Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion

A Compilation Based Approach to Finding Centroids and Minimum Covering States in Planning

Erez Karpas

Technion — Israel Institute of Technology

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction •••••	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Motivatio	n			

- Suppose we have a set of possible goals
- One of these goals will "arrive" later, but we now have time to prepare for it
- We should go to either:
 - a centroid state one that minimizes the average distance to each possible goal

▲□▶▲□▶▲□▶▲□▶ □ のQで

- a minimum covering state one that minimizes the maximum distance to each possible goal
- Problem was first presented by Pozanco et. al. [PEFB19]

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Example				

	٢	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Example				

	\odot	
	<u>^</u>	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Example				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Problem	Setting			

The setting here is STRIPS with multiple possible goals. Formally, $\Pi = \langle F, A, I, \mathscr{G}, C \rangle$, where:

- F is a set of facts describing the possible states of the world, 2^F
- A is a set of actions each action a ∈ A is ⟨pre(a), add(a), del(a)⟩ with cost C(a)
- $I \subseteq F$ is the initial state of the world, and
- 𝒢 is a set of possible goals, where each possible goal G ∈ 𝒢 is a set of facts G ⊆ F. A state s satisfies a goal if G ⊆ s

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Problem	Objective			

Denote by $h^*(s, G)$ the cost of an optimal path from state s to a state s' such that $G \subseteq s'$

- State s is a centroid iff: s is reachable from I, and ∑_{i=1}ⁿ h^{*}(s, G_i) is minimal (equivalent to minimizing average distance)
- State s is a minimum covering state iff: s is reachable from I, and maxⁿ_{i=1} h^{*}(s, G_i) is minimal

The objective is to find either a centroid or a minimum covering state, possibly also optimizing over the cost to get there

Introduction	Finding Centroids ●000000	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Inspiratio	on			

- The problem statement (and example) are very similar to finding worst case distinctiveness (wcd) in Goal Recognition Design (GRD) [KGK14]
- Reminder: the wcd is the maximal number of steps an agent can take from the initial state before its goal becomes clear
- Finding wcd is done via compilation to classical planning
- It turns out, the compilation for finding centroid states is very similar

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction 0000	Finding Centroids o●ooooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Compilati	on: Illustrate	ed		

	٢	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Introduction 0000	Finding Centroids o●ooooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Compilati	on: Illustrate	ed		

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Compilati	on: Illustrate	ed		

Introduction	Finding Centroids ○●○○○○○	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compile	ation: Illustra	ted		

	e . :	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Finding Centroids o●ooooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compilati	on: Illustrate	ed		

Introduction 0000	Finding Centroids o●ooooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

	•	

くちゃく 御をえばや (明を)(日)

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

()	···· £ ;	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compile	ation: Illustra	ted		

	 ···· /	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

Introduction	Finding Centroids o●ooooo	Finding Minimum Covering States	Empirical Evaluation	Conclusion
Compila	tion: Illustra	ted		

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Compila	ation: Illustra	ted		

G		G	G
			G
G			I.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
<u> </u>		/		

G		G	G
		С	G
G			T

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
<u> </u>		/		

G		G	G
		С	G
	М		
G			I

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
		/		

G		G	Ģ
		С	G
	М		
G			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000
Centroid	Compilation			

Given
$$\Pi = \langle F, A, I, \mathscr{G} = \{G_1, \dots, G_n\}, C \rangle$$
 we define $\Pi' = \langle F', A', I', G', C' \rangle$, where:

•
$$F' = \{f_i \mid f \in F, i = 1 \dots n\} \cup \{\text{split}, \text{unsplit}\},\$$

•
$$A' = \{a_i \mid a \in A, i = 1 ... n\} \cup \{a_t \mid a \in A\} \cup \{\text{do-split}\}, \text{ where }$$

• *a_t* is the together version of action *a*, affecting all of the *f_i* facts, and is possible only before splitting

a_i is the separate version of action *a* for goal *i*, affecting only the *f_i* variables, and is only possible after splitting

• The do-split action allows the agents to split

•
$$I' = \{f_i \mid i \in I, i = 1...n\} \cup \{\text{unsplit}\}$$

•
$$G' = \{f_i \mid f \in G_i, i = 1 ... n\}$$

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
	0000000			

Centroid Compilation vs. wcd Compilation

The only difference between the wcd compilation and this compilation are the costs:

 In wcd, we want to maximize the costs of the "together" actions, so the costs are

•
$$C(a_t) = nC(a) - \varepsilon$$

•
$$C(a_i) = C(a)$$

 In finding centroids, we only care about the costs of the "separate" actions, so the costs are

• $C(a_t) = 0$

• If we want the compilation to find an optimal path to the centroid, we can set $C(a_t) = \varepsilon$ for a small enough ε

• $C(a_i) = C(a)$

• In all cases C(do-split) = 0

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
	0000000			

Centroid Compilation: Theoretical Results

Theorem

An optimal solution for Π' gives us a centroid state for the original task Π .

Proof sketch.

