Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion

A Compilation Based Approach to Finding Centroids and Minimum Covering States in Planning

Erez Karpas

Faculty of Industrial Engineering and Management Technion — Israel Institute of Technology

▲□▶▲□▶▲□▶▲□▶ □ のQで

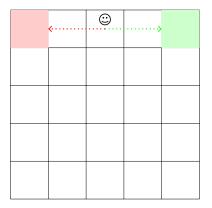
Introduction ●000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Motivati	on			

- Suppose we have a set of possible goals
- One of these goals will "arrive" later, but we now have time to prepare for it
- We should go to either:
 - a centroid state one that minimizes the average distance to each possible goal

▲□▶▲□▶▲□▶▲□▶ □ のQで

- a minimum covering state one that minimizes the maximum distance to each possible goal
- Problem was first presented by Pozanco et. al. [PEFB19]

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Example				


	٢	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Example				

	() () ()	

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Example				

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Problem	Setting			

The setting here is STRIPS with multiple possible goals. Formally, $\Pi = \langle F, A, I, \mathscr{G}, C \rangle$, where:

- F is a set of facts describing the possible states of the world, 2^F
- A is a set of actions each action a ∈ A is ⟨pre(a), add(a), del(a)⟩ with cost C(a)
- $I \subseteq F$ is the initial state of the world, and
- 𝒢 is a set of possible goals, where each possible goal G ∈ 𝒢 is a set of facts G ⊆ F. A state s satisfies a goal if G ⊆ s

Introduction 000●	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Problem	Objective			

Denote by $h^*(s, G)$ the cost of an optimal path from state s to a state s' such that $G \subseteq s'$

- State s is a centroid iff: s is reachable from I, and ∑_{i=1}ⁿ h^{*}(s, G_i) is minimal (equivalent to minimizing average distance)
- State s is a minimum covering state iff: s is reachable from I, and maxⁿ_{i=1} h^{*}(s, G_i) is minimal

The objective is to find either a centroid or a minimum covering state, possibly also optimizing over the cost to get there

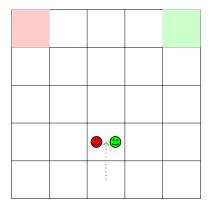
Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Inspirat	ion			

- The problem statement (and example) are very similar to finding worst case distinctiveness (wcd) in Goal Recognition Design (GRD) [KGK14]
- Reminder: the wcd is the maximal number of steps an agent can take from the initial state before its goal becomes clear
- Finding wcd is done via compilation to classical planning
- It turns out, the compilation for finding centroid states is very similar

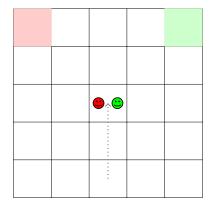
▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

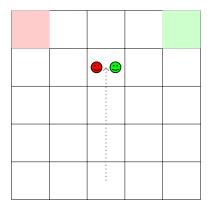
	٢	


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	tion: Illustrat	ted		


	• •	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙


Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustrat	ted		

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

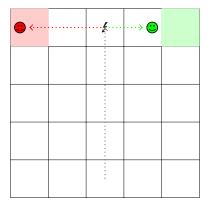
Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

Introduction 0000	Finding Centroids o●oooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compilat	tion: Illustrat	ted		

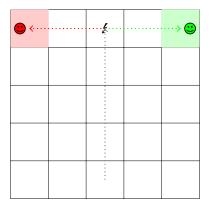
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Introduction 0000	Finding Centroids o●oooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compilat	tion: Illustrat	ted		

	e £:	


Introduction 0000	Finding Centroids o●oooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

()	···· £ ©	


Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

	···· £ ©	

Introduction	Finding Centroids ○●○○○○	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000	
Compilation: Illustrated					

Introduction 0000	Finding Centroids o●oooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

Introduction	Finding Centroids 00●000	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Centroi	d Compilatior	ו		

Given
$$\Pi = \langle F, A, I, \mathscr{G} = \{G_1, \dots, G_n\}, C \rangle$$
 we define $\Pi' = \langle F', A', I', G', C' \rangle$, where:

- $F' = \{f_i \mid i \in F, i = 1 \dots n\} \cup \{\text{split}, \text{unsplit}\},\$
- $A' = \{a_i \mid a \in A, i = 1...n\} \cup \{a_t \mid a \in A\} \cup \{\text{do-split}\}, \text{ where }$
 - *a_t* is the together version of action *a*, affecting all of the *f_i* facts, and is possible only before splitting
 - *a_i* is the separate version of action *a* for goal *i*, affecting only the *f_i* variables, and is only possible after splitting

• The do-split action allows the agents to split

•
$$I' = \{f_i \mid f \in I, i = 1 ... n\} \cup \{\text{unsplit}\}$$

•
$$G' = \{f_i \mid f \in G_i, i = 1 ... n\}$$

Introduction	Finding Centroids 000●00	Finding Minimum Covering States	Empirical Evaluation	Conclusion

Centroid Compilation vs. wcd Compilation

The only difference between the wcd compilation and this compilation are the costs:

• In wcd, we want to maximize the costs of the "together" actions, so the costs are

▲□▶▲□▶▲□▶▲□▶ □ のQで

•
$$C(a_t) = nC(a) - \varepsilon$$

•
$$C(a_i) = C(a)$$

 In finding centroids, we only care about the costs of the "separate" actions, so the costs are

•
$$C(a_t) = 0$$

•
$$C(a_i) = C(a)$$

• In all cases C(do-split) = 0

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
	000000			

Centroid Compilation: Theoretical Results

Theorem

An optimal solution for Π' gives us a centroid state for the original task Π .

Proof sketch.

