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Abstract

In some scenarios, an agent may want to prepare for achiev-
ing one of several possible goals, by reaching some state
which is close (according to some metric) to all possible
goals. Recently, this task was formulated as finding centroids
(which minimize the average distance to the goals) or min-
imum covering states (which minimize the maximum dis-
tance). In this paper, we present a compilation based approach
for finding such states. Our compilation is very similar to
the one used to find the worst case distinctiveness (wcd) in
goal recognition design (GRD), and is orders of magnitude
faster than the previous state-of-the-art, which was based on
exhaustive search.

Introduction
Automated planning typically deals with a scenario where a
single agent is trying to achieve a single goal. However, in
some cases an agent may want to prepare for achieving one
of several possible goals, by reaching some state which is
close (according to some metric) to all possible goals. Re-
cently, this task was formulated (Pozanco et al. 2019), and
two specific metrics were proposed – minimizing the aver-
age distance, and minimizing the maximum distance. The
states which minimize these metrics are called centroids or
minimum covering states, respectively.

Figure 1 illustrates such a setting, using the same ini-
tial and goal positions as the example from previous work
(Pozanco et al. 2019). In this setting, the blue square (labeled
I) is the initial state, and there are five possible goals (the red
squares, labeled G). The centroid (green square, labeled C)
minimizes the average distance to the possible goals, while
the minimum covering state (yellow square, labeled M) min-
imizes the maximum distance to the possible goals.

Note that Figure 1 is very similar to the Figure illustrating
worst case distinctiveness (wcd) in goal recognition design
(GRD) (Keren, Gal, and Karpas 2019). Recall that the wcd
in a goal recognition setting is the maximal number of ac-
tions an agent can take before an observer can know the ex-
act goal the agent is aiming at, assuming the agent is optimal.
In the example in Figure 1, the wcd is 5, illustrated by the
gray dotted arrow. This shows that the concept of wcd (and
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Figure 1: Illustration of Centroid, Minimum Covering State,
and wcd. The blue square (I) represents the initial position
of the agent. Red squares (G) represent possible goals. The
green square (C) represents the location of the centroid, yel-
low square (M) represents the location of the minimum cov-
ering state. The dotted gray arrow represents the wcd path.

thus the point where the goal of the agent becomes known) is
different than the concept of centroid or minimum covering
state. Nevertheless, as we will show in this paper, the task of
finding the wcd is very similar to the task we are concerned
with here. Thus, we present a compilation based approach
for finding centroids and minimum covering states.

The compilations we present here are similar to the ones
used for finding wcd (Keren, Gal, and Karpas 2014, 2015) in
that they model a set of agents performing actions together
until some point, and then splitting – each pursuing its own
goal. The main difference is in action costs: wcd attempts
to maximize the shared portion of the plans, and thus the
actions before splitting get a slight discount. In our task of
interest here, we only care about the cost incurred after split-
ting, so the actions performed together become 0-cost ac-
tions. Our empirical evaluation shows that this compilation
based approach is orders of magnitude faster than the previ-
ous approach (Pozanco et al. 2019).

Preliminaries
The setting we consider here, which is the same as the set-
ting in the previous work (Pozanco et al. 2019), is similar to



STRIPS (Fikes and Nilsson 1971), except that there are mul-
tiple possible goals. Formally, Π = 〈F,A, I,G, C〉, where:

• F is a set of facts describing the possible states.
• A is a set of actions – each action a ∈ A consists of

a set of preconditions pre(a), add effects add(a) and
delete effects del(a). Applying a is possible in a state
s where pre(a) ⊆ s, and results in the state sJ〈a〉K =
(s \ del(a)) ∪ add(a). The cost of action a is C(a) ≥ 0.

• I ⊆ F is the initial state of the world, and
• G is a set of possible goals, where each possible goalG ∈
G is a set of facts G ⊆ F . A state s satisfies a goal G if
G ⊆ s.

A path π is a sequence of actions. A path π =
〈a0, a1, . . . an〉 is applicable from state s0 if a0 is applica-
ble at s0 and 〈a1, . . . an〉 is applicable from s1 := s0J〈a0〉K.
We denote the state reached by following path π from state
s by sJπK.

