
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: http://www.tandfonline.com/loi/gopt20

Combined time and energy optimal trajectory
planning with quadratic drag for mixed discrete-
continuous task planning

Ayal Taitler, Ilya Ioslovich, Per-Olof Gutman & Erez Karpas

To cite this article: Ayal Taitler, Ilya Ioslovich, Per-Olof Gutman & Erez Karpas (2018): Combined
time and energy optimal trajectory planning with quadratic drag for mixed discrete-continuous task
planning, Optimization, DOI: 10.1080/02331934.2018.1502769

To link to this article:  https://doi.org/10.1080/02331934.2018.1502769

Published online: 28 Jul 2018.

Submit your article to this journal 

Article views: 31

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=gopt20
http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2018.1502769
https://doi.org/10.1080/02331934.2018.1502769
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1502769&domain=pdf&date_stamp=2018-07-28
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2018.1502769&domain=pdf&date_stamp=2018-07-28


OPTIMIZATION
https://doi.org/10.1080/02331934.2018.1502769

Combined time and energy optimal trajectory planning
with quadratic drag for mixed discrete-continuous task
planning

Ayal Taitler a, Ilya Ioslovichb, Per-Olof Gutmanb and Erez Karpasc

aTechnion Autonomous Systems Program, Technion Israel Institute of Technology, Haifa, Israel;
bFaculty of Civil and Environmental Engineering, Technion Israel Institute of Technology, Haifa, Israel;
cFaculty of Industrial Engineering and Management, Technion Israel Institute of Technology, Haifa,
Israel

ABSTRACT
The problem of mixed discrete-continuous task planning
for mechanical systems, such as aerial drones or other
autonomous units, can be often treated as a sequence of
point-to-point trajectories. In this work, the problem of opti-
mal trajectory planning under a combined completion time
and energy criterion, for a straight point to point path for a
second-order systemwith quadratic under state (velocity) and
control (acceleration) constraints is considered. The solution
is obtained and proved to be optimal using the Pontryagin
Maximum Principle. Simulation results for different cases are
presented and compared with a customary numerical optimal
control solver.
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1. Introduction

Robots operating in the real world often have to come up with a sequence of
actions which will take them from an initial state to a desired goal state. Dur-
ing planning the robots have to take into account both discrete and continuous
changes, e.g. temporal constraints. Temporal planners such as [1] and [2] have
been introduced in the last few years and managed to deal with the temporal
problems quitewell.When dealingwith robots, dynamic properties such as accel-
erations and continuity of motion (e.g. continuous velocity) are an integral part
of the problem. The temporal planning framework can represent these require-
ments to some degree, assuming a low-level controller can compensate for any
inaccuracies done during the planning process. An attempt to address the prob-
lem of finding a discrete temporal plan with a continuous control policy within
the planning framework has been done in Scotty [3]. In that planner, a con-
stant velocity profile was found which obeys simple physical constraints such as
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2 A. TAITLER ET AL.

bounded velocity, but no physical continuity between actions has been enforced.
Thus the policy planned is only a rough reference trajectory for a physical system
to follow, but it is a step towards simultaneous discrete-continuous planning. One
of Scotty’s advantages is the fact that the planning is done for a first-order inte-
grator, which is very simple and allows Scotty to formulate a simple second-order
cone optimization problem which can be solved efficiently. The next logical step
is to make planners like Scotty aware of more complex dynamic constraints in
order to find a more realistic trajectory while still keeping the simplicity of the
planning with a first-order integrator.

The planner discussed so far usually calculates a sequence of piecewise linear
trajectories, where each line corresponds to a temporal action in the plan. Thus
each trajectory is in fact a single axis trajectory from an initial condition to a
final condition, which are imposed by the actions before and after. Planning with
a simple high-level model such as done in Scotty with a low-level planner which
usesmore realistic and complex dynamics can keep the simplicity of the planning
and still make it more aware of the real dynamics. Of course the low-level planner
will have to be able to verify and impose constraints as necessary on the high-level
simple planner.