The compilation finds paths from the initial state to all goals. The cost of a plan for the compilation is the sum of costs after splitting, thus the state where it splits is a centroid.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction 0000	Finding Centroids 00000●	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Centroi	d Compilatio	n: Optimizations		

• We can force the agents to act in order after splitting – first agent 1 (until it reaches its goal), then agent 2,

▲□▶▲□▶▲□▶▲□▶ □ のQで

• This reduces permutations of essentially the same plans

Introduction	Finding Centroids	Finding Minimum Covering States ●00	Empirical Evaluation	Conclusion		
Finding N	Finding Minimum Covering States					

- Unfortunately, the max operator in minimum covering states is not additive
- Thus, we do not have a compilation which directly finds a minimum covering state in the general case
- We present a compilation which, given some cost budget *B*, checks whether there is some reachable state *s* such that the maximum cost of reaching any possible goal *G_i* ∈ *G* from *s* is at most *B*
- An binary search over *B* will find minimum covering states (starting by doubling *B* until the compilation is solvable)
- This is similar to the compilation for finding the wcd with non-optimal agents with deception budget [KGK15]

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
		000		

Minimum Covering Compilation: Version 1 (numeric)

The compilation is the same as the centroid compilation, except

- We add *n* new numerical variables, *B*₁...*B_n*
- The value of B_i in the initial state is 0
- B_i < B C(a_i) is added to pre(a_i), and B_i + = C(a_i) to the effects of a_i
- Note that we only care about the cost of reaching the goals after splitting, so *a*_t actions are unmodified

Theorem

Let Π' be a numerical planning task with budget B as described above. Then Π' is solvable iff there exists some reachable state s such that $\max_{G \in \mathscr{G}}, h^*(s, G) \leq B$.

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Minimum	Covering C	Compilation: Versior	n 2 (unit cost a	(ctions)

e i v

- If all actions are unit cost, we can compile finding the minimum covering state to classical planning (without binary search)
- After splitting agents take turns executing actions in a round robin manner (without the optimization for enforcing the order between the agents)
- The compilation is implemented by:
 - Adding *n* new facts, turn_i for $i = 1 \dots n$
 - For each a_i action, we add turn_i to pre(a_i), turn_{i+1} mod n to add(a_i), and turn_i to del(a_i)
 - Adding NOOP actions one for each agent, to allow agents to wait after reaching their goal
 - The costs actions are 1 for actions of agent 1 after splitting, 0 for all others (agent 1 is guaranteed to act in every round)

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Empirica	al Evaluation			

- We compared our compilation (C) to the exhaustive search approach (E) presented in the previous work
- Used two domains from the previous work: BLOCKS-WORDS and RANGER (navigating on a grid)
- Underlying planner was the same in both cases: Fast Downward [Hel06] with A* [HNR68] and the Imcut heuristic [HD09]

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Time limit of 1 hour, memory limit of 16GB

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
			000	

Empirical Results: Centroid

	E	С			
BL	BLOCKS-WORDS				
1	838.04	25.89			
2	835.30	16.05			
3	852.02	11.03			
4	821.71	22.96			
5	818.97	7.18			
6	835.56	15.58			
7	810.36	9.06			
8	818.74	8.69			
9	827.43	16.09			
10	830.51	12.18			
AVG	828.86	14.47			

	E	С
	RANGER	
1	2197.42	14.31
2	2102.58	16.46
3	3124.19	17.16
4	1984.45	14.23
5	2140.93	16.59
6	1974.24	14.57
7	2126.50	17.13
8	2227.33	16.02
9	2128.61	14.31
10	2371.44	15.95
AVG	2237.77	15.67

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
			000	

Empirical Results: Minimum Covering

	E	Cd	Cb		E	Cd	Cb
BLOCKS-WORDS				RANGE	R		
1	824.75	136.61	301.94	1	2162.87	TO	TO
2	867.98	434.46	484.27	2	2118.05	TO	ТО
3	853.32	198.46	311.41	3	2732.27	TO	ТО
4	812.95	31.96	214.00	4	2042.48	TO	ТО
5	814.90	32.21	257.64	5	2189.26	TO	ТО
6	826.78	403.20	538.93	6	2031.07	TO	ТО
7	833.61	44.56	282.84	7	2155.46	TO	ТО
8	805.54	84.80	352.90	8	2169.37	TO	ТО
9	820.50	27.13	207.28	9	2199.38	TO	то
10	827.93	97.37	317.67	10	2368.51	ТО	то
AVG	828.83	149.07	326.89	AVG	2216.87	-	-

Cd = direct compilation, Cb = binary search using our compilation

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion ●000				
Conclus	Conclusion							

• We presented a compilation based approach to finding centroids and minimum covering states

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Empirical performance for centroids is state-of-the-art
- Empirical perofrmance for minimum covering states varies

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
				0000

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
				0000

Thank You

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion ○○●●
Roforor				

- Malte Helmert and Carmel Domshlak, *Landmarks, critical paths and abstractions: What's the difference anyway?*, ICAPS 2009, AAAI, 2009.
- Malte Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006), 191–246.
 - Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics SSC-4(2) (1968), 100–107.
- Sarah Keren, Avigdor Gal, and Erez Karpas, *Goal recognition design*, ICAPS, AAAI, 2014.
 - , *Goal recognition design for non-optimal agents*, AAAI, AAAI Press, 2015, pp. 3298–3304.

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion ○○●●
Referer	nces II			

Alberto Pozanco, Yolanda E-Martín, Susana Fernández, and Daniel Borrajo, *Finding centroids and minimum covering states in planning*, ICAPS 2019, AAAI Press, 2019, pp. 348–352.