The cost of a path π = 〈a0, a1, . . . an〉 is the sum of action
costs C(π) =

∑n
i=0 C(ai). The optimal cost to go from

some state s to some set of facts (e.g., a goal) G, denoted
h∗(s,G) is the cost of a cheapest path from s to some state
sG which satisfies G, that is minπ|G⊆sJπK C(π).

We can now define centroids and minimum covering
states. In the presentation here, we reformulate the defini-
tions from the previous work (Pozanco et al. 2019) to make
them easier to follow. The average cost from some state s
to the possible goals G is 1

|G|
∑
G∈G h

∗(s,G). A state s is
a centroid state if (a) it is reachable from the initial state,
and (b) it minimizes the average cost to the possible goals.
Similarly, the maximum cost from some state s to the possi-
ble goals is maxG∈G , h

∗(s,G), and a state s is a minimum
covering state if it is reachable from the initial state and min-
imizes the maximum distance to the possible goals.

To find optimal centroids or minimum covering states,
previous work (Pozanco et al. 2019) proposed an exhaus-
tive search approach which searches through all reachable
states. From each state, this approach computes the cost of
an optimal path to each possible goal by calling an optimal
planner. The optimal centroid or minimum covering state is
then found by looking for the best metric among all states
generated by the search. Note that, with this approach, no
pruning can be done on the states without losing optimality
– unlike a regular A∗ search which does not expand nodes
whose f -value is greater than the cost of the optimal solu-
tion.

The Compilation
In this paper, we present a compilation based approach to
finding centroids and minimum covering states. We begin
by presenting a compilation for finding centroids.

Finding Centroids
We present the compilation for finding centroids, which is
very similar to the latest-split compilation (Keren, Gal, and
Karpas 2014, 2019) for finding the worst case distinctiveness
(wcd) in goal recognition design (GRD). As a reminder, in

a similar setting to the one above, the worst case distinctive-
ness is the maximal number of actions an agent can take be-
fore an observer can know the exact goal the agent is aiming
at, assuming the agent is optimal.

The latest-split compilation finds the wcd by optimally
solving a classical planning task, where agents can either
perform actions together, or split and perform actions sepa-
rately – noting that after the agents split, they cannot perform
actions together anymore. In finding the wcd, the objective
is to find the longest possible sequence of actions before the
agents split (i.e., the wcd). Thus, separate actions cost the
same as they would normally, while actions performed to-
gether get some small discount ε.

The only difference between the compilation we present
here and the latest-split compilation is in the action costs.
Specifically, we can think of performing actions together as
going to the centroid state together, and the separate actions
as the actions going from the centroid to each goal. Thus,
we only care about the costs of actions after splitting, so
the separate actions cost the same as they normally would,
while actions performed together cost 0. We now present the
compilation formally.

Let Π = 〈F,A, I,G = {G1, . . . Gn}, C〉 be a plan-
ning setting with multiple possible goals. Then the cen-
troid compilation yields the classical planning task Π′ =
〈F ′, A′, I ′, G′, C ′〉, where:

• F ′ = {fi | f ∈ F, i = 1 . . . n} ∪ {split, unsplit}, that is
fi is a copy of fact f for goal Gi.

• A′ = {ai | a ∈ A, i = 1 . . . n} ∪ {at | a ∈ A} ∪
{do-split}, where
– ai is the separate version of action a for goal i, with
pre(ai) = {fi | f ∈ pre(a)} ∪ {split}, add(ai) =
{fi | f ∈ add(a)}, del(ai) = {fi | f ∈ del(a)}, and
C(ai) = C(a). That is, ai affects only the copy of the
state for goal Gi, and is only possible after splitting.

– at is the together version of action a, with pre(at) =
{fj | f ∈ pre(a), j = 1 . . . n}∪{unsplit}, add(at) =
{fj | f ∈ add(a), j = 1 . . . n}, del(at) = {fj | f ∈
del(a), j = 1 . . . n}, andC(at) = 0. That is, at affects
all copies of the state, and costs 0, and is possible only
before splitting.

