
Position Paper: Reasoning About Domains with PDDL

Alexander Shleyfman and Erez Karpas
Faculty of Industrial Engineering and Management

Technion — Israel Institute of Technology

Abstract

One of the major drivers for the progress in scalability of au-
tomated planners has been the introduction of the Planning
Domain Definition Language (PDDL) and the International
Planning Competition (IPC). While PDDL provides a con-
venient formalism to describe planning problems, there is a
significant gap with regards to describing domains. Although
PDDL is split into a domain description and a problem de-
scription, the domain description is not enough to specify
a domain completely, as it does not constrain the possible
problems in the domain. For example, there is nothing in
the blocksworld PDDL domain description which says that a
block can not be on top of itself in the initial state. In this
position paper, we argue that PDDL domains should be ex-
tended to incorporate a new section which constrains possible
problems in the domain. We propose such an extension, and
describe several use cases where this extension can be useful.

Introduction
The domain-independent planning community has made
significant progress scaling up planners, allowing them to
address bigger and more complicated problem instances.
One of the major drivers for this progress has been the in-
troduction of the International Planning Competition (IPC),
with its standard language for describing planning prob-
lems — PDDL, the Planning Domain Definition Language
(McDermott 2000). The PDDL language was further ex-
tended to support additional features, which were intro-
duced in later iterations of the IPC (Fox and Long 2003;
Edelkamp and Hoffmann 2004; Gerevini and Long 2005).

PDDL splits the definition of a planning problem into two
parts: domain and problem. The domain describes the types
of object this domain deals with, along with schemas for the
predicates used to describe the state of the world and the
operators used to change it. The problem describes the spe-
cific objects in the world in this problem instance, as well as
the initial state and the goal. Typically, a domain in the IPC
is defined by a single PDDL domain description (usually in
a separate file), and a random problem instance generator1.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Some domains have a separate domain description for each
problem instance. We will address this issue in the final discussion.

Planners are then evaluated based on their performance on a
set of problem instances generated by the problem generator.

While this is a reasonable way to evaluate how well plan-
ners solve planning problems, we claim that this makes it
exteremely difficult to reason over a domain. For example,
consider the well known BLOCKSWORLD domain, which
features the predicate ON(x, y), indicating that block x is
directly on top of block y. We would like to be able to prove
that a block can never be on top of itself. This is fairly easy
to do using techniques such as relaxed reachability. How-
ever, relaxed reachability takes an initial state as input, and
the initial state is only described in the PDDL problem. In
fact, there is nothing preventing us from generating an in-
stance of BLOCKSWORLD in which ON(A,A) does appear
in the initial state. Thus, in order to be able to prove that
a block is never on top of itself, we would need to analyze
the random problem instance generator and understand it.
Furthermore, even if we were able to analyze the problem
generator, some domains are defined simply by a domain
description and a set of problems, making this impossible.

In this short position paper, we argue that the PDDL lan-
guage needs to be further extended, in order to allow for
automated reasoning about domains, rather than only single
problem instances. We first propose such an extension, and
then provide several example use cases where the ability to
reason over a domain, specified using our extended version
of PDDL, could be helpful.

Background
We begin with a brief review of PDDL. For the full details,
we refer the reader to the various papers describing the dif-
ferent versions of PDDL (McDermott 2000; Fox and Long
2003; Edelkamp and Hoffmann 2004; Gerevini and Long
2005). As previously mentioned, PDDL divides the defini-
tion of a planning problem into two parts: the domain, and
the problem, which typically are contained in two different
files. The division allows for the same domain file to be used
with multiple problem files.

A PDDL domain consists of a description of the possible
types of objects in the world. A type t can inherit from an-
other type s, so that all objects with type s are also of type
t. While there is a small controversy regarding whether the
type hierarchy must form a proper tree, or can be a graph,
this issue is irrelevant for the purposes of this paper. The



domain also consists of a set of constants, which are objects
which appear in all problem instances of this domain.