The compilation finds paths from the initial state to all goals. The cost of a plan for the compilation is the sum of costs after splitting, thus the state where it splits is a centroid.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Centroid	Compilation:	Ontimizations		
Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion

• We can force the agents to act in order after splitting – first agent 1 (until it reaches its goal), then agent 2,

▲□▶▲□▶▲□▶▲□▶ □ のQで

• This reduces permutations of essentially the same plans

Introduction	Finding Centroids	Finding Minimum Covering States ●00	Empirical Evaluation	Conclusion
Finding M	linimum Cov	ering States		

- Unfortunately, the max operator in minimum covering states is not additive
- Thus, we do not have a compilation which directly finds a minimum covering state in the general case
- We present a compilation which, given some cost budget *B*, checks whether there is some reachable state *s* such that the maximum cost of reaching any possible goal *G_i* ∈ *G* from *s* is at most *B*
- An binary search over *B* will find minimum covering states (starting by doubling *B* until the compilation is solvable)
- This is similar to the compilation for finding the wcd with non-optimal agents with deception budget [KGK15]

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
		000		

Minimum Covering Compilation: Version 1 (numeric)

The compilation is the same as the centroid compilation, except

- We add *n* new numerical variables, *B*₁...*B_n*
- The value of B_i in the initial state is 0
- $B_i < B C(a_i)$ is added to $pre(a_i)$, and $B_i + = C(a_i)$ to the effects of a_i
- Note that we only care about the cost of reaching the goals after splitting, so a_t actions are unmodified

Theorem

Let Π' be a numerical planning task with budget B as described above. Then Π' is solvable iff there exists some reachable state s such that $\max_{G \in \mathscr{G}}, h^*(s, G) \leq B$.

Minimum Covering Compilation: Version 2 (unit cost actions)

- If all actions are unit cost, we can compile finding the minimum covering state to classical planning (without binary search)
- After splitting agents take turns executing actions in a round robin manner (without the optimization for enforcing the order between the agents)
- The compilation is implemented by:
 - Adding *n* new facts, turn_{*i*} for $i = 1 \dots n$
 - For each a_i action, we add turn_i to pre(a_i), turn_{i+1} mod n to add(a_i), and turn_i to del(a_i)
 - Adding NOOP actions one for each agent, to allow agents to wait after reaching their goal
 - The costs actions are 1 for actions of agent 1 after splitting, 0 for all others (agent 1 is guaranteed to act in every round)

0000	000000	000	0000
Empirica	I Evaluation		

- We compared our compilation (C) to the exhaustive search approach (E) presented in the previous work
- Used several IPC domains and grid navigation with X% obstacles
- Underlying planner was the same in both cases: Fast Downward [Hel06] with A* [HNR68] and the Imcut heuristic [HD09]

▲□▶▲□▶▲□▶▲□▶ □ のQで

• Time limit of 1 hour, memory limit of 16GB

0000	0000000	000	000	0000
Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion

_			
Lmn	rical	BOOL	
	l Cal	nesu	115

		Cen	troid	M	inimu	m Co	vering
Domain	С	E	Spdup	Cd	Cb	E	Spdup
blocks-w	10	10	41.25	10	10	10	7.10
ferry	10	0	-	10	10	0	-
gripper	10	2	741.59	10	10	2	749.91
hanoi	10	6	372.86	10	10	6	355.36
logistics	10	2	195.32	10	10	2	188.97
IPC	50	20	226.17	50	50	20	204.05
grid 5%	10	7	56.16	0	0	7	-
grid 10%	10	8	92.20	1	0	7	0.19
grid 15%	10	10	93.16	0	1	10	-
grid 20%	10	9	74.12	0	0	9	-
grid	40	34	80.27	1	1	33	0.19
TOTAL	90	54	134.31	51	51	53	194.34

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 0000

Empirical Results: Takeaways

- On IPC domains, compilation based approach is about 200X faster than baseline
- On Grid
 - Finding centroids using compilation is 80X faster
 - Finding min cover states using compilation is much slower due to the small size of the state space

▲□▶▲□▶▲□▶▲□▶ □ のQで

Conclusion					
Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion •ooo	

• We presented a compilation based approach to finding centroids and minimum covering states

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Empirical performance for centroids is state-of-the-art
- Empirical performance for minimum covering states varies

Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion
				0000

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

0000 0000000 000	0000

Thank You

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Deferrer				
Introduction	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion 00●●

- Malte Helmert and Carmel Domshlak, Landmarks, critical paths and abstractions: What's the difference anyway?, ICAPS 2009, AAAI, 2009.
- Malte Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006), 191–246.
 - Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics SSC-4(2) (1968), 100–107.
- Sarah Keren, Avigdor Gal, and Erez Karpas, *Goal recognition design*, ICAPS, AAAI, 2014.
 - , *Goal recognition design for non-optimal agents*, AAAI, AAAI Press, 2015, pp. 3298–3304.

References II					
Introduction 0000	Finding Centroids	Finding Minimum Covering States	Empirical Evaluation	Conclusion ○○●●	

Alberto Pozanco, Yolanda E-Martín, Susana Fernández, and Daniel Borrajo, *Finding centroids and minimum covering states in planning*, ICAPS 2019, AAAI Press, 2019, pp. 348–352.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <