$ and lm cut denoted $h_{\text {LMCUT }}$), as well as with their maximum (denoted by max). We also evaluate selective max (selmax) [13], $L I D A^{*}$ (denoted lazy), and RLIDA* using the same methods of estimating $p_{h_{2}}$: empirical frequencies (emp), and the TS1 type system (T1). The search was limited to 3GB memory, and 30 minutes of CPU time on a single core of an Intel E5-2680 CPU with 64-bit Linux OS.

Table 5 provides a summary of the results, while per-domain results appear in the appendix, and are referenced here. We begin by looking at coverage - the number of planning problems solved by each algorithm in 30 minutes (per-domain results in Table A.19). These results show that RLIDA* using the TS1 type system solves more problems than any other search algorithm. Furthermore, $L I D A^{*}$ as well as RLIDA* using both parameter estimation methods solve more problems than any other approach. Note that selmax does extremely poorly here. As the decision rule that selmax uses was built for A^{*}, it is not surprising that it does not perform well in $I D A^{*}{ }^{7}$ Finally, it is worth mentioning that $I D A^{*}$ and its variants are ill suited for the IPC benchmark domains, solving around 500 problems compared to over 800 solved by A^{*} and its variants. This is due to the large number of paths which reach the same state, which make $I D A^{*}$ explore the same subtree repeatedly.

Next, we look at the time score for each search algorithm (per-domain results are available in Table A.20). Recall that the time score is computed from the time it took an algorithm to solve a problem. If the search time is less than 1 second, then the score is the maximum possible score -100 . The score then decreases logarithmically, until it reaches 0 at 1800 seconds. As the results show, RLA* with the TS1 type system achieves a better (higher) time score than all other algorithms.

Fig. 4 shows the anytime performance of the different algorithms - the number of instances solved under different time limits. Note that both axes are in logscale. As the figure shows, the advantage of the RLIDA* variants is even more evident for shorter timeouts.

Examining the geometric mean of the number of expanded nodes in each search algorithm (Table A. 21 provides perdomain results), we can see that, $I D A_{M A X}^{*}$ has the fewest expanded nodes, and $L I D A^{*}$ is very close. The two variants of RLIDA* have more expanded nodes.

Finally, we look at the fraction of nodes for which h_{2} ($h_{L M C U T}$ in this case) was computed for LIDA* and RLIDA* (Table A. 22 shows the per-domain results). Unsurprisingly, LID A* has the highest numbers here.

[^5]

Fig. 4. Anytime plot for $I D A^{*}$ algorithms in planning domains (both axes are in logscale).

Table 6
IDA* variants: results for 15 puzzle.

Algorithm	Time	Generated	h_{2} total	h_{2} helpful	PA
$I D A^{*}$ (MD)	58.84	268,163,969			
$I D A^{*}(\mathrm{LC})$	40.08	30,185,881			
LID A*	32.85	30,185,881	21,886,093	6,561,972	30\%
RLIDA* $\left(p_{h_{2}}=0.3\right)$	20.09	47,783,019	8,106,832	4,413,050	54\%
Clairvoyant	12.66	30,185,881	6,561,972	6,561,972	100\%
RLIDA* + TS1	33.90	49,314,132	14,265,984	9,315,480	65\%
RLIDA* + TS2	27.49	39,466,460	11,508,429	7,313,390	64\%
RLID A* $+\mathrm{TS} 1+\mathrm{TS} 3$	35.08	65,269,319	7,908,331	5,351,080	68\%
RLID A* + TS2+TS3	30.23	57,518,574	6,719,180	4,625,750	69\%

Note that, unlike with $R L A^{*}$, the more informative parameter estimation method - using the TS1 type system - does better than the others. This is likely because with $I D A^{*}$ we do have the exact threshold needed, and can exploit this information better.

6.2.2. Sliding-tile puzzles

We now examine the results on the 15 -puzzle. We used as test instances the 98 out of Korf's 100 instances [8] that were solved in less than 20 minutes with standard IDA* using the Manhattan Distance (MD) heuristic. As using the lookahead heuristic saves time only on OPEN list insertions and deletions, using it in IDA* won't reduce runtime at all (as there is no OPEN list and nodes are expanded in a DFS manner). Thus the h_{2} heuristic was the linear-conflict heuristic (LC) [28] which adds a value of 2 to MD for pairs of tiles that are in the same row (or the same column) as their respective goals but in a reversed order. One of these tiles will need to move away from the row (or column) to let the other pass.

Results for this problem set are shown in Table 6, listing average runtime in seconds, number of generated nodes, number of h_{2} evaluations, number of helpful h_{2} evaluations and the prediction accuracy (PA), which is the percentage of times calculating h_{2} was indeed helpful. For RLIDA* we found the domain-specific parameter setting of $p_{h_{2}}=0.3$ by manually testing different values for $p_{h_{2}}$ on a set of problems and choosing the best one. Indeed, RLID A^{*} ($p_{h_{2}}=0.3$) outperforms all other algorithms, an exception being the unrealizable "Clairvoyant" algorithm, which (using hindsight) evaluates h_{2} only if it turned out to be helpful (the results for this "algorithm" are obtained by subtracting the time spent on non-helpful h_{2} evaluations from the total time). The reason for presenting the clairvoyant algorithm is methodological: it is meant as a

Table 7
Weighted 15 puzzle.

Algorithm	Time	Generated	h_{2} total	h_{2} helpful
$I D A^{*}($ WMD $)$	184.46	$822,898,188$		
$I D A^{*}($ WLC $)$	155.35	$104,943,867$		
$I D A_{M A X}^{*}$	149.50	$104,943,867$		
PIDA *	112.74	$104,943,890$	$65,660,207$	$12,549,104$
RLIDA $^{*}\left(p_{h_{2}}=0.3\right)$	$\mathbf{6 3 . 0 8}$	$137,881,842$	$8,871,727$	
Clairvoyant	$\mathbf{4 0 . 3 6}$	$\mathbf{1 0 4 , 9 4 3 , 8 9 0}$	$\mathbf{1 2 , 5 4 9 , 1 8 8}$	$\mathbf{1 2 , 5 4 9 , 1 0 4}$

Table 8
Weighted 3 by 5 puzzle.

Algorithm	Time	Generated	h_{2} total	h_{2} helpful
$I D A^{*}($ WMD $)$	134.27	$518,625,911$		
$I D A^{*}($ WLC $)$	68.65	$53,073,488$		
$I D A_{M A X}^{*}$	71.28	$53,073,488$		
LIDA *	59.89	$53,073,499$	$36,000,253$	$12,104,449$
RLIDA $^{*}\left(p_{h_{2}}=0.3\right)$	$\mathbf{3 8 . 3 1}$	$77,199,730$	$\mathbf{8 , 2 1 8 , 4 9 0}$	
Clairvoyant	$\mathbf{2 7 . 9 9}$	$\mathbf{5 3 , 0 7 3 , 4 9 9}$	$\mathbf{8 , 5 6 4 , 0 4 9}$	

Table 9
Weighted 3 by 6 puzzle.

Algorithm	Time	Generated	h_{2} total	h_{2} helpful
$I D A^{*}($ WMD $)$	17.76	$66,655,434$		
$I D A^{*}($ WLC $)$	30.11	$17,098,738$		
$I D A_{M A X}^{*}$	31.08	$17,098,738$		
LIDA *	21.99	$17,098,746$	$10,308,664$	$1,473,548$
RLIDA $^{*}\left(p_{h_{2}}=0.3\right)$	$\mathbf{1 0 . 6 8}$	$21,053,303$	$1,007,129$	
Clairvoyant	$\mathbf{7 . 1 7}$	$\mathbf{1 7 , 0 9 8 , 7 4 6}$	$\mathbf{1 , 4 7 3 , 1 4 1}$	$\mathbf{1 , 4 7 3 , 5 4 8}$

yardstick for measuring performance of RLIDA* variants; once performance approaches that of an algorithm with perfect foreknowledge, there is presumably little room for further improvement.

Using type systems in RLIDA* increases the fraction of helpful evaluations of h_{2} (Table 6), but the overhead and the added number of generated nodes results in an overall worse runtime performance. The additional improvements are therefore contra-indicated for the sliding tile problem. The rule used by RLIDA* with $p_{h_{2}}=0.3$ was tantamount to having opt-cond being true only for nodes with $b(n)=4$, which is in essence a very simple type system based on the branching factor. A more complicated type system is not justified here.

We have also experimented with the weighted version of the 15 -puzzle, where the cost of moving each tile is equal to the number on the tile [4]. Table 7 shows similar results for 82 of the previous problem instances of the weighted 15 puzzle that were solved in 20 minutes by $I D A^{*}$ (the weighted 15 puzzle is harder). In this domain, Rational Lazy ID A^{*} also achieves a significant speedup of a factor of 2 and is much closer to Clairvoyant than to LIDA*. Attempts to improve upon this by adding a more complicated type system and relaxing Assumption III did not achieve any improvement, as shown in [29]. A complication in this variant compared to the unweighted version is that there are too many types, as the number of possible values of h_{1} and h_{2} is very large, but even limiting this number by binning did not achieve good results.