The second part of the domain description is a set of predi-
cates. Each predicate is described by a name and a signature,
consisting of an ordered list of types. Given a set of objects,
we can ground the given predicates, yielding a set of propo-
sitions which describe the state of the world. Note, wowever,
that these objects are only given as part of the problem de-
scription, and not in the domain description. The domain
also describes a set of derived predicates, which are predi-
cates associated with a logical expression. The idea is that
the value of each derived predicate is computed automati-
cally by evaluating the logical expression associated with it.

Finally, the domain description consists of a set of opera-
tors. Each operator is also described by a name, a signature,
a precondition, and an effect. The signature is now an or-
dered list of named parameters, each with a type. The pre-
condition is a logical formula. The basic building blocks of
the formula are the abovementioned predicates. These can
be combined using the standard first order logic logical con-
nectives. We remark that the predicates can only be param-
terized by the operator parameters, the domain constaints,
or, if they appear within the scope of a forall or exists state-
ment, by the variable introduced by the quantifier. The effect
of the operator is similar, except that it described a partial
assignment, rather then a formula, and thus can not contain
any disjunctions. An operator can also be grounded given a
set of objects, yielding grounded actions.

A PDDL problem is much simpler than the domain. It
consists of a set of objects, each associated with a type (if a
type is not specified, the object is assumed to be of a default
type), and a description of the initial state and the goal. The
initial state is described by the list of propositions (grounded
predicates) that are true in it, where any proposition that is
not listed it assumed to be false. The goal is also a logical
expression, similarly to the precondition of an operator, ex-
cept that it can refer to all objects in the problem instance.
Although the goal can be an arbitrarily complex logical ex-
pression, in most existing planning benchmarks domains, it
is a simply conjunction of positive propositions. In the rest
of this paper, we will assume the goal takes this simple form,
and discuss more complex goals in the conclusion.

As mentioned above, a domain can be grounded given a
set of objects, which are described in the problem. Most
modern planners start by grounding the given planning prob-
lem, and operate on the grounded problem description.
However, if our intention is to reason over a domain, this
approach is not practical, as there is no single problem to
ground over. In the next section, we present our proposal to
extend PDDL to allow some reasoning over a domain, even
when a problem instance is not given.

Extending PDDL
The heart of our proposed extension to PDDL is to add con-
straints about the problem to the domain description. Fol-
lowing the BLOCKSWORLD example from the introduction,
we could specify that in the initial state of any legal instance
of BLOCKSWORLD, no block is on top of itself. We could
then use a lifted version of relaxed reachability analysis to

(forall (?x) (not (init (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (init (on ?y ?x)) (init (on ?z ?x)))
(= ?z ?y)))

(forall (?x) (or
(init (on-table ?x))
(exists (?y) (init (on ?x ?y)))))

(forall (?x) (not (goal (on ?x ?x))))

(forall (?x ?y ?z) (implies
(and (goal (on ?y ?x)) (goal (on ?z ?x)))
(= ?z ?y)))

Figure 1: BLOCKSWORLD Domain Constraints

infer that no block can ever be on top of itself. We remark
that these are different than the constraints introduced in
PDDL 3.0 (Gerevini and Long 2005), which constrain pos-
sible plans for a given problem.

Specifically, we propose to add another section to the
PDDL domain description, which will consist of a set of
constraints. Each constraint will be a first order logic state-
ment, which can refer to domain constants, and, of course,
to variables introduced by each quantifier within its scope.
However, the basic building blocks will not be predicates,
but rather predicates prepended with a modal operator, spec-
ifying if this refers to the initial state or the goal. One caveat
is that we can not check whether some proposition if false in
the goal, as the goal is only a partial state. We also explic-
itly allow the usage of the (object) equality predicate. As the
following examples will show, it is quite useful.

The interpretation of these constraints is, naturally, as
constraints over a problem description. We can treat each
problem as specifying a full initial state, and a partial goal
state (as we assume the goal only describes the propositions
we want to be true). Thus, we can evaluate each constraint,
and check whether a given problem satisfies it.