In this work, we address the problemof planning a single trajectory for amodel
with constraints, which were inspired by the requirements of Scotty, so that a
mixed discrete-continuous planner can be used during the planning process. A
method for computing the optimal trajectory for a combined minimum comple-
tion time andminimum energy is given, based on a second-order integrator with
quadratic drag, subject to constraints. The control input is the acceleration which
enforces a continuous velocity profile and is bounded as expected. The velocity is
also bounded and the quadratic drag which is proportional to the velocity square
is both inspired by the battery requirements of Scotty and of real drag operating
on objects moving through air or fluids [4].

The general problem of optimal control has been studied extensively and
solid mathematical tools have been established [5], and later extended even
more, e.g. problems with state constraints [6]. The problems of optimal time
and optimal energy are particularly of interest, especially for trajectory planning
problems, and many approaches have been established [7]. In [8], a solution for
second-order and third-ordermodels with control and state constraints for a time
optimal criterion, with a drag which was proportional to the sign of the velocity
has been presented. In [9], the problem ofminimum energy for a third-order sys-
tem with control and state constraints was considered, and [10] has considered
a similar problem with additional energy terms such as the mechanical energy
loss. A comparison between a minimum energy criterion and a minimum time
criterion was done in [11]. Combined criteria for robotic manipulators were con-
sidered in [12] for linear dynamics with path constraints. An Second-Order Cone
Programing (SOCP) optimization approach for combined criteria was intro-
duced in [13] for dynamics with a quadratic term without path constraints. A
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numerical tool for solving optimal control problem is DIDO [14], which by using
pseudo-spectral algorithms [15] can target complex optimal control problems.
This solver will be used for comparison of the results in this work.

The solution presented here for the combined time-energy criterion for a
second-order system with quadratic drag and path constraints has two possible
solutions based on the parameters of the problem. One of the solutions has a time
optimal like characteristics, comprising of three segments: acceleration, constant
velocity on the bound and deceleration. The other solution is more like a min-
imum energy solution comprised of a single arc not reaching the bounds. The
optimization problem is presented in Section 3 and solved in Section 4, simula-
tion results and comparison to awell-established commercial solver are presented
in Section 6, and conclusions are presented in Section 7.

2. Backgroundmaterial

Weconsider a standard optimal control formulation in continuous time. The goal
is tominimize a performance criterion under some systemdynamics, and control
and state constraints with known starting and final conditions. The optimization
problem is of the following general form:

minimize
u,tf

∫ tf

t0
l(x, u) dt

subject to

dx
dt

= f (x, u)

x(t0) = x0
x(tf ) = xf
Cuu ≤ U t ≥ t0
Cx ≤ X t ≥ t0.

(1)

Here x ∈ R
n is the state vector, and u ∈ R

2 is the control input to the system,
both are functions of the time. The function f (x, u) is the system dynamics and
U and X are the constraints on the control and state vector respectively. The
Hamiltonian of the system is defined as

Ho(x, p, u) = pTf (x, u) − l(x, u), (2)

where p ∈ R
n is the vector of co-states. When state vector constraints are present

the augmented Hamiltonian is used

H(x, p, u, λ) = pTf (x, u) − l(x, u) − λT(Cx − X), (3)

where λ ≥ 0 is a vector of time-dependent Lagrange multipliers which are non-
zero only when the respective state constraint is active. The optimal solution
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x∗, u∗, p∗ must satisfy three conditions. The first is the system dynamics

dx∗

dt
= ∂H(x∗, p∗, u∗, λ∗)

∂p
. (4)

The second is the co-states dynamics

dp∗

dt
= −∂H(x∗, p∗, u∗, λ∗)

∂x
, (5)

and the third condition is for the control vector

H(x∗, p∗, u∗, λ∗) = max
u

H(x∗, p∗, u, λ∗). (6)

According to the transversality condition for the free final time [16]

H(tf ) = 0. (7)

Finally, when the Hamiltonian is not explicitly time dependent, ∂H/∂t = 0 [16],
we conclude that

H(tf ) = 0. (8)

The Hamiltonian is constant through the whole process.