Finally, we ran the same algorithms on sliding tile puzzles with a different fraction of $b(n)=4$ nodes, by "flattening" the 15-puzzle into a 3 by 5 puzzle (a "14-puzzle"), and into a 3 by 6 puzzle (a "17-puzzle"). Results for these variants of the weighted 15-puzzle (Tables 8, 9) show similar improvements for RLIDA*.

6.2.3. Container relocation problem

The container relocation problem is an abstraction of a planning problem encountered in retrieving stacked containers for loading onto a ship in sea-ports [30]. We are given S stacks of containers, where each stack consists of up to T containers. The initial state has $N \leq S \times T$ containers, arbitrarily numbered from 1 to N. The rules of stacking and of moving containers are the same as for blocks in the blocks-world domain. The goal is to "retrieve" all containers in order of number, from 1 to N, i.e., to place them on a freight truck that takes the container away to be loaded onto a ship. The objective function to minimize is the number of container moves until all containers are gone. The complication comes from the fact that we can only "retrieve" a container if it is at the top of one of the stacks. Optimally solving this problem is NP-hard [30]. We use the version of the problem where each container ("block" in blocks-world terminology) is uniquely numbered, that a stack s that currently has T containers is "full" and no additional containers can be placed on s until some container is moved away from the top of s.

We used the $L B_{1}$ and $L B_{3}$ heuristics [30] as h_{1} and h_{2}, respectively. For the sake of completeness, we review these heuristics here: Every container numbered X which is above at least one container Y with a number smaller than X must

Table 10
Container relocation: 49 "small" instances.

Small instances					
Algorithm	Time	Generated	h_{2} total	h_{2} helpful	PA
$I D A^{*}$ (LB1)	336	853,094,579			
IDA* (LB3)	967	128,798,338			
LID A*	366	128,798,338	44,527,029	19,564,237	44\%
RLIDA* ($p_{h_{2}}=0.3$)	337	233,077,220	27,628,566	13,575,017	49\%
Clairvoyant	228	128,798,338	19,564,237	19,564,237	100\%
RLIDA* +TS 1	327	166,781,023	35,931,245	21,292,089	59\%
RLIDA* +TS 2	292	159,923,334	29,460,335	19,250,841	65\%
RLID A* $+\mathrm{TS} 1+\mathrm{TS} 3$	207	318,146,242	9,001,091	6,653,964	74\%
$R L I D A^{*}+\mathrm{TS} 2+\mathrm{TS} 3$	201	300,623,173	8,751,578	6,876,705	79\%
Enhanced clairvoyant	138	182,659,873	44,527,029	9,737,977	22\%

Table 11
Container relocation: all 63 instances.

All instances					
Algorithm	Time	Generated	h_{2} total	h_{2} helpful	PA
$I D A^{*}$ (LB1)	1641	3,811,296,602			
IDA* (LB3)	5761	715,385,239			
LIDA*	2770	1,050,197,101	262,718,267	108,780,900	41\%
RLIDA* $\left(p_{h_{2}}=0.3\right)$	2764	1,073,191,297	254,291,856	106,366,804	42\%
Clairvoyant	1656	1,050,197,101	108,780,900	108,780,900	100\%
RLID ${ }^{*}+\mathrm{TS} 1$	1924	1,502,283,957	138,031,927	87,720,923	64\%
RLIDA* +TS 2	1967	1,337,796,749	146,545,466	94,988,940	65\%
RLIDA* $+\mathrm{TS} 1+\mathrm{TS} 3$	1311	2,378,791,883	24,727,136	17,317,818	70\%
RLIDA* $+\mathrm{TS} 2+\mathrm{TS} 3$	1304	2,342,370,343	23,816,116	18,299,499	77\%
Enhanced clairvoyant	989	1,498,935,597	43,431,488	43,431,488	100\%

be moved from its stack in order to allow Y to be retrieved. The number of such containers in a state can be computed quickly, and forms an admissible heuristic called $L B_{1} . L B_{3}$ adds one relocation for each container that must be relocated a second time as any place to which it is moved will block some other container. Computing $L B_{3}$ requires much more computation time (at least quadratic in the number of containers) than $L B_{1}$ (roughly linear time), and additionally its runtime depends heavily on the state.

In the experiments, we used the hardest tests out of those that were solved in less than 20 minutes with the $L B_{1}$ heuristic, from the CVS test suite described in [31,32]. ${ }^{8}$ Results are shown in Table 10. In this domain Rational Lazy IDA* shows some performance improvement over Lazy IDA*, even when $p_{h_{2}}$ was assumed to be constant with $p_{h_{2}}=0.3$. Furthermore, as these results show, using type systems to estimate $p_{h_{2}}$ and $p_{h_{1}}$ yields even better results. Specifically, the most significant improvement in this domain results from estimating $p_{h_{1}}$, which is only possible due to relaxing Assumption III.

We then conjectured that the timing differences should increase when we include harder problem instances, and added an additional 14 instances with a runtime greater than 20 minutes in $I D A^{*}$. The results (Table 11), including both the smaller and larger instances, were quite surprising, in some respects. First, RLIDA* was better than LID A* as before, but now was actually substantially worse than just using $I D A^{*}$ with only h_{1}. The reason is evident from examining the line "IDA*(LB3)". Although h_{2} drastically reduces generated node numbers, its runtime with these larger problem instances outweighed its usefulness to such an extent that RLIDA* can at best approach IDA* by evaluating h_{2} very rarely.

But lifting Assumption III, that h_{1} does not cause a cutoff in the children, achieves further speedup and the best performance of all. The difference between TS1 and TS2 does not appear significant: TS2 achieves better accuracy, but has higher overhead for metareasoning, so in the overall runtime performance TS2 is usually only slightly better than TS1, and sometimes slightly worse. An important thing to notice is that the PA also increases from 41% for LIDA* to 65% for TS2 and to 77% for TS2+TS3. That means that RLIDA* indeed makes "better" decisions than LIDA* and that relaxing Assumption III leads to even better decisions.

Note that in both container relocation results RLIDA* with the TS3 type system performs better than the clairvoyant scheme, which seems surprising. However, upon deeper examination, it turns out that even if h_{2} cuts off a node n after h_{1} fails to do so, it does not follow that one should evaluate h_{2}. For example, consider a node n with $b(n)$ children, where h_{2} cuts off the search at node n, where h_{1} would cut off the search at all of its $b(n)$ children. Then, if evaluating $h_{2}(n)$ is more expensive than computing h_{1} for all $b(n)$ children, then bypassing h_{2} may be better than evaluating it. RLIDA* takes such

[^6]Table 12
Weighted 15 puzzle - number of extra iterations in LIDA*.

Number of extra iterations	Number of instances
0	49
1	19
2	5
3	7
4	2

Table 13
Weighted 15 puzzle - locations of extra iterations in LIDA*.

Part/16	Percentage of locations
1	31%
2	76%
4	100%

cases into account, whereas the clairvoyant scheme does not. In other words, knowing the future alone is insufficient if you do not use the information to reduce search time (rather than only to evaluate h_{2} iff it is helpful), and this version of the clairvoyant algorithm fails to provide the needed yardstick.

We thus implemented an enhanced clairvoyant algorithm, which computes h_{2} if it is helpful and if it is faster than computing h_{1} for all of n 's successors and h_{1} will prune the successors. In other words, the enhanced clairvoyant applies the rational decision rule given perfect knowledge of not just node n but also its successors, that is, a 1 -step lookahead. This new clairvoyant algorithm is a better yardstick for measuring performance of RLIDA*.

6.2.4. Extra iterations for LIDA*

In Section 2.3, we mentioned that $L I D A^{*}$ can lead to performing more iterations than $I D A_{M A X}^{*}$, although we expect this to happen rarely and have little impact. We now examine this claim empirically. We compared the number of iterations and threshold values between a problem solved by $L I D A^{*}$ and a problem solved by $I D A_{M A X}^{*}$. For the 15 -puzzle and the container relocation problems, the number of iterations was equal, and the iteration thresholds were identical between the solvers (if a solver timed out we only compared threshold values up to that point). This is not surprising, as the threshold values in these problems are all relatively small integers, and therefore "gaps" resulting in potential additional iterations are unlikely to occur.

However, for the weighted 15-puzzle the number of iterations was different, as expected, due to the much larger number of possible threshold values. Table 12 shows the difference in the number of iterations between the two algorithms. As one can see in most of the instances there were no extra iterations, yet in a significant number of instances, there was at least one extra iteration.