Figure 1 shows how our extension can be applied to
BLOCKSWORLD. The first constraint states that a block is
never on top of itself in the initial state. The second con-
straint states that there can be at most one block on top of
another block (i.e., if y and z are both on top of x, then they
must be the same block). The third constraint states that ev-
ery block must be on top of another block or on the table in
the initial state. Finally, the last two constraints are similar
to the first two, except they are applied to the goal.

Another example highlights the differences between two
different versions of the LOGISTICS domain: the one used
in the first IPC (1998) and the one used in the second IPC
(2000). Even though the PDDL domain description was
the same in both competitions, LOGISTICS-98 is still much
harder to solve than LOGISTICS-2000. This is because in
the instances generated for second IPC, there was an im-
plicit constraint, that there is eaxctly one truck in each city.
This constraint is shown in Figure 2.



(forall (?c - city ?s ?t - truck) (implies
(and (exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?t ?l))))

(exists (?l - location) (and (init (in-city ?l ?c)) (init (in ?s ?l)))))
(= ?s ?t)))

Figure 2: LOGISTICS-2000 Additional Constraint

Use Cases
So far, we have only proposed an extension to PDDL, with-
out explaining why we believe such an extension is useful.
In this section we provide several use cases where our pro-
posed extension can be useful. We remark that we have not
implemented any of these ideas, we simply claim that they
are feasible.

Learning and Using Domain Control Knowledge
There has been a significant body of work on learning, and
using, domain control knowledge. While a full review of
all the relevant literature is beyond the scope of this pa-
per, we review some influential works in this area. First,
the original STRIPS system had a macro learning compo-
nent, which attempted to generalize successful plans from
one problem to others (Fikes, Hart, and Nilsson 1972). This
is, in fact, an example of explanation based learning (EBL)
(e.g., (Mooney and Bennett 1986; Minton 1990)), where a
system typically look at a single example and attempts to
generalize it.

Another example is the TLPlan planner (Bacchus and Ka-
banza 2000), which was able to exploit manually coded
domain-specific control knowledge expressed in a tempo-
ral logic. Later work tried to learn such rules automatically
(Yoon, Fern, and Givan 2008). In fact, the learning track in
the international planning competition (IPC), introduced in
2011 (Fern, Khardon, and Tadepalli 2011), focuses on learn-
ing domain control knowledge. In the learning track, each
competitor is given access to a PDDL domain file and a ran-
dom problem generator. The competitor is then given a very
long time to produce a domain control knowledge (DCK)
file, which the planner can then use to solve new problems
in the domain, with the intent that the DCK willl help the
planner improve its performance.

With the way this track is set up, the best type of guar-
antee that can be provided is a probably approximately cor-
rect (PAC) (Valiant 1984) style guarantee, i.e., that there is a
high probability that the learner has learned something that
is fairly good. However, there is no way to guarantee that
the learned domain control knowledge will work, because
there is no characterization of all possible instances in the
domain, but only a sample of problem instances. Adopting
the proposed extension to PDDL will allow learners to prove
something about what they are learning.

For example, suppose we wanted to make the Fast Down-
ward translator (Helmert 2009) more efficient by learning
what propositions are grouped together into a finite-domain
variable. We might be able to learn, for example, that the
location of a truck in LOGISTICS is always a single finite
domain variables. In fact, since the translator looks for in-
variants in a lifted way in the domain, and then generates
possible mutex groups from invariants which have a single
matching fact that is true in the initial state, we believe this

would be relatively straightforward to so. Of course, this
is only possible if we know that AT(T, L) has exactly one
true proposition for each given truck T in the initial state
— something which is easily described using our proposed
PDDL extension.