3. Statement of the problem

The system considered is a second-order integrator with quadratic drag, under
acceleration/control constraint and velocity/state constraint. The chosen perfor-
mance measure is one combined of completion time and consumed energy. It
is obvious that the two are conflicting and cannot be met simultaneously. The
trade-off between the two components in the criterion are tuned with a weight
parameter α in order to give more significance to one of them.

The state equations, performance measure, boundary conditions and con-
straints are given next

minimize
u,tf

∫ tf

t0

(
1 + α

1
2
u2(t)

)
dt, α > 0

subject to

dx1
dt

= x2

dx2
dt

= u − 1
2
kx22

|u| ≤ U t ≥ t0
|x2| ≤ V t ≥ t0
x1(t0) = x10, x2(t0) = x20
x1(tf ) = x1f , x2(tf ) = x2f .

(9)
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Here x1 is the distance, measured in metres [m], x2 is the velocity, measured in
metres per second [m/s], u is the acceleration, measured in metres per square
seconds [m/s2], k is the drag coefficient, U and V are the bounds on the acceler-
ation and the velocity respectively. The weight α is a designer degree of freedom
as required, it tunes the importance of the control effort or energy consump-
tion compared with the completion time. For α → 0, we expect to approach a
minimum time solution.

4. Optimization

The solution for this problem is divided into two cases, distinguished by the status
of the constraint on the velocity along the trajectory. The constraint on the control
also induces more cases, i.e. if the control constraint is active or not, but they are
dealt with within the scope of the two velocity cases.

We assume that the velocity is not reversed during the process, thus x2 ≥ 0
automatically, thus according to the state equation for x2 the maximum sus-
tainable velocity under the control input constraint U is when dx2/dt = 0. That
velocity corresponds to

√
2U/k, thus we shall require

V ≤
√
2U
k
. (10)

4.1. Solutionwith active upper bound velocity constraint

In this section, we assume that the constraint on the velocity will be active at some
interval along the trajectory.

We also assume that the lower bound on x2 can be omitted, and only the
upper bound may be active, i.e. any trajectory with zero or negative velocity is
not feasible. The appropriate Hamiltonian of the problem is then

H = p1x2 + p2
(
u − 1

2
kx22

)
− 1 − α

1
2
u2 − λ2(x2 − V). (11)

According to the transversality condition and the condition for free final time,
we obtain that

H ≡ 0. (12)

The time-dependent value λ2 is a Lagrange multiplier for the constraint on the
upper bound of the velocity x2. Note that λ2 ≥ 0, andmay be nonzero only when
the velocity constraint is active, i.e. x2 = V . At all other times, λ2 must be zero.
The co-states equations are dp/dt = ∂H/∂x, specifically

dp1
dt

= 0,

dp2
dt

= −p1 + p2kx2 + λ2. (13)
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The maximization of H over u yields

∂H
∂u

= p2 − αu = 0 ⇒ u = p2
α
, |u| ≤ U. (14)

And in order to satisfy the control u is

u = min
(p2

α
,U · sgn(p2)

)
. (15)

We assume that at the beginning of the movement, i.e. on some interval [t0, t1],
the velocity x2 is not on the boundary, i.e. x2 < V . From Equation (13), we see
that p1 is constant, andwe assume it is positive.We assume that at time t ∈ [t0, t1],
we have dp2/dt < 0, p2 ≥ 0 and dx2/dt > 0 because p2 is proportional to the
control. During this interval, the system accelerates, so the control is positive and
the velocity is increasing. When x2 reaches the upper bound V at some time t1,
we should have dp2(t)/dt|t=t1 = 0, because of the constraint on the velocity, the
control must be constant and thus p2 must be constant. Therefore it follows from
Equation (13) that at time t1 we have

− p1 + p2(t1)kV + λ2 = 0. (16)

Since at this time the velocity has reached its upper bound, we should have

dx2(t)
dt

∣∣∣∣
t=t1

= 0. (17)