It is important to know in which part of the search such extra iterations took place, as this tends to have a major impact on the runtime. We analyzed all the extra iterations - iterations with thresholds that did not exist in IDA* but did exist in LIDA*. It is worth mentioning that other than these iterations, all other threshold values were identical, i.e., there were no threshold values that existed in LIDA* but did not exist in $I D A^{*}$. Table 13 shows the extra iteration locations. 31% of the extra iterations were in the first $1 / 16$ of the search (if a search process has 96 iterations, the first $1 / 16$ of the search is the first 6 iterations), almost all of the extra iterations were in the first $1 / 8$ of the search (76%), and all the extra iterations were in the first $1 / 4$ of the search.

As previously mentioned in Section 2.3, in order for an extra iteration $\# i$ with value v to happen, all nodes that have an h_{2} value of v in iteration $\# i-1$ have to be pruned by their h_{1} value. The extra iterations did not appear to result in significant additional runtime, likely because the number of nodes grows exponentially between iterations in the problem we considered here.

7. Future work

A natural direction to extend the work done in this paper is to handle more than two heuristics, as done for the Lazy algorithms in Section 3.3. Non trivial issues arise, and multiple heuristics deserve a study beyond the scope of this paper.

Consider the simple setting, where we are actually committed to doing $L A^{*}$, but are free to choose the order of evaluating the heuristics. Suppose further that we know the exact runtime t_{i} of each heuristic, and the probability $p_{h_{i}}$ that it will be helpful, given the current state of the search (including, possibly, results obtained by previous evaluations of heuristics). Suppose furthermore that the time to insert and remove a node from the open list is negligible. Under all these simplifying assumptions, the problem of optimally ordering the heuristics is equivalent to optimal test ordering, which is NP-hard [33, 34]. However, if we additionally restrict the distribution over helpfulness of heuristics to be independent, only then is there a simple optimal ordering, which is to compute the heuristics in non-increasing order of $\frac{p_{h_{i}}}{t_{i}}$. This latter scheme is what we recommend when running $L A^{*}$ with multiple heuristics.

The above discussion on ordering heuristics is relevant in two ways. First, trying to define a meta-level optimized $R L A^{*}$ and RLIDA* in such settings will result in metareasoning problems harder than the optimal test ordering problem, which is already NP-hard. Thus, ad-hoc schemes such as the naive one just suggested may be the only practical way to proceed. Second, note how the optimal ordering argument may affect even the case of two heuristics. We assumed that $t_{1}<t_{2}$, and that $p_{h_{1}}<p_{h_{2}}$. Then we stated that it makes sense to start off with h_{1}. However, it is still possible that $\frac{p_{h_{2}}}{t_{2}}>\frac{p_{h_{1}}}{t_{1}}$, in which case it is better to start with h_{2} if they are independent, as well as in cases where h_{2} dominates h_{1}.

One naive way of generalizing $R L A^{*}$ and $R L I D A^{*}$ to multiple heuristics is to use the same rational decision rule on pairs of consecutive heuristics, where heuristics are ordered according to their runtime. Once one of the heuristics is bypassed, we automatically bypass all the more expensive heuristics. It is important to note that in such a simple setting our decision rule must now consider that bypassing a heuristic could lead to potential losses from bypassing an even more expensive (and, most likely, informative) heuristic down the line.

Furthermore, even if we were able to define a rational decision rule, other practical issues arise when trying to estimate parameters when there are n heuristics. For example, a naive generalization of our type systems based approach to n heuristics would require n^{2} type systems. This could be alleviated by defining the type systems differently, for example by only using the value of h_{1} as a feature to predict whether $h_{2} \ldots h_{n}$ are helpful, or using only h_{i-1} to predict whether h_{i} will be helpful. However, it is not clear what the best solution would be, and whether there is significant benefit in allowing type systems to use multiple heuristics as features.

Another question is whether our methods can be effective if only one nontrivial admissible heuristic h is available. It seems possible, by using 0 as the value of h_{1}, and h as h_{2}, running $R L A^{*}$ this way would make it behave like uniform cost search (AKA Dijkstra's algorithm) at some points in the search. This is actually in agreement with the known observation [35] that sometimes it is more efficient to start out with uniform cost search when using A^{*}, thereby saving time needed to compute h in many nodes that would be expanded anyway, especially at the beginning of the search.

Some questions regarding possible improvements to $R L A^{*}$ include incorporating information about the memory limit into the decision rule, obtaining a better proxy for the threshold, incorporating cost predictors (e.g., [36,37]) into the decision rule, and looking at the problem of predicting whether h_{2} will be helpful as online learning with delayed feedback (e.g., [38]). Other interesting problems include using rational metareasoning to control decisions in other variants of A^{*}, and adapting RA* [14] and GHS [15] to choose a set of heuristics to combine using RLA* or RLIDA*, instead of $A_{\text {MAX }}^{*}$.

8. Conclusions

We discussed two schemes for decreasing the computational resources used to evaluate heuristics. $L A^{*}$ and $L I D A^{*}$ are very simple to implement, and are as informed as $A_{M A X}^{*}$ and $I D A_{M A X}^{*}$, respectively, with the caveat that LIDA* could lead to extra iterations. While these can significantly speed up the search in some cases, such as when t_{2} dominates the other time costs, additional benefit can be gained by using the rational metareasoning framework [1] to decide when computing the expensive heuristic is worth the time spent on it. The resulting algorithms, RLA* and RLIDA*, achieve better performance than their non-rational counterparts on many different problems.

In particular, $R L A^{*}$ is simpler to implement than its direct competitor, selective max, but its decision can be more informed. When $R L A^{*}$ has to decide whether to compute h_{2} for some node n, it already knows that $f_{1}(n) \leq C^{*}$. In contrast, although selective max uses a much more complicated decision rule, it chooses which heuristic to compute when n is first generated, and does not know whether h_{1} will be informative enough to prune n. RLA* outperforms selective max in our planning experiments.

Furthermore, RLIDA* can make even better decisions than $R L A^{*}$, because it knows the "target value" for f_{2} - the current threshold, T, in addition to the value of $f_{1}(n)$. This also means that RLIDA* knows whether h_{2} is helpful immediately after evaluating it, while $R L A^{*}$ can only know that h_{2} was not helpful for a node it expands, but will know if h_{2} is helpful only when the search terminates.

Additionally, the decision rule for $R L A^{*}$ and $R L I D A^{*}$ only considers search time, not memory. This not an issue for RLIDA*, which only requires linear memory, but could cause $R L A^{*}$ to expand too many nodes and exhaust available memory.

Our analysis and empirical evaluation also shed some light on the question of when using rational metareasoning is worthwhile: Whenever we have multiple heuristics, where one of the heuristics is informative but expensive to compute, using rational metareasoning is likely a good idea. In fact, in some cases the informative heuristic is so expensive that using it only becomes beneficial in conjunction with rational metareasoning. However, if we only have heuristics which are relatively cheap to compute, the overhead of rational metareasoning, as well as the probability of making a mistake, are not worth the potential benefit. In such cases, $L A^{*}$ or $L I D A^{*}$ are probably better choices.

Acknowledgements

This research was supported by the Israeli Science Foundation (ISF) under grants \#417/13 and \#844/17 to Ariel Felner and Solomon Eyal Shimony.

Appendix A. Detailed empirical results for planning domains

Table A. 14
Coverage for A^{*} algorithms in planning domains.

