A Compilation Based Approach to Finding Centroids and Minimum Covering States in Planning

Erez Karpas

Technion — Israel Institute of Technology

Motivation

- Suppose we have a set of possible goals
- One of these goals will "arrive" later, but we now have time to prepare for it
- We should go to either:
- a centroid state - one that minimizes the average distance to each possible goal
- a minimum covering state - one that minimizes the maximum distance to each possible goal
- Problem was first presented by Pozanco et. al. [PEFB19]

Example

Example

Example

Problem Setting

The setting here is STRIPS with multiple possible goals. Formally,
$\Pi=\langle F, A, I, \mathscr{G}, C\rangle$, where:

- F is a set of facts describing the possible states of the world, 2^{F}
- A is a set of actions - each action $a \in A$ is $\langle p r e(a), \operatorname{add}(a), \operatorname{del}(a)\rangle$ with cost $C(a)$
- $I \subseteq F$ is the initial state of the world, and
- \mathscr{G} is a set of possible goals, where each possible goal $G \in \mathscr{G}$ is a set of facts $G \subseteq F$. A state s satisfies a goal if $G \subseteq s$

Problem Objective

Denote by $h^{*}(s, G)$ the cost of an optimal path from state s to a state s^{\prime} such that $G \subseteq s^{\prime}$

- State s is a centroid iff: s is reachable from I, and $\sum_{i=1}^{n} h^{*}\left(s, G_{i}\right)$ is minimal (equivalent to minimizing average distance)
- State s is a minimum covering state iff: s is reachable from I, and $\max _{i=1}^{n} h^{*}\left(s, G_{i}\right)$ is minimal
The objective is to find either a centroid or a minimum covering state, possibly also optimizing over the cost to get there

Inspiration

- The problem statement (and example) are very similar to finding worst case distinctiveness (wcd) in Goal Recognition Design (GRD) [KGK14]
- Reminder: the wcd is the maximal number of steps an agent can take from the initial state before its goal becomes clear
- Finding wcd is done via compilation to classical planning
- It turns out, the compilation for finding centroid states is very similar

Compilation: Illustrated

Caveat: WCD \neq Centroid \neq Min-cover

Caveat: WCD \neq Centroid \neq Min-cover

Caveat: WCD \neq Centroid \neq Min-cover

Caveat: WCD \neq Centroid \neq Min-cover

G			$C \cdots$	G
			C	G
		M		\vdots
				\vdots
G				\vdots

Centroid Compilation

Given $\Pi=\left\langle F, A, I, \mathscr{G}=\left\{G_{1}, \ldots G_{n}\right\}, C\right\rangle$ we define $\Pi^{\prime}=\left\langle F^{\prime}, A^{\prime}, I^{\prime}, G^{\prime}, C^{\prime}\right\rangle$, where:

- $F^{\prime}=\left\{f_{i} \mid f \in F, i=1 \ldots n\right\} \cup\{$ split, unsplit $\}$,
- $A^{\prime}=\left\{a_{i} \mid a \in A, i=1 \ldots n\right\} \cup\left\{a_{t} \mid a \in A\right\} \cup\{$ do-split $\}$, where
- a_{t} is the together version of action a, affecting all of the f_{i} facts, and is possible only before splitting
- a_{i} is the separate version of action a for goal i, affecting only the f_{i} variables, and is only possible after splitting
- The do-split action allows the agents to split
- $I^{\prime}=\left\{f_{i} \mid f \in I, i=1 \ldots n\right\} \cup\{$ unsplit $\}$
- $G^{\prime}=\left\{f_{i} \mid f \in G_{i}, i=1 \ldots n\right\}$

Centroid Compilation vs. wcd Compilation

The only difference between the wcd compilation and this compilation are the costs:

- In wcd, we want to maximize the costs of the "together" actions, so the costs are
- $C\left(a_{t}\right)=n C(a)-\varepsilon$
- $C\left(a_{i}\right)=C(a)$
- In finding centroids, we only care about the costs of the "separate" actions, so the costs are
- $C\left(a_{t}\right)=0$
- If we want the compilation to find an optimal path to the centroid, we can set $C\left(a_{t}\right)=\varepsilon$ for a small enough ε
- $C\left(a_{i}\right)=C(a)$
- In all cases C (do-split) $=0$

Centroid Compilation: Theoretical Results

Theorem

An optimal solution for Π^{\prime} gives us a centroid state for the original task П.

Proof sketch.

The compilation finds paths from the initial state to all goals. The cost of a plan for the compilation is the sum of costs after splitting, thus the state where it splits is a centroid.