Moreover, on the interval t ∈ [t1, t2], the velocity is constant which implies that
the control is constant, which means Equation (14) holds. Thus at time t1

dx2(t)
dt

|t=t1 = u(t1) − k
2
x2(t1)2 = p2(t1)

α
− k

2
V2 = 0, (18)

which yields

p2(t1) = α
k
2
V2. (19)

From this time point, the co-state p2 must be constant on the interval [t1, t2] for
x2 = V , and the Lagrange multiplier λ2 should be non-negative in order to keep
dp2(t)/dt = 0 for t ∈ [t1, t2]. So, from Equations (16) and (19) we obtain

λ2 = p1 − α
k2

2
V3. (20)

The value of the constant co-state p1 can be found from the conditionsH(t1) = 0,
x2(t1) = V , and Equations (14) and (19). We have

H(t1) = p1V − 1 − α
k2

8
V4, (21)
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which yields

p1 = 1
V

+ α
k2

8
V3. (22)

Substituting Equation (22) into Equation (20) yields

λ2 = 1
V

− α
3k2

8
V3 ≥ 0. (23)

The inequality in (23) denotes the condition for the upper bound of the velocity
V to be reachable. If this inequality is not valid then the assumption that the
velocity reaches the upper bound does not hold, and the trajectory has a different
structure. In this case, another procedure is needed to be discussed in Section 4.2.
So far we have obtained the values of the constant p1 and of x2 and p2 at times t1
and t2 since [t1, t2] is a constant velocity interval.

The maximal value of the upper constraint for the velocity is found from
Equation (23) as the positive root of

V̄ =
(

8
3αk2

)1/4
. (24)

Thus a necessary condition for the velocity to reach its maximal value is

V < V̄ . (25)

Note, however, that this condition is necessary but not sufficient for the exis-
tence of the solutionwith an interval at the upper velocity bound. In the reminder
of this section, it is assumed that (25) is satisfied. In order to obtain the trajec-
tory on the interval [t0, t1], we can integrate backward the states and co-states
equations from x2(t1) = V to x2(t0) = x20. Thus we can determine the value
x1(t1) − x1(t0) and u(t) on the interval [t0, t1], and the value of t1. The value
t = t2 when the trajectory should leave the upper value for x2 must be found by
first calculating the trajectory on the time interval [t2, tf ]. The trajectory on the
last interval [t2, tf ] can be found similarly by integrating forward from x2(t2) = V
to x2(tf ) = x2f . This way we can determine the control u on the interval [t2, tf ],
and the length of the last interval tf − t2. We can also determine x1(tf ) − x1(t2).
The last thing to do is to determine the middle segment of the trajectory which
is according to

t2 − t1 = x1(t2) − x1(t1)
V

. (26)

Note that at some point or duration along the trajectory the control u(t), as
described in Equation (14), may exceed its bound according to (9). In this case,
the control input saturates on its bound (15), i.e. if |p2| > αU, then Equation (13)
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proceeds as is, but the state equation for x2 has a constant value for u, in compact
form the equation for x2 becomes

dx2
dt

= min
(
U,

p2
α

)
− 1

2
kx22 (27)

for positive p2, and
dx2
dt

= max
(
−U,

p2
α

)
− 1

2
kx22 (28)

for negative p2.

4.2. Solutionwith non-active upper bound velocity constraint

When the value V cannot be achieved, there cannot be solution with a steady-
state interval where the velocity is constant and x2 ∈ [0,V). Such a solution
would imply that dp2(t)/dt = 0 on an interval where λ2 = 0 since the upper
velocity bound is not active, and since p2 has continuous smooth dynamics (13)
this will contradict the uniqueness and existence theorem for ODE [17]. Let us
denote the unknown value of max x2 as Vm, and t1 = argmaxt x2. In this case,
we have t1 = t2 since as just shown, there is no interval when x2(t) = Vm < V .
At t = t1, the variable p2 should continue to decrease, dx2(t)/dt|t=t1 = 0, and
p2 > 0. Equations (19) and (22) are still valid, but with V = Vm. Integrating
state and co-state equations backward and forward until x2 = x20 and x2 = x2f ,
respectively, we get p1 and thus control u both for [t0, t1] and [t1, tf ]. However,
now the variable x1 has residual

res = (x1(tf ,Vm) − x1f )2, (29)

which is a function of Vm. In order to do the calculation we need an initial guess
for Vm.