coverage	lm	Imcut	max	selmax	lazy	emp	T1
airport (50)	30	28	30	30	30	30	31
barman-opt11-strips (20)	4	4	4	4	4	4	4
blocks (35)	19	28	28	28	28	28	28
depot (22)	6	7	7	7	7	7	7
driverlog (20)	10	13	14	14	14	14	14
elevators-opt08-strips (30)	12	22	22	22	22	22	22
elevators-opt11-strips (20)	10	18	18	18	18	18	18
floortile-opt11-strips (20)	2	7	7	7	7	7	2
freecell (80)	61	15	43	59	49	49	61
grid (5)	2	2	2	2	2	2	2
gripper (20)	7	7	7	7	7	7	7
ipc2014-opt-Barman (14)	0	0	0	0	0	0	0
ipc2014-opt-CaveDiving (3)	3	3	3	3	3	3	3
ipc2014-opt-ChildSnack (20)	0	0	0	0	0	0	0
ipc2014-opt-Floortile (20)	0	5	5	5	5	5	0
ipc2014-opt-GED (20)	15	15	15	14	15	15	15
ipc2014-opt-Hiking (20)	11	9	9	9	9	9	10
ipc2014-opt-Maintenance (5)	5	5	5	5	5	5	5
ipc2014-opt-Openstacks (20)	3	3	3	3	3	3	3
ipc2014-opt-Parking (20)	0	3	3	3	4	4	4
ipc2014-opt-Tetris (17)	9	5	5	9	6	6	6
ipc2014-opt-Tidybot (20)	8	7	7	7	7	7	7
ipc2014-opt-Transport (20)	6	6	6	6	6	6	6
ipc2014-opt-Visitall (20)	4	5	5	5	5	5	5
logistics00 (28)	10	20	20	20	20	20	19
logistics98 (35)	2	6	6	6	6	6	6
miconic (150)	143	141	141	143	142	142	142
mprime (35)	21	22	22	22	22	22	22
mystery (30)	15	17	17	17	17	17	17
nomystery-opt11-strips (20)	18	14	18	18	18	18	19
openstacks-opt08-strips (30)	20	21	19	19	19	19	19
openstacks-opt11-strips (20)	15	16	14	15	14	14	14
openstacks-strips (30)	7	7	7	7	7	7	7
parcprinter-08-strips (30)	15	18	18	15	18	18	18
parcprinter-opt11-strips (20)	11	13	13	11	13	13	13
parking-opt11-strips (20)	1	2	2	3	4	3	3
pathways-noneg (30)	4	5	5	5	5	5	5
pegsol-08-strips (30)	27	27	27	27	27	27	27
pegsol-opt11-strips (20)	17	17	17	17	17	17	17
pipesworld-notankage (50)	19	17	17	19	17	17	17
pipesworld-tankage (50)	13	11	12	12	12	12	12
psr-small (50)	49	49	49	49	49	49	49
rovers (40)	8	7	8	8	9	8	8
satellite (36)	7	7	7	7	8	8	8
scanalyzer-08-strips (30)	9	15	15	13	15	15	15
scanalyzer-opt11-strips (20)	6	12	12	10	12	12	12
sokoban-opt08-strips (30)	24	28	29	29	29	30	25
sokoban-opt11-strips (20)	19	20	20	20	20	20	19
tidybot-opt11-strips (20)	14	14	14	14	14	14	14
tpp (30)	6	6	6	6	6	6	6
transport-opt08-strips (30)	11	11	11	11	11	11	11
transport-opt11-strips (20)	6	6	6	6	6	6	6
trucks-strips (30)	9	10	10	10	10	10	10
visitall-opt11-strips (20)	10	10	10	10	10	10	10
woodworking-opt08-strips (30)	15	16	16	15	17	17	17
woodworking-opt11-strips (20)	10	11	11	10	12	12	12
zenotravel (20)	9	13	12	12	13	13	13
Sum (1615)	797	826	859	873	875	874	872

Table A. 15
Search time score for A^{*} algorithms in planning domains.

score						

Table A. 16
Number of expansions for A^{*} algorithms in planning domains.

expansions	lm	Imcut	max	selmax	lazy	emp	T1
airport (28)	601.94	204.45	222.65	554.43	222.65	232.98	436.50
barman-opt11-strips (4)	5,621,156.49	1,265,904.14	1,263,198.17	1,420,926.76	1,263,186.90	1,459,457.38	1,872,354.58
blocks (19)	679.55	124.15	124.08	188.15	123.34	123.44	123.80
depot (6)	147,557.91	6,468.31	6,087.91	8,543.10	6,165.93	6,165.93	6,401.78
driverlog (10)	8,157.38	274.62	261.58	366.79	256.60	256.60	256.86
elevators-opt08-strips (12)	105,352.48	3,256.96	3,137.88	3,261.25	3,137.88	3,137.88	3,137.88
elevators-opt11-strips (10)	210,471.85	5,946.75	5,722.65	5,929.04	5,722.65	5,722.65	5,722.65
floortile-opt11-strips (2)	196,061.77	1,739.60	1,739.60	1,866.64	1,740.42	1,740.42	30,089.22
freecell (15)	19.43	16,361.15	19.40	100.25	19.40	19.40	19.43
grid (2)	2,946.87	2,039.90	1,210.33	2,946.87	1,209.75	1,210.31	1,269.65
gripper (7)	47,081.71	49,623.60	47,081.71	47,103.22	47,081.71	47,081.71	47,081.71
ipc2014-opt-CaveDiving (3)	1,229,877.94	502,662.88	502,662.88	1,229,877.94	502,662.88	714,798.94	1,187,293.37
ipc2014-opt-GED (14)	21,163.09	4,615.32	4,615.32	5,103.63	4,615.32	7,291.41	4,699.90
ipc2014-opt-Hiking (9)	21,633.25	20,455.50	17,845.41	20,372.84	17,845.50	17,849.29	18,468.61
ipc2014-opt-Maintenance (5)	39.91	33.15	30.15	36.37	32.12	32.12	38.78
ipc2014-opt-Openstacks (3)	3,300,439.58	2,346,255.21	2,346,255.21	2,968,191.35	2,346,255.21	2,346,255.21	2,346,255.21
ipc2014-opt-Tetris (5)	5,939.03	3,919.73	3,533.40	5,792.20	3,533.33	3,533.34	3,608.36
ipc2014-opt-Tidybot (7)	87,502.35	6,161.11	6,090.07	27,674.20	6,090.07	6,236.75	6,607.96
ipc2014-opt-Transport (6)	994,777.88	15,269.17	15,157.34	499,709.02	15,153.55	15,153.55	18,608.97
ipc2014-opt-Visitall (4)	132,624.53	24,900.35	22,183.60	32,363.17	22,183.51	22,183.51	25,416.35
logistics00 (10)	2,576.88	160.05	160.05	280.69	160.05	160.05	165.15
logistics98 (2)	6,153.31	89.85	89.85	106.99	89.85	89.85	89.85
miconic (141)	109.14	109.14	109.14	109.14	109.14	109.14	109.14
mprime (21)	670.81	78.70	47.52	78.89	55.13	55.13	55.13
mystery (18)	319.11	27.28	26.45	33.56	26.96	26.99	27.87
nomystery-opt11-strips (14)	247.44	423.16	162.61	234.35	165.12	166.11	176.03
openstacks-opt08-strips (19)	136,014.49	117,130.49	117,130.49	123,795.93	117,130.49	117,922.64	117,130.49
openstacks-opt11-strips (14)	606,248.94	503,402.68	503,402.68	548,449.83	503,402.68	504,085.78	503,402.68
openstacks-strips (7)	2,613.79	8,862.84	2,572.71	2,769.60	2,572.71	2,613.79	2,601.09
parcprinter-08-strips (15)	4,851.49	198.36	198.30	4,850.14	198.30	207.59	539.18
parcprinter-opt11-strips (11)	36,882.02	536.50	536.29	36,868.02	536.29	540.62	2,098.20
parking-opt11-strips (1)	57,211.00	3,391.00	2,420.00	5,603.00	2,420.00	2,420.00	2,586.00
pathways-noneg (4)	1,033.05	38.48	38.48	38.48	38.48	39.26	195.89
pegsol-08-strips (27)	18,162.30	4,590.93	4,567.51	4,895.04	4,562.72	7,384.24	5,124.26
pegsol-opt11-strips (17)	180,026.89	43,444.92	43,143.88	43,800.81	43,086.65	64,381.33	48,925.92
pipesworld-notankage (17)	8,064.14	3,339.01	2,092.49	6,470.42	2,115.62	2,119.18	2,381.33
pipesworld-tankage (11)	6,850.86	4,683.98	2,807.97	3,685.90	2,804.41	2,902.31	2,898.73
psr-small (49)	502.23	386.24	386.24	454.87	386.30	418.27	387.81
rovers (7)	657.09	439.94	302.98	351.82	289.88	289.88	289.88
satellite (7)	1,189.83	308.29	233.35	292.18	234.12	234.12	234.31
scanalyzer-08-strips (8)	8,370.39	158.49	158.23	286.11	158.23	158.23	158.79
scanalyzer-opt11-strips (5)	70,002.61	1,095.74	1,092.91	1,742.76	1,092.91	1,092.91	1,099.10
sokoban-opt08-strips (23)	171,029.66	11,097.34	11,070.85	23,182.92	11,070.81	12,773.15	53,072.97
sokoban-opt11-strips (19)	354,406.00	20,290.70	20,239.81	41,511.12	20,239.73	23,735.55	126,902.32
tidybot-opt11-strips (14)	11,766.14	1,729.18	1,694.68	5,329.62	1,694.68	1,798.96	1,850.97
tpp (6)	107.20	63.15	63.15	72.96	63.15	63.15	63.15
transport-opt08-strips (11)	8,676.74	420.58	418.23	8,336.64	418.24	418.24	433.61
transport-opt11-strips (6)	225,933.52	3,687.90	3,650.25	231,426.07	3,650.36	3,650.36	3,898.44
trucks-strips (9)	152,021.34	4,556.40	4,493.97	4,677.25	4,477.82	4,477.82	4,496.86
visitall-opt11-strips (10)	466.77	256.85	204.74	259.06	204.76	204.76	216.96
woodworking-opt08-strips (14)	7,029.98	146.60	146.60	6,711.05	153.88	153.88	150.66
woodworking-opt11-strips (9)	46,944.68	618.39	618.39	46,921.77	657.37	657.37	636.12
zenotravel (9)	402.49	39.65	39.63	57.51	45.50	45.83	45.51
Geometric mean (726)	12,057.25	1,978.56	1,551.71	3,581.64	1,564.77	1,640.27	2,028.68

