In the term for the final time of the first movement segment, inside the $\ln (\cdot)$, there is a missing k multiplying the initial velocity condition. This typo is repeated throughout the paper in the appropriate places: Eq. (21), Eq. (35) and Eq. (45). The correct form for Eq. (21) is then:

$$
t_{1}=\frac{1}{\sqrt{2 k U}} \ln \left(\frac{\sqrt{2 k U}-x_{20} k}{\sqrt{2 k U}+x_{20} k} \frac{\sqrt{2 k U}+V k}{\sqrt{2 k U}-V k}\right)
$$

for Eq. (35):

$$
t_{1}(\hat{V})=\frac{1}{\sqrt{2 k U}} \ln \left(\frac{\sqrt{2 k U}-x_{20} k}{\sqrt{2 k U}+x_{20} k} \frac{\sqrt{2 k U}+\hat{V} k}{\sqrt{2 k U}-\hat{V} k}\right)
$$

and for Eq. (45):

$$
\begin{aligned}
t_{f}= & \frac{1}{\sqrt{2 k U}} \ln \left(\frac{\sqrt{2 k U}-x_{20} k}{\sqrt{2 k U}+x_{20} k} \frac{\sqrt{2 k U}+\tilde{V} k}{\sqrt{2 k U}-\tilde{V} k}\right) \\
& +\sqrt{\frac{2}{k U}} \tan ^{-1}\left(\frac{\sqrt{2 k^{3} U}\left(\tilde{V}-x_{2 f}\right)}{2 k U+x_{2 f} k^{2} \tilde{V}}\right) .
\end{aligned}
$$

In the first coefficient a, of Eq. (41), there is a typo in the power of k in the first term (should be 5 instead of 3), the correct expression is:

$$
a=\left(2 k^{5} U\right)(1+\tilde{k})+k^{6}\left(\tilde{k} x_{2 f}^{2}-x_{20}^{2}\right)
$$