We choose V̄ fromEquation (24) as the initial guess. Nowwe shouldminimize
this residual in Equation (29) and thus find a true value of Vm. It is clear that the
minimum of this residual is zero.

4.3. Solutionwith active upper bound velocity constraint for short paths

In the case where V < V̄ , but the final condition x1(tf ) is small, such that the
system does not have enough time to accelerate to the maximum velocity and
decelerate in order to satisfy the final condition we also do not have a constant
velocity interval. In this case, we have a similar trajectory structure as described
in Section 4.2. The same assumptions hold in this case also, but with a different
initial guess for Vm. The condition on V is automatically satisfied here, and it
does not depend on the initial and final conditions. We know that the maximum
velocity must satisfy Equation (10), so we can choose as an initial guess Vm from
this equation. Again it is clear that the minimum of the residual is zero.
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Now we have everything we need to find tf and the control signal u for the
complete motion.

5. Marginal cases

There are two cases of interest when analysing the performance measure in (9).
The first is whenwe take α → 0 and the second is when α is very large; we should
be cautious when defining the problem for α → ∞.

5.1. Minimum time

When taking α → 0, we get from the performance measure

min J =
∫ tf

t0

(
1 + α

1
2
u2(t)

)
dt = tf + α

1
2

∫ tf

t0
u2(t) dt. (30)

And since u is bounded on the finite interval [t0, tf ], we expect the solution of the
problem to look like the solution of the time minimum problem

min J = tf =
∫ tf

t0
1 · dt. (31)

Taking α → 0 in Equation (15), thus assuming p2 
 α results in

u = min
(p2

α
,U · sgn(p2)

)
= U · sgn(p2). (32)

The last does not hold when p2 is small, this happens in the region where p2
approaches zero, or right when p2’s value decreases from zero. As α → 0 so does
the length of the region where p2 is close to zero, goes as well to zero. It is clear
that the system will accelerate with saturated u to the maximum velocity V , stay
on themaximumvelocity as long as needed, and then decelerate atminimum u to
the final condition. The transitions from maximum acceleration to zero acceler-
ation, and again from zero acceleration, would have been instantaneous if α = 0,
i.e. pure minimum time, but for α → 0 will have some length greater than zero.
Thus the trajectory has the form of almost a Bang–Constant–Bang with small
transitions. In the system described in (3), the drag prevents the control from
staying at zero, or the velocity will be reduced. So, in this case the constant value
of u is the value of the control that makes dx2/dt = 0, specifically

ũ = 1
2
kV2. (33)

Note that when V is high or the time for the motion is short, the system will not
manage to reach the velocity bound before it will have to switch the control to
the negative value. In this case, the profile will be simply close to a Bang–Bang
profile of maximum acceleration, maximum deceleration and a small transition
between the two which as explained previously goes to zero as α → 0.
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5.2. Minimum energy

When taking α → ∞, it is important to fix tf , otherwise the solution will be one
of u → 0 and tf → ∞. Thus when tf is fixed the performance measure is

min J = tf + α
1
2

∫ tf

t0
u2(t) dt = tf + αĴ, (34)

where

Ĵ = 1
2

∫ tf

t0
u2(t) dt. (35)

It is clear that the following holds:

argminu J = argminu Ĵ. (36)

Equation (35) is the standardminimumenergy criterion. In order to solve that,
we observe that Equation (10) still holds, where the Hamiltonian now is

H = p1x2 + p2
(
u − 1

2
kx22

)
− 1

2
u2 − λ2(x2 − V). (37)

Frommaximization of theHamiltonian overu, it follows thatu = p2 when not on
the state constraint, and u = (k/2)V2 when on the state constraint. Equation (17)
still holds, and it follow from it that p2(t1) = (k/2)V2. Now the solution is easily
obtained similarly to the method described in Section 4.1. However, here we do
not have the property H=0 because of the fixed time, but H= c where c is an
unknown constant. The Hamiltonian at time t = t1 is