Table A. 17
Peak memory usage (in KB) for A^{*} algorithms in planning domains.

memory	lm	Imcut	max	selmax	lazy	emp	T1
airport (28)	1,201,096	209,432	417,628	1,205,824	419,932	432,144	1,035,472
barman-opt11-strips (4)	1,909,588	391,292	621,032	792,180	655,676	879,732	1,086,840
blocks (19)	3,482,060	64,980	77,224	85,088	77,960	81,516	81,540
depot (6)	5,365,860	120,320	175,076	308,028	182,212	227,356	230,892
driverlog (10)	846,320	35,460	41,012	44,396	41,552	43,384	43,460
elevators-opt08-strips (12)	5,362,360	106,284	147,412	151,676	151,124	181,940	182,044
elevators-opt11-strips (10)	5,351,576	99,436	139,888	144,148	143,300	174,124	174,304
floortile-opt11-strips (2)	135,392	7,620	9,060	9,348	9,104	9,864	35,496
freecell (15)	169,936	236,244	175,720	177,524	176,060	176,208	176,312
grid (2)	37,816	28,416	29,356	38,508	29,688	31,564	32,216
gripper (7)	1,084,240	637,468	1,083,980	1,083,252	1,132,916	1,480,576	1,481,440
ipc2014-opt-CaveDiving (3)	610,120	262,060	432,244	609,824	453,828	599,144	801,340
ipc2014-opt-GED (14)	2,794,896	535,776	880,840	918,804	923,472	1,564,792	1,182,096
ipc2014-opt-Hiking (9)	246,756	153,852	213,308	267,756	221,368	278,936	290,524
ipc2014-opt-Maintenance (5)	17,044	15,768	17,604	18,640	17,308	17,560	18,780
ipc2014-opt-Openstacks (3)	3,780,600	2,067,120	3,679,784	3,839,624	3,827,444	4,849,528	4,849,440
ipc2014-opt-Tetris (5)	163,488	88,860	151,884	170,596	153,080	161,020	162,328
ipc2014-opt-Tidybot (7)	958,576	342,440	835,960	895,520	836,668	839,496	840,084
ipc2014-opt-Transport (6)	4,467,016	90,284	127,740	4,466,648	131,172	157,676	190,680
ipc2014-opt-Visitall (4)	392,964	32,040	45,100	57,132	46,808	57,196	59,116
logistics00 (10)	102,004	31,036	33,964	34,880	34,096	34,468	34,592
logistics98 (2)	22,300	6,188	6,716	6,720	6,712	6,712	6,712
miconic (141)	828,924	609,820	848,984	851,928	858,916	923,008	923,604
mprime (21)	3,062,088	193,360	259,272	334,368	261,924	277,472	277,372
mystery (18)	1,653,804	162,984	259,388	282,732	265,860	300,300	364,232
nomystery-opt11-strips (14)	87,472	76,500	91,324	92,044	91,500	92,044	92,168
openstacks-opt08-strips (19)	6,254,764	3,317,952	5,906,772	6,075,136	6,150,576	7,837,824	7,837,760
openstacks-opt11-strips (14)	6,233,184	3,300,360	5,885,652	6,057,452	6,128,628	7,814,524	7,814,224
openstacks-strips (7)	49,520	76,920	50,256	52,264	51,164	58,768	58,812
parcprinter-08-strips (15)	3,421,360	156,164	207,964	3,420,940	213,760	242,588	862,748
parcprinter-opt11-strips (11)	3,408,036	144,060	194,540	3,407,496	200,292	229,172	849,672
parking-opt11-strips (1)	63,228	8,352	14,400	17,048	14,424	14,976	15,184
pathways-noneg (4)	20,632	12,364	13,164	13,288	13,284	13,288	15,808
pegsol-08-strips (27)	1,372,876	399,208	631,276	705,376	658,508	807,480	845,132
pegsol-opt11-strips (17)	1,390,852	379,348	614,008	689,960	641,876	802,972	839,100
pipesworld-notankage (17)	1,842,584	343,156	466,744	1,944,356	471,400	562,940	1,164,124
pipesworld-tankage (11)	955,832	236,704	321,432	494,656	332,688	433,348	420,508
psr-small (49)	1,090,280	600,972	936,316	1,048,060	968,844	1,231,136	1,212,084
rovers (7)	110,892	48,504	52,264	60,832	53,776	63,192	63,124
satellite (7)	241,328	80,984	61,024	139,300	62,924	74,572	74,532
scanalyzer-08-strips (8)	1,558,484	217,312	359,768	361,460	376,500	482,200	486,820
scanalyzer-opt11-strips (5)	1,543,008	207,180	347,300	348,888	363,920	469,596	474,292
sokoban-opt08-strips (23)	7,348,856	241,528	379,184	1,577,924	394,220	545,292	5,554,144
sokoban-opt11-strips (19)	5,691,372	222,652	354,444	1,473,264	369,348	516,840	5,520,228
tidybot-opt11-strips (14)	1,013,196	378,960	889,688	961,956	890,696	897,164	898,084
tpp (6)	60,188	23,248	28,276	46,020	28,824	31,860	31,840
transport-opt08-strips (11)	961,068	60,516	71,428	966,364	71,564	76,704	78,096
transport-opt11-strips (6)	942,420	44,360	54,228	947,820	54,148	59,228	60,556
trucks-strips (9)	3,464,788	109,348	171,288	173,772	178,900	221,696	221,824
visitall-opt11-strips (10)	752,476	93,964	123,560	227,144	128,448	157,472	221,140
woodworking-opt08-strips (14)	4,593,712	151,040	230,816	4,598,148	239,328	286,076	279,352
woodworking-opt11-strips (9)	4,573,672	135,308	212,352	4,577,964	220,772	267,600	260,852
zenotravel (9)	3,042,284	31,008	36,008	36,940	36,388	37,388	37,284
Sum (726)	106,135,188	17,626,512	29,415,652	57,311,016	30,464,880	38,113,656	50,850,408

Table A. 18
Fraction of nodes in which h_{2} was evaluated for A^{*} algorithms in planning domains.

h_{2} ratio	lazy	emp	T1
airport (30)	0.50	0.31	0.33
barman-opt11-strips (4)	1.00	0.79	0.65
blocks (28)	0.81	0.80	0.81
depot (7)	0.74	0.74	0.69
driverlog (14)	0.54	0.54	0.53
elevators-opt08-strips (22)	0.57	0.57	0.57
elevators-opt11-strips (18)	0.58	0.58	0.58
floortile-opt11-strips (2)	0.88	0.88	0.11
freecell (49)	0.18	0.17	0.05
grid (2)	0.64	0.64	0.54
gripper (7)	0.93	0.93	0.65
ipc2014-opt-CaveDiving (3)	0.69	0.55	0.04
ipc2014-opt-GED (15)	0.96	0.27	0.86
ipc2014-opt-Hiking (9)	0.71	0.71	0.49
ipc2014-opt-Maintenance (5)	0.16	0.16	0.13
ipc2014-opt-Openstacks (3)	0.61	0.61	0.61
ipc2014-opt-Parking (3)	0.37	0.37	0.26
ipc2014-opt-Tetris (6)	0.53	0.53	0.46
ipc2014-opt-Tidybot (7)	0.98	0.96	0.92
ipc2014-opt-Transport (6)	0.93	0.93	0.85
ipc2014-opt-Visitall (5)	0.87	0.87	0.77
logistics00 (19)	0.49	0.49	0.49
logistics98 (6)	0.54	0.54	0.62
miconic (142)	0.14	0.13	0.14
mprime (22)	0.42	0.42	0.42
mystery (21)	0.57	0.55	0.53
nomystery-opt11-strips (18)	0.29	0.28	0.22
openstacks-opt08-strips (19)	0.55	0.55	0.55
openstacks-opt11-strips (14)	0.56	0.56	0.56
openstacks-strips (7)	0.65	0.49	0.10
parcprinter-08-strips (18)	0.82	0.74	0.62
parcprinter-opt11-strips (13)	0.85	0.83	0.56
parking-opt11-strips (3)	0.35	0.35	0.34
pathways-noneg (5)	0.73	0.73	0.47
pegsol-08-strips (27)	0.97	0.55	0.85
pegsol-opt11-strips (17)	0.96	0.60	0.84
pipesworld-notankage (17)	0.56	0.56	0.51
pipesworld-tankage (12)	0.48	0.45	0.44
psr-small (49)	0.84	0.51	0.82
rovers (8)	0.33	0.33	0.29
satellite (8)	0.34	0.34	0.34
scanalyzer-08-strips (15)	0.95	0.95	0.95
scanalyzer-opt11-strips (12)	0.95	0.95	0.95
sokoban-opt08-strips (25)	0.95	0.61	0.27
sokoban-opt11-strips (19)	0.97	0.57	0.20
tidybot-opt11-strips (14)	0.90	0.85	0.83
tpp (6)	0.63	0.55	0.63
transport-opt08-strips (11)	0.82	0.82	0.80
transport-opt11-strips (6)	0.89	0.89	0.86
trucks-strips (10)	0.92	0.92	0.91
visitall-opt11-strips (10)	0.68	0.68	0.62
woodworking-opt08-strips (17)	0.44	0.44	0.43
woodworking-opt11-strips (12)	0.46	0.46	0.46
zenotravel (13)	0.55	0.53	0.55
Average (860)	0.66	0.59	0.54