– The do-split action allows the agents to split.
pre(do-split) = {unsplit}, add(do-split) = {split},
del(do-split) = {unsplit}, and C(do-split) = 0.

• I ′ = {fi | f ∈ I, i = 1 . . . n} ∪ {unsplit}, that is, the
initial state is duplicated among all copies for all possible
goals, with an indication that the agents have not split yet.

• G′ = {fi | f ∈ Gi, i = 1 . . . n}, that is, the goal for
agent i is Gi.

We now prove that an optimal solution for Π′ gives us a
centroid state for the original task Π.
Theorem 1. An optimal solution for Π′ gives us a centroid
state for the original task Π.

Proof. Let π′ be any solution for Π′. Denote by π′i the se-
quence of actions in π′ that affects agent (goal) i, that is, the
subsequence of π′ consisting of either at or ai actions. It is



easy to see that π′i encodes a path leading from I toGi, as (a)
π′i contains exactly the set of actions affecting the fi facts,
and (b) the goal for the fi facts is Gi. Thus, π′ encodes a set
of paths leading from I to each possible goal Gi ∈ G.

Let us now consider a solution π′ for Π′, which does not
contain the do-split action. This solution cannot apply any
ai actions, as they require split, which is only achieved by
the do-split action. Thus, it must have achieved all the goals
together by at actions, meaning that π′ reached some state s
which satisfies all possible goals – s is a centroid, since the
cost from s to all possible goals is 0.

Now assume π′ does contain the do-split action. Denote
by sπ′ the state in which the do-split action is performed,
and by π′t the subsequence of at actions performed to reach
sπ′ . It is easy to see that the cost of π′t in Π′ is 0 (as the at
actions cost 0). Now denote the remainder of π′i after fol-
lowing π′t by π′ri – that is π′i = π′t · π′ri (this is possible
since the at actions are shared between all possible goals).
Then C(π′) =

∑n
i=1 C(π′ri ), since (a) all other actions cost

0, and (b) no action is shared between different goals after
splitting. Thus, the cost of π′ is the sum of costs of reaching
all possible goals from state sπ′ .

Now consider an optimal solution π′ of Π′. Since the
number of goals is a constant, minimizing the sum of costs is
the same as minimizing the average cost. Thus, an optimal
solution minimizes 1

|G|
∑
G∈G h

∗(sπ′ , G) – that is, finds a
centroid.

While this compilation gives us a feasible path to reach
the centroid state (consisting of all the at actions in the plan),
this path is not necessarily optimal, as the compilation only
optimizes the sum of distances from the centroid state to the
goals. To get an optimal path, we can set C ′(at) := εC(a).
For some small enough value of ε, these costs will not af-
fect the selection of the centroid state (which depends on
C ′(ai)), but will force the planner to return an optimal path
to the centroid state.

We now describe a simple optimization for reducing the
branching factor of the resulting search space, which has
been presented before in the latest-split compilation. Specif-
ically, we aim to reduce the branching factor after splitting,
which increases by a factor of n (since we can now apply ai
for i = 1 . . . n instead of just at). To address this, we fix an
order between the agents, and only allow the compilation to
pursue goal i+ 1 after goal i has been achieved.

This is done by adding n new facts {donei | i = 1 . . . n}.
donei−1 is added to the preconditions of all ai actions, for
i = 2 . . . n (a1 actions remain the same). Additionally, we
add n new actions called endi actions for i = 1 . . . n, with
pre(endi) = Gi, add(endi) = {donei}, and add(endi) = ∅,
and C(endi) = 0 – these actions mark that goal Gi has
been achieved, and the compilation can move on to achiev-
ing Gi+1.

This optimization does not change the proof of correct-
ness, since every solution to the compilation still encodes n
solutions to the n possible goals, and the cost of a solution
is still the sum of actions costs after splitting. However, the
branching factor is reduced considerably.