H(t1) = p1V − k2

8
V4 = c, (38)

which yields

p1 = c
V

+ k2

8
V3. (39)

When not on the state constraint, we denote again the maximal velocity as Vm.
The constant c and themaximumvelocityVm are unknowns and should be found
from the minimization of residuals. Initial guesses for c and Vm are needed and
can be taken to be the same as in Section 4.1. We should integrate states and co-
states equations backward until x2 = x20 and forward until t = tf . Note that the
final time tf is fixed here, and thus the integration is until that time and not the
final condition x2f . Thus we obtain the fixed time residual

res = α1 · (x1(c,Vm) − x1f )2 + α2 · (x2(c,Vm) − x2f )2. (40)

Here α1,α2 are suitable weighting coefficients. Minimizing that residual yields c
and Vm, and consequently p1, and the control for the time interval [t0, tf ].



OPTIMIZATION 11

When on the state constraint the residual is a function of c only since V =
Vm. We should integrate states and co-states equations backward until x2 = x20
and forward until x2 = x2f . The time interval of the middle segment can be
determined according to

t2 − t1 = tf − t1 − t3. (41)

Here, t1 denotes the time length of the first segment and t3 denotes the time length
of the third segment. The appropriate residual in this case is

res = α1 · (x1(c) − x1f )2 + α2 · (x2(c) − x2f )2. (42)

Again α1,α2 are suitable weighting coefficients. Minimizing this residual yields
c, and the control for the time interval [t0, tf ].

6. Simulations

We demonstrate the solution obtained for the different cases. The solutions are
compared to DIDO, a widely used commercial numerical solver for optimal con-
trol problems. The number of nodes used in the DIDO simulations was 30. All
simulation were done with Matlab 2015b on an i5-core Intel computer with 4GB
of RAM. The values for the simulation were taken to be values compatible with a
physical problem drones. In all simulations, three graphs are presented, the dis-
tance, velocity and acceleration profiles as computed by the two algorithms, one
on top of the other to show the agreement and difference between the two. DIDO
solution is shown in thin red line with asterisks, and the explicit solution is in
thick blue.

The first simulation is for the case where the condition on the velocity bound
equation (25) is satisfied. The drag coefficient is standard for a flying aircraft and
set to be k=0.05. The tuning parameter α is set to be in scale between the energy
and the time, α = 0.01. Thus when substituting in Equation (24) we obtain in
this case that V̄ = 18.072[m/s]. The bound on the velocity then is chosen to be
V = 9[m/s] and the bound on the acceleration isU = 10[m/s2]. The initial and
final conditions for the motion are respectively x0 = [0, 1]T and xf = [20, 4]T.
The result is presented in Figure 1. In this case, there is almost a perfect match
between the two algorithms. The system accelerates until the bound on the veloc-
ity, then the system maintains a constant velocity on an intermediate interval
where the control is not zero due to the drag, and finally the system decelerates
to the final condition. A saturation in the control is also present at the first part
of the motion due to the active constraint on the acceleration in that part. The
constant velocity interval length is t2 − t1 = 0.5347[s], where t1 = 1.2857[s] and
t2 = 1.8205[s]. The final time for the motion calculated by the explicit solution
is 2.7965[s], and the cost is 3.3333, DIDO’s final time is 2.7971[s], and the cost is
3.3291. The differences are negligible and can be attributed to numerical errors.
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Figure 1. Trajectory with active velocity bound constraint and active acceleration bound con-
straint.