Similar invariants can be seen in the BLOCKSWORLD do-
main. The same as trucks, blocks each are represented as
single finite domain variables, which are generated using
the invariants founded in the domain description, and the
predicates in the initial state. This mutexes however, are not
enough to randomly generate a “realistic” BLOCKSWORLD
problem. As we mentioned before single block can not be
place upon itself, and thus there are no predicates of the form
ON(x, y). However, consider a problems with two blocks A
and B, where block A is placed on top of block B and block
B is placed on top of block A. It’s easy to see that this posi-
tion satisfies the condition described in the precious section,
but in the same time, it’s both “unrealistic” and unsolvable,
given the blocks A and B have some other positions in the
goal description. Even more so, this “ouroboros”2 of a sort
can be extended to a cycle of an arbitrary length, making this
condition hard to detect without using reachability analysis.

Generalized Planning

A somewhat similar use case occurs in generalized plan-
ning. In generalized planning, the objective is to generate
a controller which can solve all possible problems from a
given planning domain. Examples of work on generalized
planning include generating plans with loops and branch-
ing (Srivastava, Immerman, and Zilberstein 2011) and fi-
nite state controllers (Bonet, Palacios, and Geffner 2009;
Aguas, Celorrio, and Jonsson 2016). Again, the issue is that
with no formal specification of a domain, it is impossible to
prove that a controller will solve all problems in a domain.

On the other hand, using our proposed PDDL extension,
it is very easy (in theory) to use the following scheme. First,
call a generalized planner on a given set of problems in the
domain of interest. Second, verify if the resulting controller
solves all possible problems in the domain. If the answer is
yes, we have a controller that can solve all problems in the
domain. Otherwise, generate a counter example, add it to
the given set if problems, and repeat. Of course, the prob-
lem of verifying if the given controller works for all possible
problems in the domain, and generating a counter example if
it does not is undecidable (as we can generate a domain that
corresponds to a Turing machine, and each problem corre-
sponds to a given instance terminating). Nevertheless, ef-
ficient (incomplete) termination analyzers do exist, thus al-
lowing us to hope this idea might work in practice on some
domains of interest.

2A serpent eating its own tail.



Almost Automatic Random Problem Generators
When creating a new domain in PDDL, the burden of spec-
ifying which problems are legal and which are not falls to
the problem generator. For example, the problem gener-
ator for BLOCKSWORLD will never generate a problem in
which on(A,A) appears in the initial state. However, this
knowledge is part of the problem generator’s code. On top
of this, the problem generator provides some distribution on
the problems.

With our proposed extension, the first part of the ran-
dom problem generator’s job could be automated. The only
implementation necessary in a random problem generator
would be just the random part — the distribution.

While we believe this would be beneficial by itself, this
also has the potential of enabling bootstrapping approaches
(Arfaee, Zilles, and Holte 2010), where larger and larger
problem instances must be generated. Of course, the issue
of where the distribution comes from is still a criticial com-
ponent of such an approach, which is beyond the scope of
our proposed PDDL extension.

State Estimation
Finally, another use case comes from the combination of
planning with real world sensing. Consider, for example,
a camera looking at a BLOCKSWORLD scene. The camera,
along with the image processing and object recognition soft-
ware that looks at its output, will typically produce a set of
real-world coordinates for the position of each block. These
coordinates will typically have some error associated with
them, due to sensor noise, lighting conditions, probabilistic
image processing algorithms, and more.

A state estimator will look at the history of these mea-
surements to produce the symbolic description of the cur-
rent state. Without telling the state estimator that a block
can only be on top of one other block, we might end up with
states containing both on(A,B) and on(A,C). However, if
our state estimator was able to infer mutual exclusion invari-
ants for the domain, it could reject samples which violate
these constraints, yielding more accurate state estimates.

Case Study: Discovering Domain Mutexes
As a first step to demonstrate reasoning over a domain,
rather than over individual problems, we used the Fast
Downward translator (Helmert 2009), in order to examine
invariant candidates in PDDL domains from IPC bench-
marks. As previously mentioned, the Fast Downward trans-
lator identifies lifted invariant candidates looking only at the
PDDL domain. For example, the translator identifies that
for a given truck T , the number of locations L for which
AT(T, L) holds does not increase for any applicable action.
The translator then checks whether this invariant candidate
generates a set of mutexes, by checking if the number of
locations each truck T is at in the initial state is 1 or less.

In this case study, we used the invariants discovered by the
Fast Downward translator for each domain. For invariant,
we checked whether it always led to mutexes in all instanti-
ations of the invariant in all problems. If so, then it is likely

safe to add a problem constraint derived from this invari-
ant to the domain. However, without an explicit extension
to PDDL, we can never know that this is a true lifted mu-
tex, or whether the random problem generator just happened
to only generate problems where this invariant happened to
lead to mutexes.

Experimental Results
For our experiment we used the International Planning Com-
petition benchmarks (IPC‘98 – IPC‘11), from which we ex-
cluded all the benchmarks that have more than one domain
description file. In the relevant benchmarks we count the
invariant candidates extracted by the Fast Downward trans-
lator, and the check which of those invariant were grounded
to mutexes, and which were not, due to the fact that the num-
ber of initial state predicates participating in these invariants
exceeded 1. The results are presented in Table 1. Note that
there are no domain invariants that haven’t been grounded to
a mutex due to absence of the appropriate initial states facts.

Most of the invariants in these benchmarks are either al-
ways grounded, or always overcrouded – there are at least 2
predicates in the initial state that participate in that invariant.
However, there are some invariants that are mixed. Detailed
analysis shows that this happens mostly due to the fact that
there is a smaller invariant that is contained in a larger one
– say, in the LOGISTICS domain all the locations of a given
truck T constitute an invariant, but all the locations of of all
the trucks are also an invariant of the domain. The later one
we hold only in the case where there is exactly one truck in
the problem. Thus, mixed invariants can be seen grounded in
the small problems of the domains, but getting overcrowded
in the large ones.

Conclusion
In this paper, we have proposed an extension to PDDL which
will allow for automated formal reasoning about domains.
This extension will make no difference to the task of solving
a single planning problem, with the possible exception of
first validating the given problem instance. However, as we
have illustrated in the previous section, such an extension
will allow us to perform formal reasoning over a domain
description, as well as provide a cleaner definition of what
constitutes a planning domain.

While the focus of this paper has been on classical plan-
ning, our proposal becomes perhaps even more relevant in
the context of non-deterministic planning. Specifically, fi-
nite state controllers are very useful with non-deterministic
and partially observable planning problems, and state esti-
mation is a must for realistic applications that involve sens-
ing in a partially observable world.

The paper does not presume to provide the definitive, best
possible, extension to PDDL. Two issue that were already
mentioned are that some domains have a separate domain
description for each problem instance, and that the goal can
be a logical formula, not just a single conjunction. With re-
gards to the first issue, this is usually the result of simplify-
ing ADL (Pednault 1989) to STRIPS for the sake of planners
that can not handle ADL. We argue this is not a real issue