Centroid Compilation: Optimizations

- We can force the agents to act in order after splitting - first agent 1 (until it reaches its goal), then agent $2, \ldots$.
- This reduces permutations of essentially the same plans

Finding Minimum Covering States

- Unfortunately, the max operator in minimum covering states is not additive
- Thus, we do not have a compilation which directly finds a minimum covering state in the general case
- We present a compilation which, given some cost budget B, checks whether there is some reachable state s such that the maximum cost of reaching any possible goal $G_{i} \in \mathscr{G}$ from s is at most B
- An binary search over B will find minimum covering states (starting by doubling B until the compilation is solvable)
- This is similar to the compilation for finding the wcd with non-optimal agents with deception budget [KGK15]

Minimum Covering Compilation: Version 1 (numeric)

The compilation is the same as the centroid compilation, except

- We add n new numerical variables, $B_{1} \ldots B_{n}$
- The value of B_{i} in the initial state is 0
- $B_{i}<B-C\left(a_{i}\right)$ is added to pre $\left(a_{i}\right)$, and $B_{i}+=C\left(a_{i}\right)$ to the effects of a_{i}
- Note that we only care about the cost of reaching the goals after splitting, so a_{t} actions are unmodified

Theorem

Let Π^{\prime} be a numerical planning task with budget B as described above. Then Π^{\prime} is solvable iff there exists some reachable state s such that $\max _{G \in \mathscr{G}}, h^{*}(s, G) \leq B$.

Minimum Covering Compilation: Version 2 (unit cost actions)

- If all actions are unit cost, we can compile finding the minimum covering state to classical planning (without binary search)
- After splitting agents take turns executing actions in a round robin manner (without the optimization for enforcing the order between the agents)
- The compilation is implemented by:
- Adding n new facts, turn ${ }_{i}$ for $i=1 \ldots n$
- For each a_{i} action, we add turn ${ }_{i}$ to $\operatorname{pre}\left(a_{i}\right)$, turn ${ }_{i+1} \bmod n$ to $\operatorname{add}\left(a_{i}\right)$, and turn ${ }_{i}$ to $\operatorname{del}\left(a_{i}\right)$
- Adding NOOP actions - one for each agent, to allow agents to wait after reaching their goal
- The costs actions are 1 for actions of agent 1 after splitting, 0 for all others (agent 1 is guaranteed to act in every round)

Empirical Evaluation

- We compared our compilation (C) to the exhaustive search approach (E) presented in the previous work
- Used several IPC domains and grid navigation with X\% obstacles
- Underlying planner was the same in both cases: Fast Downward [Hel06] with A^{*} [HNR68] and the Imcut heuristic [HD09]
- Time limit of 1 hour, memory limit of 16GB

Empirical Results

	Centroid				Minimum Covering			
Domain	C	E	Spdup	Cd	Cb	E	Spdup	
blocks-w	10	10	41.25	10	10	10	7.10	
ferry	$\mathbf{1 0}$	0	-	$\mathbf{1 0}$	$\mathbf{1 0}$	0	-	
gripper	$\mathbf{1 0}$	2	741.59	$\mathbf{1 0}$	$\mathbf{1 0}$	2	749.91	
hanoi	$\mathbf{1 0}$	6	372.86	$\mathbf{1 0}$	$\mathbf{1 0}$	6	355.36	
logistics	$\mathbf{1 0}$	2	195.32	$\mathbf{1 0}$	$\mathbf{1 0}$	2	188.97	
IPC	$\mathbf{5 0}$	20	226.17	$\mathbf{5 0}$	$\mathbf{5 0}$	20	204.05	
grid 5\%	$\mathbf{1 0}$	7	56.16	0	0	$\mathbf{7}$	-	
grid 10\%	$\mathbf{1 0}$	8	92.20	1	0	$\mathbf{7}$	0.19	
grid 15\%	10	10	93.16	0	1	$\mathbf{1 0}$	-	
grid 20\%	$\mathbf{1 0}$	9	74.12	0	0	$\mathbf{9}$	-	
grid	$\mathbf{4 0}$	34	80.27	1	1	$\mathbf{3 3}$	0.19	
TOTAL	$\mathbf{9 0}$	54	134.31	51	51	$\mathbf{5 3}$	194.34	

Empirical Results: Takeaways

- On IPC domains, compilation based approach is about 200X faster than baseline
- On Grid
- Finding centroids using compilation is 80 X faster
- Finding min cover states using compilation is much slower - due to the small size of the state space

Conclusion

- We presented a compilation based approach to finding centroids and minimum covering states
- Empirical performance for centroids is state-of-the-art
- Empirical performance for minimum covering states varies

Thank You

Thank You

Questions?

References I

荃
Malte Helmert and Carmel Domshlak, Landmarks, critical paths and abstractions: What's the difference anyway?, ICAPS 2009, AAAI, 2009.

R Malte Helmert, The fast downward planning system, J. Artif. Intell. Res. 26 (2006), 191-246.
(neter E. Hart, Nils J. Nilsson, and Bertram Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics SSC-4(2) (1968), 100-107.

Sarah Keren, Avigdor Gal, and Erez Karpas, Goal recognition design, ICAPS, AAAI, 2014.

圊 \qquad , Goal recognition design for non-optimal agents, AAAI, AAAI Press, 2015, pp. 3298-3304.

References II

Alberto Pozanco, Yolanda E-Martín, Susana Fernández, andDaniel Borrajo, Finding centroids and minimum covering states in planning, ICAPS 2019, AAAI Press, 2019, pp. 348-352.