Finding Minimum Covering States
We now move on to presenting the compilation for find-
ing minimum covering states. Unfortunately, unlike the av-
erage (or sum) that is used in centroids, the max operator
in minimum covering states is not additive. Thus, we do not
present a compilation which directly finds a minimum cov-
ering state.

Instead, we present a compilation which, given some cost
budget B, checks whether there is some reachable state s
such that the maximum cost of reaching any possible goal
Gi ∈ G is at most B – that is, whether maxG∈G , h

∗(s,G) ≤
B. By performing a binary search over B it is possible to
find the exact minimum covering value (and state).

The first compilation we present uses numerical variables
to keep track of the budget spent to reach each goal. Specif-
ically, the compilation is the same as the above compilation
for finding centroids, except that we add n new numerical
variables, B1 . . . Bn. The value of Bi in the initial state is
0. We also modify the ai actions, and add Bi < B − C(ai)
to pre(ai), and Bi+ = C(ai) to the effects of ai – that is,
action ai keeps track of the budget spent to reach Gi, and
makes sure this budget does not go overB. at actions do not
modify these variables, since we only care about the cost
of reaching the goals from a minimum covering state (after
splitting).

Note that although numerical planning is undecidable
in general, this compilation is a special case of numerical
planning where numerical variables are only compared to
a constant, and are only increased by a constant. There-
fore, the numerical planning task described here is decidable
(Helmert 2002).

Theorem 2. Let Π′ be a numerical planning task with bud-
getB as described above. Then Π′ is solvable iff there exists
some reachable state s such that maxG∈G , h

∗(s,G) ≤ B.

Proof. As in Theorem 1, it is easy to see that any solution π′
yields a state sπ′ in which the do-split action was performed,
unless there is a state which satisfies all the goals, in which
case the minimum covering distance is 0.

Define π′i, π
′
t, and π′ri as in Theorem 1, such that π′i =

π′t · π′ri . It is easy to see that C(π′ri ) ≤ B, as these
are the only actions which modify Bi, and their precon-
ditions enforce that the cost never increases past B. Thus
maxG∈G , h

∗(sπ′ , G) ≤ B.

Having discussed the general case, we now present a com-
pilation to classical planning which is able to find the min-
imum covering state directly – for the case when all ac-
tions have unit cost. This compilation is similar to the sync-
latest-split compilation for finding the wcd with non-optimal
agents, when agents have a deception budget (Keren, Gal,
and Karpas 2015).

The compilation extends the basic compilation for finding
centroids, without the optimization for enforcing the order
between the agents. In this compilation, after splitting agents
take turns executing actions in a round robin manner. This is
implemented by adding n new facts, turni for i = 1 . . . n.
For each ai action, we add turni to pre(ai), turn(i+1) mod n

to add(ai), and turni to del(ai).



This turn taking mechanism ensures that when all agents
have reached their goals, they have all executed almost the
same number of actions – up to a difference of 1 because
only some agents may have acted in the last round. To ac-
count for this while keeping track of the minimum covering
cost, only the actions of agent 1 have a cost (of 1, since all
actions are unit cost). All other actions (at actions and ai
actions for i > 1) cost 0. This ensures that the compilation
only counts the costs incurred by the first agent, who is al-
ways the first to reach the higher number of steps.

Finally, another potential issue is that some agent might
reach its goal, and then be forced to continue acting due
to the turn taking mechanism. To eliminate this issue, we
also introduce a set of NOOP actions – one for each agent.
pre(NOOPi) = Gi, and add(NOOP) = del(NOOP) = ∅,
with costs C(NOOP1) = 1 and C(NOOPi) = 0 for i > 1.
These NOOP actions allow agent i to stay at its goal once it
reaches it. Of course, the NOOP actions also implement the
turn taking mechanism described above and can only be ex-
ecuted after splitting, but we omit these from the description
for the sake of clarity.

As before, it is easy to see that any solution to this new
compilation encodes n different solutions, one for each goal.
The only actions that incur any cost are the actions of agent 1
after splitting, who is always the agent who has executed the
most actions. Thus, the cost of any solution is the maximal
cost of reaching any goal after splitting, and an optimal plan
finds a minimum covering state.

Empirical Evaluation
We implemented our compilation in Python1, and compare
it to the exhaustive search approach (Pozanco et al. 2019)2.
In both cases, we use the same planner used in the ex-
haustive search approach – the Fast Downward (Helmert
2006) planner with the A∗ search algorithm (Hart, Nilsson,
and Raphael 1968) and the LM-cut heuristic (Helmert and
Domshlak 2009). In our case we use it to optimally solve
the compilation, and in the exhaustive search approach to
find the costs of optimal plans.

We used the same time and memory limits as the exhaus-
tive approach – 3600 seconds and 16GB of memory – run-
ning on a server with a Xeon E5-2695 CPU. We compared
both approaches on all domains available from the soft-
ware repository for the exhaustive search approach, which
we divide into five planning domains (blocks-words, ferry,
gripper, hanoi, and logistics) and one grid path-finding do-
main. The planning domains were adapted from standard
IPC benchmarks, and the grid path-finding domains all fea-
ture grids of size 20x20, with a different percentage of cells
being obstacles (5%, 10%, 15%, or 20%). There are 10 prob-
lem instances in each domain, for a total of 90 problems.

The left side of Table 1 shows the empirical results for
finding centroids, comparing the exhaustive approach (E) to
our compilation (C). Looking at the coverage (number of
problems solved) in columns C and E, the compilation-based

1Available at https://github.com/karpase/grs compilation
2We used the implementation from https://github.com/

apozanco/GRS 0.1

Centroid Minimum Covering
Domain C E Spdup Cd Cb E Spdup
blocks-w 10 10 41.25 10 10 10 7.10
ferry 10 0 - 10 10 0 -
gripper 10 2 741.59 10 10 2 749.91
hanoi 10 6 372.86 10 10 6 355.36
logistics 10 2 195.32 10 10 2 188.97
IPC 50 20 226.17 50 50 20 204.05
grid 5% 10 7 56.16 0 0 7 -
grid 10% 10 8 92.20 1 0 7 0.19
grid 15% 10 10 93.16 0 1 10 -
grid 20% 10 9 74.12 0 0 9 -
grid 40 34 80.27 1 1 33 0.19
TOTAL 90 54 134.31 51 51 53 194.34

Table 1: Empirical Results.
Column C shows number of problems solved by centroid
compilation, Column Cd shows number of problems solved
by minimum covering direct compilation, Column Cb shows
number of problems solved by minimum covering compila-
tion with binary search, column E shows number of prob-
lems solved by exhaustive search, and column Spdup shows
the average speedup of Cd/C relative to E.

approach is able to solve all 90 problem instances, while
the exhaustive search solves only 54. The average speedup
(averaged over the commonly solved problems), shows the
compilation-based approach is 2 orders of magnitude faster.

The right side of Table 1 shows the results for finding
minimum covering states, comparing exhaustive search (E)
to our direct compilation (Cd) and to binary search using
our compilation (Cb). Although the binary search is defined
for numerical planning we converted it to classical planning
by converting numerical variables to discrete ones (which is
possible only when actions have uniform cost). This allows
us to compare all 3 approaches using the same underlying
planner, even though the binary search approach can use a
satisficing planner.

Here, the picture varies significantly between the planning
domains, where both versions of the compilation-based ap-
proach solve all 50 problem instances compared to 20 solved
by exhaustive search, and the grid path-finding instances,
where the compilation based approaches do very poorly
(solving 1 instance each), while the exhaustive search ap-
proach solved 33 instances. Thus, overall exhaustive search
solved 2 more problem instances. Looking at the average
speedup (of the direct compilation vs. exhaustive search),
the compilation based approach wins – but that is only be-
cause the average is only over commonly solved problems.

The explanation for these results is that the grid path-
finding problems have a small number of states (400 for
20x20 grids), and optimal planning is tractable in these prob-
lems. Thus, the exhaustive search approach works well here,
while the compilation needlessly increases the size of the
state space. On the other hand, in the planning benchmarks,
the number of possible states is exponential, and thus ex-
haustive search does poorly, while the compilation is able to
exploit the planner.
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