Domain Inv Pure Over Mixed
airport-adl 8 6 0 2
assembly 0 0 0 0
barman-opt11-strips 3 3 0 0
barman-sat11-strips 3 3 0 0
blocks 3 3 0 0
depot 5 4 1 0
driverlog 2 2 0 0
elevators-opt11-strips 3 3 0 0
elevators-sat11-strips 3 3 0 0
floortile-opt11-strips 5 4 1 0
floortile-sat11-strips 5 4 1 0
freecell 7 6 1 0
grid 7 5 2 0
gripper 3 3 0 0
logistics00 1 1 0 0
logistics98 1 1 0 0
miconic-simpleadl 1 1 0 0
miconic 1 1 0 0
movie 0 0 0 0
mprime 3 3 0 0
mystery 3 3 0 0
no-mprime 2 2 0 0
no-mystery 3 3 0 0
nomystery-opt11-strips 2 2 0 0
nomystery-sat11-strips 2 2 0 0
openstacks 8 5 3 0
optical-telegraphs 7 6 1 0
parking-opt11-strips 4 3 1 0
parking-sat11-strips 4 3 1 0
pegsol-opt11-strips 2 1 1 0
pegsol-sat11-strips 2 1 1 0
philosophers 7 6 1 0
pipesworld-notankage 2 1 1 0
psr-large 0 0 0 0
psr-middle 0 0 0 0
rovers 12 6 3 3
satellite 2 1 0 1
scanalyzer-opt11-strips 0 0 0 0
scanalyzer-sat11-strips 0 0 0 0
sokoban-opt11-strips 3 2 1 0
sokoban-sat11-strips 3 2 1 0
storage 3 3 0 0
tidybot-opt11-strips 3 3 0 0
tidybot-sat11-strips 3 3 0 0
tpp 5 5 0 0
transport-opt11-strips 2 2 0 0
transport-sat11-strips 2 2 0 0
trucks 3 3 0 0
visitall-opt11-strips 1 1 0 0
visitall-sat11-strips 1 1 0 0
woodworking-opt11-strips 7 6 1 0
woodworking-sat11-strips 7 6 1 0
zenotravel 2 2 0 0

Table 1: Inv – number of invariants in the domain; Pure –
number of invariants that are always grounded; Over – num-
ber of invariants that always have at least two predicates in
the initial state; Mixed – number of invariants that some-
times are grounded, and sometimes have to many predicted
in the initial state.

here, as reasoning over our proposed extension will require
ADL-like reasoning (specifically, quantifiers). Furthermore,
it is possible to perform reasoning over a domain using the
complex ADL domain specification, and then planning us-
ing the simplified STRIPS version of the given problem.

The second issue, of complex goals, deserves further dis-
cussion. It could be possible to modify our proposed ex-
tension to PDDL to contain more general statements about
the goal, such as “the goal entails X” or “the goal contains
X as a subexpression in a location specified by y”. We are
skeptical that such statements would be of use in modeling
domains of interest to the planning community, and so we
do not propose them here.

Finally, despite the abovementioned issues, we believe
this paper serves as a starting point for a discussion about
what exactly constitutes a domain, and on what the auto-
mated planning community can contribute on top of state-
of-the-art automated planners.

References
Aguas, J. S.; Celorrio, S. J.; and Jonsson, A. 2016. Gener-
alized planning with procedural domain control knowledge.
In Proc. IJCAI 2016, 285–293.
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2010. Bootstrap
learning of heuristic functions. In Proc. SoCS 2010, 52–60.
Bacchus, F., and Kabanza, F. 2000. Using temporal logics to
express search control knowledge for planning. AIJ 116(1-
2):123–191.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
derivation of memoryless policies and finite-state controllers
using classical planners. In Proc. ICAPS 2009.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classical part of the 4th International Plan-
ning Competition. Technical Report 195, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.
Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The
first learning track of the international planning competition.
Machine Learning 84(1-2):81–107.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. AIJ 3:251–288.
Fox, M., and Long, D. 2003. PDDL2.1: An extension
to PDDL for expressing temporal planning domains. JAIR
20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical Report R. T. 2005-08-47,
Dipartimento di Elettronica per l’Automazione, Università
degli Studi di Brescia.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. AIJ 173:503–535.
McDermott, D. 2000. The 1998 AI Planning Systems com-
petition. AI Magazine 21(2):35–55.
Minton, S. 1990. Quantitative results concerning the utility
of explanation-based learning. AIJ 42(23):363–391.
Mooney, R. J., and Bennett, S. 1986. A domain independent
explanation-based generalizer. In Proc. AAAI 1986, 551–
555.



Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR
1989, 324–332.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2011. A
new representation and associated algorithms for general-
ized planning. AIJ 175(2):615–647.
Valiant, L. G. 1984. A theory of the learnable. CACM
27(11):1134–1142.
Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. JMLR 9:683–718.


