
Planning and Acting While the Clock Ticks

Andrew Coles,1 Erez Karpas,2 Andrey Lavrinenko,3

Wheeler Ruml,4 Solomon Eyal Shimony,3 Shahaf Shperberg3

1King’s College London
2Technion
3Ben-Gurion University
4University of New Hampshire



Motivation



Temporal

Planning

while the Clock Ticks

Agent

Executive

Temporal Planner

plan

Planner+
Executive

Environment

Action

Observation

Action
Observation

Temporal planning:
time passes here

Planning while the clock ticks:
time passes here

Concurrent Planning and Execution:
time passes here

1



Temporal Planning

while the Clock Ticks

Agent

Executive

Temporal Planner

plan

Planner+
Executive

Environment

Action

Observation

Action
Observation

Temporal planning:
time passes here

Planning while the clock ticks:
time passes here

Concurrent Planning and Execution:
time passes here

1



Temporal Planning

while the Clock Ticks

Agent

Executive

Temporal Planner

plan

Planner+
Executive

Environment

Action

Observation

Action
Observation

Temporal planning:
time passes here

Planning while the clock ticks:
time passes here

Concurrent Planning and Execution:
time passes here

1



Temporal Planning while the Clock Ticks

Agent

Executive

Temporal Planner

plan

Planner+
Executive

Environment

Action

Observation

Action
Observation

Temporal planning:
time passes here

Planning while the clock ticks:
time passes here

Concurrent Planning and Execution:
time passes here

1



Temporal Planning while the Clock Ticks

Agent

Executive

Temporal Planner

plan

Planner+
Executive

Environment

Action

Observation

Action
Observation

Temporal planning:
time passes here

Planning while the clock ticks:
time passes here

Concurrent Planning and Execution:
time passes here

1



Why does this matter? Temporal Constraints!

• If we do not have any external temporal constraints (e.g.,
deadlines), then planning time will never affect plan feasibility

• But what if we have 10 seconds to achieve our goal?
• 10 seconds from planning start time
• Then if we take t seconds to plan, the plan’s makespan must be
less than 10− t seconds

2



Action Commitment

• In situated temporal planning, the planner must complete
planning before the first action is executed

• This guarantees that any plan that is returned will be correct
• It does not guarantee that we will reach our goal on time

• Example: consider an autonomous vehicle planning a long drive,
when a large truck starts backing up towards it

• Maybe the vehicle should start driving forward, even if it does
not have a complete plan

3



Action Commitment

• In situated temporal planning, the planner must complete
planning before the first action is executed

• This guarantees that any plan that is returned will be correct
• It does not guarantee that we will reach our goal on time

• Example: consider an autonomous vehicle planning a long drive,
when a large truck starts backing up towards it

• Maybe the vehicle should start driving forward, even if it does
not have a complete plan

3



Action Commitment

• In situated temporal planning, the planner must complete
planning before the first action is executed

• This guarantees that any plan that is returned will be correct
• It does not guarantee that we will reach our goal on time

• Example: consider an autonomous vehicle planning a long drive,
when a large truck starts backing up towards it

• Maybe the vehicle should start driving forward, even if it does
not have a complete plan

3



Problem Statement



Formal Problem Statement

• A

situated concurrent

planning

and execution

problem is given
by a tuple 〈F,A, I,G〉

• F is a set of Boolean facts that describe the state of the world
• A is a set of durative actions
• I ⊆ F is the initial state
• G ⊆ F is the goal

• A plan π is a set of tuples 〈a, t,d〉, where:
• a ∈ A is an action
• t ∈ R0+ is its start time
• d ∈ R0+ is its duration

• A plan π is valid if applying each action at its designated start
time achieves the goal G

and if planning took x time, then t ≥ x for every 〈a, t,d〉 ∈ π

and if 〈a, t,d〉 ∈ π is output at time x then t ≥ x

4



Formal Problem Statement

• A situated

concurrent

planning

and execution

problem is given
by a tuple 〈F,A, I,G〉

• F is a set of Boolean facts that describe the state of the world
• A is a set of durative actions
• I ⊆ F is the initial state
• G ⊆ F is the goal

• A plan π is a set of tuples 〈a, t,d〉, where:
• a ∈ A is an action
• t ∈ R0+ is its start time
• d ∈ R0+ is its duration

• A plan π is valid if applying each action at its designated start
time achieves the goal G
and if planning took x time, then t ≥ x for every 〈a, t,d〉 ∈ π

and if 〈a, t,d〉 ∈ π is output at time x then t ≥ x

4



Formal Problem Statement

• A

situated

concurrent planning and execution problem is given
by a tuple 〈F,A, I,G〉

• F is a set of Boolean facts that describe the state of the world
• A is a set of durative actions
• I ⊆ F is the initial state
• G ⊆ F is the goal