Table A. 19
Coverage for IDA* algorithms in planning domains.

coverage	lm	Imcut	max	selmax	lazy	emp	T1
airport (50)	18	21	21	19	21	21	21
barman-opt11-strips (20)	0	0	0	0	0	0	0
blocks (35)	18	19	19	19	19	19	19
depot (22)	2	2	2	2	2	2	2
driverlog (20)	6	8	8	8	8	8	8
elevators-opt08-strips (30)	0	0	0	0	0	0	0
elevators-opt11-strips (20)	0	0	0	0	0	0	0
floortile-opt11-strips (20)	0	1	1	1	1	1	0
freecell (80)	32	5	25	31	28	28	32
grid (5)	1	1	1	1	1	1	1
gripper (20)	3	2	2	3	2	2	3
ipc2014-opt-Barman (14)	0	0	0	0	0	0	0
ipc2014-opt-CaveDiving (3)	0	0	0	0	0	0	0
ipc2014-opt-ChildSnack (20)	0	0	0	0	0	0	0
ipc2014-opt-Floortile (20)	0	0	0	0	0	0	0
ipc2014-opt-GED (20)	12	13	13	12	13	13	13
ipc2014-opt-Hiking (20)	2	1	1	2	2	2	2
ipc2014-opt-Maintenance (5)	5	5	5	5	5	5	5
ipc2014-opt-Openstacks (20)	0	0	0	0	0	0	0
ipc2014-opt-Parking (20)	0	0	0	0	0	0	0
ipc2014-opt-Tetris (17)	2	2	2	2	2	2	2
ipc2014-opt-Tidybot (20)	0	0	0	0	0	0	0
ipc2014-opt-Transport (20)	0	0	0	0	0	0	0
ipc2014-opt-Visitall (20)	3	3	3	3	3	3	3
logistics00 (28)	8	7	7	8	8	8	8
logistics98 (35)	2	3	3	3	3	3	3
miconic (150)	138	138	138	138	138	138	138
mprime (35)	17	20	20	20	20	20	20
mystery (30)	12	16	16	16	16	16	16
nomystery-opt11-strips (20)	14	12	14	14	14	14	14
openstacks-opt08-strips (30)	4	4	4	4	4	4	4
openstacks-opt11-strips (20)	1	1	1	1	1	1	1
openstacks-strips (30)	5	0	5	5	5	5	5
parcprinter-08-strips (30)	6	13	13	6	13	13	13
parcprinter-opt11-strips (20)	2	8	8	2	8	8	8
parking-opt11-strips (20)	1	0	1	1	1	1	1
pathways-noneg (30)	2	4	4	2	4	4	4
pegsol-08-strips (30)	21	24	24	24	24	22	24
pegsol-opt11-strips (20)	7	14	14	14	14	12	14
pipesworld-notankage (50)	11	10	11	11	11	11	11
pipesworld-tankage (50)	7	5	6	6	7	7	7
psr-small (50)	29	28	28	28	28	28	28
rovers (40)	4	4	4	4	4	4	4
satellite (36)	4	5	5	4	6	6	6
scanalyzer-08-strips (30)	4	12	12	4	12	12	12
scanalyzer-opt11-strips (20)	1	9	9	1	9	9	9
sokoban-opt08-strips (30)	0	0	0	0	0	0	0
sokoban-opt11-strips (20)	0	0	0	0	0	0	0
tidybot-opt11-strips (20)	3	3	3	3	4	4	3
tpp (30)	5	5	5	5	5	5	5
transport-opt08-strips (30)	1	3	3	1	3	3	3
transport-opt11-strips (20)	0	0	0	0	0	0	0
trucks-strips (30)	2	3	3	1	3	3	3
visitall-opt11-strips (20)	9	9	9	9	9	9	9
woodworking-opt08-strips (30)	7	10	10	7	10	10	10
woodworking-opt11-strips (20)	2	5	5	2	5	5	5
zenotravel (20)	7	9	9	9	9	9	9
Sum (1615)	440	467	497	461	505	501	508

Table A. 20
Search time score for $I D A^{*}$ algorithms in planning domains.

coverage	lm	Imcut	max	selmax	lazy	emp	T1
airport (50)	34.32	37.71	37.88	35.95	38.03	38.18	37.95
barman-opt11-strips (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
blocks (35)	44.77	45.57	45.09	45.46	46.00	45.76	46.10
depot (22)	6.28	9.09	9.00	8.93	9.09	9.09	9.09
driverlog (20)	18.56	29.14	29.52	29.53	32.32	32.20	32.39
elevators-opt08-strips (30)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
elevators-opt11-strips (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
floortile-opt11-strips (20)	0.00	0.62	0.47	0.59	0.66	0.69	0.00
freecell (80)	32.18	1.65	27.77	31.90	30.14	30.12	32.14
grid (5)	20.00	18.52	19.22	20.00	20.00	20.00	20.00
gripper (20)	9.77	8.56	8.68	9.43	9.23	9.30	9.50
ipc2014-opt-Barman (14)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-CaveDiving (3)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-ChildSnack (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-Floortile (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-GED (20)	39.54	46.48	45.61	44.55	45.59	45.24	47.05
ipc2014-opt-Hiking (20)	3.00	2.09	1.97	2.60	3.76	3.81	3.81
ipc2014-opt-Maintenance (5)	81.99	88.47	87.05	80.70	88.21	88.19	88.37
ipc2014-opt-Openstacks (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-Parking (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-Tetris (17)	9.09	7.08	7.15	8.74	8.31	8.32	8.29
ipc2014-opt-Tidybot (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-Transport (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ipc2014-opt-Visitall (20)	6.51	6.21	6.64	5.72	7.30	7.40	7.37
logistics00 (28)	21.79	20.18	19.22	21.09	21.06	21.02	21.24
logistics98 (35)	3.40	8.57	8.48	8.54	8.57	8.57	8.57
miconic (150)	90.12	76.11	76.20	89.81	89.03	89.09	89.01
mprime (35)	41.21	46.74	48.71	49.03	51.17	51.09	51.16
mystery (30)	40.85	48.98	49.58	49.93	50.41	50.33	50.26
nomystery-opt11-strips (20)	64.60	46.77	54.34	64.20	61.92	62.37	62.72
openstacks-opt08-strips (30)	13.33	13.33	13.33	13.33	13.33	13.33	13.33
openstacks-opt11-strips (20)	5.00	5.00	5.00	5.00	5.00	5.00	5.00
openstacks-strips (30)	14.20	0.00	10.55	13.44	12.00	12.03	13.74
parcprinter-08-strips (30)	17.62	43.33	43.33	20.00	43.33	43.33	43.33
parcprinter-opt11-strips (20)	6.45	40.00	40.00	10.00	40.00	40.00	40.00
parking-opt11-strips (20)	0.09	0.00	0.19	1.18	1.22	1.24	1.25
pathways-noneg (30)	6.67	13.33	13.33	6.67	13.33	11.05	12.93
pegsol-08-strips (30)	44.94	54.68	52.19	53.48	52.96	49.65	52.86
pegsol-opt11-strips (20)	12.88	25.68	22.60	23.62	23.36	19.38	23.41
pipesworld-notankage (50)	16.37	12.04	14.57	15.72	16.03	16.03	16.16
pipesworld-tankage (50)	10.37	7.65	9.07	9.92	10.35	10.34	10.35
psr-small (50)	50.04	48.60	47.96	48.22	49.38	49.45	49.51
rovers (40)	10.00	10.00	10.00	10.00	10.00	10.00	10.00
satellite (36)	10.30	13.83	13.77	9.99	13.88	13.85	13.88
scanalyzer-08-strips (30)	11.13	33.43	33.36	11.04	33.64	33.62	33.62
scanalyzer-opt11-strips (20)	5.00	35.25	34.94	5.00	35.34	35.36	35.42
sokoban-opt08-strips (30)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sokoban-opt11-strips (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
tidybot-opt11-strips (20)	9.46	8.25	8.29	9.37	8.75	8.74	8.81
tpp (30)	14.04	16.52	16.44	13.81	16.53	16.49	16.49
transport-opt08-strips (30)	3.33	7.17	7.12	3.33	7.14	7.11	7.16
transport-opt11-strips (20)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
trucks-strips (30)	2.52	7.85	7.59	2.35	7.59	7.61	7.50
visitall-opt11-strips (20)	37.18	38.66	38.86	36.51	39.34	39.36	39.43
woodworking-opt08-strips (30)	15.78	31.28	31.30	17.42	31.11	31.12	31.12
woodworking-opt11-strips (20)	5.87	21.97	21.90	5.48	21.63	21.66	21.67
zenotravel (20)	31.56	37.81	37.39	37.47	39.02	38.97	39.07
Average (1615)	15.90	18.52	19.24	17.05	20.09	19.92	20.19