The second simulation is for the case where the condition on the velocity
bound equation (25) is not satisfied. All values but the velocity bound are the
same for this simulation, U = 10[m/s2], k = 0.05,α = 0.01, x0 = [0, 1]T, xf =
[20, 4]T. The velocity is changed so V > V̄ , hence we choose V = 36[m/s]. The
result is presented in Figure 2. Again there is almost a perfect match between the
two algorithms. Since the condition for the velocity bound is not satisfied, the
system accelerated to a maximum value which is lower then V̄ and immediately
decelerates to the final condition. The maximum velocity obtained in this exam-
ple was x2_max = 10.2337[m/s] at t1 = t2 = 1.4893[s]. Again a saturation in the
control is present in the first part of the motion and at the end of the motion. The
final time for the motion calculated by the explicit solution is 2.6621[s], and the
cost is 3.3074, DIDO’s final time is 2.6639[s], and the cost is 3.2981. Again the
differences are negligible and can be attributed to numerical errors.

The third simulation is for the case where the condition on the velocity bound
equation (25) not satisfied but the path is too short in order for the system to reach
the velocity bound. The value for the bound on the velocity is changed back such
that V = 9[m/s], and the final condition is for a short path, i.e. xf = [2, 3]T. The
rest of the values are as in the previous simulation,U = 10[m/s2], k = 0.05,α =
0.01, x0 = [0, 1]T. The result is presented in Figure 3. As in the previous cases,
there is almost a perfect match between the two algorithms. The condition on
the velocity bound is satisfied so the system is expected to accelerate to the bound
and to obtain a trajectory similar to the trajectory presented in Figure 1. Since the
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Figure 2. Trajectory with inactive velocity bound constraint and active acceleration bound con-
straint.

Figure 3. Short path trajectory, velocity condition for reaching the velocity bound is satisfied, but
the bound is not reached. The acceleration bound constraint is active.
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path for the motion is short the system’s velocity does not reach the maximum
value and the profile is similar to the profile shown in Figure 2, consisting of
two segments, acceleration and deceleration. The maximum velocity obtained in
this example was x2_max = 3.6653[m/s] at t1 = t2 = 0.4505[s]. A saturation in
the control is present in the first part of the motion. The final time for the motion
calculated by the explicit solution is 0.6716[s], and the cost is 0.7967, DIDO’s final
time is 0.6719[s], and the cost is 0.7897. The differences are negligible here also.

The following four simulations are for the marginal cases. The first of the
marginal cases to be presented is the case where α → 0, which is expected to
look like a minimum time profile. The value chosen for the tuning parameter
is α = 0.00001. The drag coefficient is k=0.05, the velocity bound is chosen
to be low V = 10[m/s], the acceleration bound is U = 10[m/s2], and the ini-
tial and final conditions are respectively x0 = [0, 1]T, xf = [20, 4]T. The result
is presented in Figure 4. In contrast to previous cases, now we can observe a
slight difference between the explicit solution and DIDO’s solution, seen mainly
in the third plot for the control signal when the control is changed sharply. The
trajectory is almost a Bang–Constant–Bang as explained in Section 5.1. The sys-
tem accelerates at maximum acceleration, upon reaching the velocity bound the
system maintains the bound with a constant control signal only to resist the
drag, and then decelerates to the final condition at maximum deceleration. The
transition regions are almost indistinguishable due to the small value of α. The
constant velocity interval length was t2 − t1 = 1.0604[s], where t1 = 0.9994[s]

Figure 4. Marginal case with α → 0, minimum time Bang–Constant–Bang profile with active
velocity and acceleration bound constraints.
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Figure 5. Marginal case with α → 0, minimum time Bang–Bang profile with active velocity and
acceleration bound constraints.

and t2 = 2.0598[s]. The final time for the motion calculated by the explicit solu-
tion is 2.5929[s], and the cost is 2.5937, DIDO’s final time is 2.5965[s], and the
cost is 2.5972. The differences are negligible here also.