• A plan π is a set of tuples 〈a, t,d〉, where:
• a ∈ A is an action
• t ∈ R0+ is its start time
• d ∈ R0+ is its duration

• A plan π is valid if applying each action at its designated start
time achieves the goal G

and if planning took x time, then t ≥ x for every 〈a, t,d〉 ∈ π

and if 〈a, t,d〉 ∈ π is output at time x then t ≥ x

4



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans

• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans

• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans

• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans

• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search

• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search

• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1

t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search

• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0t=1

t=2

t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search

• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0t=1t=2

t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0

t=1

t=2t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0t=1

t=2

t=3

5



Searching While the Clock Ticks

• Planning can be solved by searching a tree of possible plans
• In situated planning, nodes can expire during search
• In concurrent planning and execution, can commit to an action
and prune the rest of the tree

t=0t=1t=2

t=3

5



Concurrent Planning and
Execution



Components for Concurrent Planning and Execution

• Search

• Same search space as POPF – search over sequences of start/end
of durative actions

• Heuristic

• Temporal Relaxed Planning Graph

• Temporal Reasoning

• Modified version of the Simple Temporal Network of POPF to
account for when planning started and the current time

• Metareasoning

• The focus of the rest of this talk

6



Components for Concurrent Planning and Execution

• Search
• Same search space as POPF – search over sequences of start/end
of durative actions

• Heuristic

• Temporal Relaxed Planning Graph

• Temporal Reasoning

• Modified version of the Simple Temporal Network of POPF to
account for when planning started and the current time

• Metareasoning

• The focus of the rest of this talk

6



Components for Concurrent Planning and Execution

• Search
• Same search space as POPF – search over sequences of start/end
of durative actions

• Heuristic
• Temporal Relaxed Planning Graph

• Temporal Reasoning

• Modified version of the Simple Temporal Network of POPF to
account for when planning started and the current time

• Metareasoning

• The focus of the rest of this talk

6



Components for Concurrent Planning and Execution

• Search
• Same search space as POPF – search over sequences of start/end
of durative actions

• Heuristic
• Temporal Relaxed Planning Graph

• Temporal Reasoning
• Modified version of the Simple Temporal Network of POPF to
account for when planning started and the current time

• Metareasoning

• The focus of the rest of this talk

6



Components for Concurrent Planning and Execution

• Search
• Same search space as POPF – search over sequences of start/end
of durative actions

• Heuristic
• Temporal Relaxed Planning Graph

• Temporal Reasoning
• Modified version of the Simple Temporal Network of POPF to
account for when planning started and the current time

• Metareasoning
• The focus of the rest of this talk

6



Metareasoning for Concurrent
Planning and Execution



The Metareasoning Problem

• Metareasoning deals with choosing computational actions to
optimize some objective

• Maximizing the probability of timely goal achievement

• The meta-level problem can be described as a POMDP with
• State: the state of the search tree
• Actions:

• Expand state in the search tree (also in situated planning)
• Execute action (only in concurrent planning and execution)

• Is harder to solve than the original problem

7



Practical

?

Metareasoning

• For situated planning we developed a greedy decision rule
called Delay-Damage Aware (DDA)

• DDA is based on two distributions for each search node:
• Di – distribution on deadline
• Mi – distribution on remaining search time

• Distributions are estimated based on observations collected
during search

• Also developed an abstract metareasoning model called CoPE
which uses DDA for abstract concurrent planning and execution

• Plugging this into the planner resulted in terrible performance

8



Practical? Metareasoning

• For situated planning we developed a greedy decision rule
called Delay-Damage Aware (DDA)

• DDA is based on two distributions for each search node:
• Di – distribution on deadline
• Mi – distribution on remaining search time

• Distributions are estimated based on observations collected
during search

• Also developed an abstract metareasoning model called CoPE
which uses DDA for abstract concurrent planning and execution

• Plugging this into the planner resulted in terrible performance

8



Metareasoning for CoPE: Measurements

• The reason our CoPE metareasoning did badly is because it
assumed the estimated of Mi and Di were accurate

• It then committed to executing an action, which is an
irreversible decision

• Unlike expanding a node, which only wastes a little time

• Our solution here: introducing measurements
• We must take into account the fact that our distribution estimates
Di and Mi are inaccurate

• We have the option to expand nodes to gain more information
(probing)

• Rough idea: if an action looks like it should be executed now, but we
did not expand enough nodes under it, focus search in the subtree
rooted at that action

9



Empirical Results - RCLL 1

10



Empirical Results - RCLL 2

11



Empirical Results - RCLL 3

12



Thank You

“Time flies like an arrow; fruit flies like a
banana.” (Anthony Oettinger)

12


	Motivation
	Problem Statement
	Concurrent Planning and Execution
	Metareasoning for Concurrent Planning and Execution