Table A. 21
Number of expansions for $I D A^{*}$ algorithms in planning domains.

coverage	lm	Imcut	max	selmax	lazy	emp	T1
airport (18)	163.76	130.84	130.84	163.76	130.84	143.92	131.19
blocks (18)	6,263.01	1,770.50	1,769.53	3,700.41	1,769.53	1,945.70	1,776.18
depot (2)	104,540.03	932.42	932.42	1,321.51	932.42	932.42	932.42
driverlog (6)	484,403.54	14,532.94	10,804.04	13,572.15	10,804.04	10,804.04	10,804.69
freecell (5)	16.69	529,646.82	16.69	16.69	16.69	16.69	16.69
grid (1)	6,560.00	1,678.00	1,283.00	6,555.00	1,283.00	1,295.00	1,297.00
gripper (2)	13,109.12	23,527.29	13,109.12	13,109.74	13,109.12	13,109.12	13,109.12
ipc2014-opt-GED (11)	58,997.60	6,682.47	6,682.47	8,806.94	6,682.47	8,675.63	6,682.47
ipc2014-opt-Hiking (1)	5,121,116.00	2,268,620.00	2,094,746.00	5,121,116.00	2,094,746.00	2,094,942.00	2,097,682.00
ipc2014-opt-Maintenance (5)	5,627.41	1,457.33	1,231.02	4,953.68	1,231.02	1,231.02	1,231.02
ipc2014-opt-Tetris (2)	26,190.46	17,510.38	16,381.08	26,190.46	16,381.08	16,381.08	16,381.08
ipc2014-opt-Visitall (3)	5,412,921.66	1,619,635.88	923,706.97	5,412,871.76	923,706.97	1,007,303.58	1,023,168.51
logistics00 (7)	37,055.43	36,900.09	36,900.09	37,055.43	36,900.09	36,900.09	36,900.09
logistics98 (2)	1,796,135.34	19,676.79	19,676.79	36,650.71	19,676.79	19,676.79	19,680.92
miconic (138)	1,807.37	1,807.37	1,807.37	1,807.37	1,807.37	1,807.37	1,807.37
mprime (17)	6,527.81	864.75	365.42	1,200.74	365.42	365.42	365.42
mystery (14)	420.74	41.08	32.29	46.89	32.29	32.29	32.29
nomystery-opt11-strips (12)	6,630.27	3,830.61	2,458.62	6,457.16	2,458.62	2,466.55	2,541.87
openstacks-opt08-strips (4)	235.34	208.85	208.85	235.34	208.85	208.85	208.85
openstacks-opt11-strips (1)	73.00	61.00	61.00	73.00	61.00	61.00	61.00
parcprinter-08-strips (6)	2,247.40	23.18	23.18	112.77	23.18	24.35	23.18
parcprinter-opt11-strips (2)	772,685.36	22.49	22.49	646.49	22.49	23.00	22.49
pathways-noneg (2)	1,221.91	32.76	32.76	890.23	32.76	32.76	32.76
pegsol-08-strips (21)	146,957.15	20,746.26	20,555.69	24,658.29	20,555.69	41,502.91	21,802.72
pegsol-opt11-strips (7)	3,224,793.17	325,747.05	319,776.43	328,031.15	319,776.43	702,021.95	327,586.91
pipesworld-notankage (10)	33,865.14	48,148.35	13,922.18	29,835.16	13,922.18	13,922.82	14,512.34
pipesworld-tankage (5)	8,492.64	14,063.65	4,272.29	6,999.00	4,272.29	4,273.40	4,325.75
psr-small (28)	23,054.69	19,329.28	19,329.28	22,490.74	19,386.26	19,767.85	19,465.97
rovers (4)	234.60	268.86	127.84	233.66	127.84	127.84	127.84
satellite (4)	4,427.88	233.24	215.18	4,411.43	215.18	215.18	215.18
scanalyzer-08-strips (4)	2,635.85	15.24	15.24	742.88	15.24	15.24	15.24
scanalyzer-opt11-strips (1)	184.00	10.00	10.00	34.00	10.00	10.00	10.00
tidybot-opt11-strips (3)	12,348.98	3,020.36	3,020.36	12,345.51	3,020.36	3,048.60	3,085.71
tpp (5)	327.29	86.16	86.16	327.29	86.16	86.16	86.16
transport-opt08-strips (1)	10.00	16.00	10.00	10.00	10.00	10.00	10.00
trucks-strips (1)	740,948.00	3,543.00	3,431.00	740,862.00	3,431.00	3,431.00	3,521.00
visitall-opt11-strips (9)	2,089.45	1,093.24	686.96	2,053.41	686.96	707.09	719.81
woodworking-opt08-strips (7)	218,483.05	106.19	106.19	66,241.56	108.56	108.56	109.89
woodworking-opt11-strips (2)	773,198.06	164.27	164.27	772,864.88	164.27	164.27	164.27
zenotravel (7)	4,527.89	202.32	202.32	483.75	202.32	203.13	202.32
Geometric mean (398)	10,614.63	1,574.53	999.24	3,951.16	999.86	1,055.68	1,009.96

Table A. 22
Fraction of nodes in which h_{2} was evaluated for IDA* algorithms in planning domains.

h_{2} ratio	lazy	emp	T1
airport (21)	0.91	0.44	0.88
blocks (19)	0.63	0.54	0.55
depot (2)	0.63	0.63	0.62
driverlog (8)	0.36	0.36	0.35
freecell (28)	0.27	0.26	0.24
grid (1)	0.58	0.56	0.53
gripper (2)	0.25	0.25	0.13
ipc2014-opt-GED (13)	1.00	0.59	0.76
ipc2014-opt-Hiking (2)	0.10	0.10	0.09
ipc2014-opt-Maintenance (5)	0.20	0.20	0.20
ipc2014-opt-Tetris (2)	0.24	0.24	0.22
ipc2014-opt-Visitall (3)	0.59	0.54	0.51
logistics00 (8)	0.15	0.15	0.14
logistics98 (3)	0.34	0.34	0.34
miconic (138)	0.12	0.11	0.11
mprime (20)	0.56	0.56	0.55
mystery (18)	0.71	0.71	0.71
nomystery-opt11-strips (14)	0.24	0.23	0.20
openstacks-opt08-strips (4)	1.00	0.86	0.99
openstacks-opt11-strips (1)	1.00	0.66	0.98
openstacks-strips (5)	0.46	0.42	0.04
parcprinter-08-strips (13)	0.85	0.72	0.81
parcprinter-opt11-strips (8)	0.85	0.78	0.81
parking-opt11-strips (1)	0.19	0.19	0.19
pathways-noneg (4)	0.84	0.59	0.45
pegsol-08-strips (22)	0.87	0.43	0.78
pegsol-opt11-strips (12)	0.85	0.44	0.76
pipesworld-notankage (11)	0.29	0.29	0.26
pipesworld-tankage (7)	0.16	0.16	0.15
psr-small (28)	0.37	0.26	0.24
rovers (4)	0.22	0.22	0.18
satellite (6)	0.39	0.39	0.39
scanalyzer-08-strips (12)	0.85	0.85	0.80
scanalyzer-opt11-strips (9)	0.84	0.84	0.82
tidybot-opt11-strips (3)	0.57	0.56	0.55
tpp (5)	0.63	0.49	0.58
transport-opt08-strips (3)	0.78	0.78	0.69
trucks-strips (3)	0.83	0.83	0.81
visitall-opt11-strips (9)	0.65	0.63	0.57
woodworking-opt08-strips (10)	0.42	0.42	0.41
woodworking-opt11-strips (5)	0.39	0.39	0.38
zenotravel (9)	0.36	0.35	0.35
Average (501)	0.54	0.46	0.48