The second simulation for the marginal cases is again when α → 0, but
with a much higher velocity bound. All parameters and condition except the
bound on the velocity are in the previous simulation, i.e. U = 10[m/s2], k =
0.05,α = 0.00001, x0 = [0, 1]T, xf = [20, 4]T, and the velocity bound is set to be
V = 40[m/s]. The result is presented in Figure 5. As in the previous case there
is a slight difference between the algorithms when the control changes sharply,
in both cases the general profile is the same and only in areas where the changes
are sharp the differences are observed, due to that we can conclude that they are
occurring in result of numerical inaccuracies in DIDO’s numerical solver. The
trajectory in this case is almost a Bang–Bang, since the maximum velocity is not
reached before the system has to decelerate to the final condition. The transi-
tion region between the bangs here is visible by the small breaks in the blue line,
which otherwise would have been completely straight The maximum velocity
obtained here is x2_max = 13.8272[m/s] at t1 = t2 = 1.6016[s]. The final time
for the motion calculated by the explicit solution is 2.4176[s], and the cost is
2.4188, DIDO’s final time is 2.4221[s], and the cost is 2.4232. The differences
are negligible here also.

The third simulation for the marginal cases is for a fixed time trajectory, when
in effect the problem become a minimum energy problem with no α. The bound
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Figure 6. Marginal casewith fixed final time, tf = 5,minimumenergy profilewith active velocity
bound constraint.

on the velocity here is chosen to be low so the constraint will become active, i.e.
V = 5[m/s], the control constraint is U = 10[m/s2], the initial and final con-
ditions are respectively x0 = [0, 0]T, xf = [20, 0]T, and the final time is set to be
tf = 5[s]. Notice that there is no need for α in this problem. The result is pre-
sented in Figure 6. A perfect match between the two algorithms can be observed
in this case. The system accelerates to the velocity bound, maintains a constant
velocity interval and decelerates to the final condition. The constant velocity
interval lengthwas t2 − t1 = 1.9883[s], where t1 = 1.5059[s] and t2 = 3.4943[s].
It is also interesting to note that the same trajectory is obtained from the solution
in Section 4.1 for the same parameters, with floating final time andα = 0.044685.
The cost for the motion calculated by the explicit solution is 23.2154, DIDO’s
cost is 22.8532. The cost difference here is a bit larger, but can be attributed to
numerical errors, and the fact that DIDO’s solution contains only 30 nodes.

The fourth case for the marginal cases and last to be presented is again for
a fixed time, but with a higher bound on the velocity, so the bound is not
reached. The bound on the velocity here is chosen to be high so the constraint
will not become active, i.e. V = 20[m/s], and all other parameters are the same
as in the previous simulation, i.e. U = 10[m/s2], k = 0.05, x0 = [0, 0]T, xf =
[20, 0]T, tf = 5[s]. The result is presented in Figure 7. A perfect match between
the two algorithms can be observed for this case also. Like in the second case
presented in Figure 2, the system accelerates to a maximum velocity and then
immediately decelerates to the final condition. The maximum velocity obtained
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Figure 7. Marginal case with fixed final time, tf = 5, minimum energy profile with inactive
velocity bound constraint.

in this trajectory is x2_max = 5.9552[m/s] at t1 = t2 = 2.5[s]. Again it is interest-
ing to note that the same trajectory is obtained from the solution in Section 4.2
for the same parameters, with floating final time and α = 0.08326. The cost for
the motion calculated by the explicit solution is 21.0388, DIDO’s cost is 20.0167.
Again the difference in the cost is as in the previous simulation.

All simulationwere done on the same platform, and the calculation times were
measured. The explicit solution took approximately between 0.4−1.5 seconds,
andDIDO’s simulation took approximately between 45−120. The times vary due
to the difference in complexity of the cases.

7. Conclusion

We have introduced the problem of combined optimal time energy control for a
second-order system with quadratic drag, which can be used to describe many
general systems for the purpose of trajectory planning. A solution was presented
for the general case as well as two marginal cases, with supporting simulations
comparing the solution to a widely used commercial solver. The method devel-
oped in this work aims to be incorporated as a module in a task planning solver
which may need to call upon this module many times. Since this module will
be called frequently, calculation times are critical. The solution presented here
was faster on two times order, and more accurate than the commercial solver.
This difference in calculation times canmake this solution practically feasible for



18 A. TAITLER ET AL.

large task planning problems, where the commercial solver is too slow, even if the
inaccuracies can be neglected for planning purposes.
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