References

[1] S. Russell, E. Wefald, Principles of metareasoning, Artif. Intell. 49 (1991) 361-395.
[2] D. Tolpin, S.E. Shimony, Rational deployment of CSP heuristics, in: T. Walsh (Ed.), IJCAI, IJCAI/AAAI, 2011, pp. 680-686.
[3] N. Hay, S. Russell, D. Tolpin, S.E. Shimony, Selecting computations: theory and applications, in: N. de Freitas, K.P. Murphy (Eds.), UAI, AUAI Press, 2012, pp. 346-355.
[4] J.T. Thayer, W. Ruml, Bounded suboptimal search: a direct approach using inadmissible estimates, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI-11, 2011.
[5] E. Burns, W. Ruml, M.B. Do, Heuristic search when time matters, J. Artif. Intell. Res. (JAIR) 47 (2013) 697-740.
[6] D. O'Ceallaigh, W. Ruml, Metareasoning in real-time heuristic search, in: Lelis and Stern [39], pp. 87-95.
[7] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. SCC 4 (2) (1968) 100-107.
[8] R.E. Korf, Depth-first iterative-deepening: an optimal admissible tree search, Artif. Intell. 27 (1) (1985) 97-109.
[9] R.E. Korf, Linear-space best-first search, Artif. Intell. 62 (1) (1993) 41-78.
[10] A. Felner, U. Zahavi, R. Holte, J. Schaeffer, N. Sturtevant, Z. Zhang, Inconsistent heuristics in theory and practice, Artif. Intell. 175 (9-10) (2011) 1570-1603.
[11] R. Dechter, J. Pearl, Generalized best-first search strategies and the optimality of A*, J. ACM 32 (3) (1985) 505-536.
[12] L. Zhang, F. Bacchus, MAXSAT heuristics for cost optimal planning, in: AAAI, 2012.
[13] C. Domshlak, E. Karpas, S. Markovitch, Online speedup learning for optimal planning, J. Artif. Intell. Res. 44 (2012) 709-755.
[14] M.W. Barley, S. Franco, P.J. Riddle, Overcoming the utility problem in heuristic generation: why time matters, in: S.A. Chien, M.B. Do, A. Fern, W. Ruml (Eds.), Proc. ICAPS 2014, AAAI, 2014.
[15] L.H.S. Lelis, S. Franco, M. Abisrror, M. Barley, S. Zilles, R.C. Holte, Heuristic subset selection in classical planning, in: S. Kambhampati (Ed.), Proc. IJCAI 2016, IJCAI/AAAI Press, 2016, pp. 3185-3191.
[16] D. Tolpin, T. Beja, S.E. Shimony, A. Felner, E. Karpas, Toward rational deployment of multiple heuristics in A*, in: IJCAI, 2013.
[17] D. Tolpin, O. Betzalel, A. Felner, S.E. Shimony, Rational deployment of multiple heuristics in IDA*, in: T. Schaub, G. Friedrich, B. O'Sullivan (Eds.), ECAI 2014, in: Frontiers in Artificial Intelligence and Applications, vol. 263, IOS Press, 2014, pp. 1107-1108.
[18] A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N.R. Sturtevant, J. Schaeffer, R. Holte, Partial-expansion A* with selective node generation, in: AAAI, 2012, pp. 471-477.
[19] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N.R. Sturtevant, R.C. Holte, J. Schaeffer, Enhanced partial expansion A, J. Artif. Intell. Res. (JAIR) 50 (2014) 141-187.
[20] R. Stern, T. Kulberis, A. Felner, R. Holte, Using lookaheads with optimal best-first search, in: AAAI, 2010, pp. 185-190.
[21] X. Sun, W. Yeoh, P. Chen, S. Koenig, Simple optimization techniques for A*-based search, in: AAMAS, 2009, pp. 931-936.
[22] D. Tolpin, O. Betzalel, A. Felner, S.E. Shimony, Rational deployment of multiple heuristics in IDA*, CoRR arXiv:1411.6593, http://arxiv.org/abs/1411.6593.
[23] L.H.S. Lelis, S. Zilles, R.C. Holte, Predicting the size of IDA*'s search tree, Artif. Intell. 196 (2013) 53-76.
[24] M. Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006) 191-246.
[25] E. Karpas, C. Domshlak, Cost-optimal planning with landmarks, in: IJCAI, 2009, pp. 1728-1733.
[26] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions: what's the difference anyway?, in: ICAPS, 2009, pp. 162-169.
[27] J. Seipp, F. Pommerening, S. Sievers, M. Helmert, Downward-lab 2.0, 2017, https://doi.org/10.5281/zenodo.399255.
[28] R.E. Korf, L.A. Taylor, Finding optimal solutions to the twenty-four puzzle, in: AAAI, 1996, pp. 1202-1207.
[29] O. Betzalel, A. Felner, S.E. Shimony, Type system based rational lazy IDA, in: Lelis and Stern [39], pp. 151-155, http://www.aaai.org/ocs/index.php/SOCS/ SOCS15/paper/view/11015.
[30] H. Zhang, S. Guo, W. Zhu, A. Lim, B. Cheang, An investigation of IDA* algorithms for the container relocation problem, in: Proc. of the 23rd Inter. Conf. on Industrial Engineering and Other Applications of Applied Int. Systems - Part I, IEA/AIE'10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 31-40.
[31] M. Caserta, S. Voß, M. Sniedovich, Applying the corridor method to a blocks relocation problem, OR Spektrum 33 (4) (2011) 915-929.
[32] B. Jin, A. Lim, W. Zhu, A greedy look-ahead heuristic for the container relocation problem, in: IEA/AIE, in: LNCS, vol. 7906, Springer, 2013 , pp. 181-190.
[33] D. Berend, S. Cohen, S.E. Shimony, S. Zucker, Optimal ordering of tests with extreme dependencies, in: Modelling, Computation and Optimization in Information Systems and Management Sciences - Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, MCO 2015, Metz, France, May 11-13, 2015, Part I, 2015, pp. 81-92.
[34] D. Berend, R. Brafman, S. Cohen, S. Shimony, S. Zucker, Optimal ordering of independent tests with precedence constraints, Discrete Appl. Math. 162 (2014) 115-127.
[35] R.E. Korf, A. Felner, Recent progress in heuristic search: a case study of the four-peg towers of Hanoi problem, in: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, January 6-12, 2007, 2007, pp. 2324-2329.
[36] L.H.S. Lelis, R. Stern, A. Felner, S. Zilles, R.C. Holte, Predicting optimal solution cost with conditional probabilities - predicting optimal solution cost, Ann. Math. Artif. Intell. 72 (3-4) (2014) 267-295.
[37] L.H.S. Lelis, R. Stern, S.J. Arfaee, S. Zilles, A. Felner, R.C. Holte, Predicting optimal solution costs with bidirectional stratified sampling in regular search spaces, Artif. Intell. 230 (2016) 51-73.
[38] P. Joulani, A. György, C. Szepesvári, Online learning under delayed feedback, in: ICML, 2013, pp. 1453-1461.
[39] L. Lelis, R. Stern (Eds.), Proceedings of the Eighth Annual Symposium on Combinatorial Search, SOCS 2015, 11-13 June 2015, Ein Gedi, the Dead Sea, Israel, AAAI Press, 2015.

[^0]: * Corresponding author.

 E-mail addresses: karpase@technion.ac.il (E. Karpas), odedbetz@cs.bgu.ac.il (O. Betzalel), shimony@cs.bgu.ac.il (S.E. Shimony), tolpin@cs.bgu.ac.il (D. Tolpin), felner@bgu.ac.il (A. Felner).

[^1]: 1 A heuristic (in undirected graphs) is consistent if for any two nodes n and $m,|h(n)-h(m)| \leq \operatorname{cost}(n, m)$ [10].
 ${ }^{2} A^{*}$ has similar guarantees on the set of nodes expanded with an inconsistent heuristic but may perform many unnecessary re-expansions [10]. In addition, we are neglecting the tie breaking in the last f-layer.

[^2]: ${ }^{3}$ The only "risk" in this enhancement is that n might have a sibling node n^{\prime} with an even lower f value; in this case, n^{\prime} would have been removed from Open before n by basic $L A^{*}$. However, this does not affect the optimality of the solution returned, as both h_{1} and h_{2} are admissible heuristics, so n still ends up in Open with an admissible estimate.

[^3]: ${ }^{4}$ This quantity was denoted by p_{h} in previous papers.

[^4]: ${ }^{5}$ With non-uniform action costs, we can either generate the successors to get their exact g-values, or use an estimate of the average action cost.
 ${ }^{6}$ It is worth noting that the Fast Downward translator managed to get rid of conditional effects in the 3 instances of cavediving as well as in the maintenance domain, even though they were present in the pddl domain.

[^5]: ${ }^{7}$ Adapting the decision rule of selmax to $I D A^{*}$ is a non-trivial task, and is outside the scope of this paper.

[^6]: ${ }^{8}$ Retrieved from http://iwi.econ.uni-hamburg.de/IWIWeb/Default.aspx?tabId=1083\&tabindex=4.
 ${ }^{9}$ In the larger instances, there appears to be a discrepancy in number of generated node numbers in the table. The discrepancy is due to timeouts when running "IDA*(LB3)".

